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Multivariate Linear Regression Model with Elliptically Contoured
Distributed Errors and Monotone Missing Dependent Variables
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University of loannina, Department of Mathematics, 451 10 Ioannina, GREECE

Abstract

In this paper, the multivariate linear regression model is studied under the assumptions
that the error term of this model is described by the elliptically contoured distribution and
the observations on the response variables are of a monotone missing pattern. It is primarily
concerned with estimation of the model parameters’, as well as, with the development of the
likelihood ratio test in order to examine the existence of linear comstraints on the regression
coefficients. In this context, the multivariate linear regression model with the constant term
as a sole explanatory variable is also studied and leads to estimators of the location and scale
of elliptically contoured distributions with monotone missing data. A numerical example is
presented for the explanation of the results.
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1 Imtroduction

Multivariate linear regression analysis is a well known statistical technique which helps
to predict values of responses, dependent variables, from a set of explanatory, indepen-
dent, variables. It is a popular statistical tool used in almost every branch of science and
engineering. The classic linear multivariate regression model is analyzed assuming the
error matrix has a multivariate normal distribution with zero mean matrix and a positive
definite dispersion matrix. The role of the multivariate normal distribution is seminal in
probability theory and statistics. However, many statistical papers and empirical stud-
ies show that the normal distribution is not capable of exhibiting important properties
encountered in finance and economics, among other research areas. A well known insuffi-
ciency of the normal distributions are their light tails which fail to formulate for instance,
observations of rates of return on common stock, according to Fama (1965) and Blat-
tberg and Gonedes (1974). In this respect, there has been intense research in the use of
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nonnormal distributions in financial area. The papers by Zellner (1976) and Sutradhar
and Ali (1986), include an extensive overview of relevant literature where the error term
of the multivariate regression model can have nonnormal distributions and in particu-
lar t-distribution in practice. To tackle insufficiencies of normal distributions researchers
focus on the broader class of elliptic distributions the last three decades. They provide
useful alternatives to the multivariate normal distribution and many of the nice prop-
erties of the multivariate normal model holds for elliptic distributions. This generalized
family of multivariate distributions, includes as representatives, the multivariate normal,
multivariate ¢-distribution, Pearson type II and VII, multivariate symmetric Kotz type
distribution. For a comprehensive monograph on elliptically contoured distributions see
for example Fang and Zhang (1990), Fang et al. (1990) and Gupta and Varga (1993).
Elliptic distributions and in particular the multivariate ¢-distribution have been consid-
ered by several authors to formulate the errors in the multivariate regression model. We
refer, among others, to Zellner (1976), Sutradhar and Ali (1986), Galea et al. (1997), Liu
(2002), Diaz-Garcia et al. (2003) and references therein.

In these and other treatments the multivariate linear regression model with nonnormal
errors is studied under the assumption that complete data are available for the response
and the explanatory variables. The investigation of this model in the case of incomplete
data is particularly appealing from a theoretical as well as a practical viewpoint and
it has occupied the literature of the subject. In this direction, Little (1992) and Rao
and Toutenburg (1999) review the literature of regression analysis with missing values in
the independent variables, while Robins and Rotnitzky (1995) discuss the semiparamet-
ric efficiency in multivariate regression models with missing data and in particular with
monotene missing data for the response variable. Liu (1996) considers Bayesian estima-
tion of multivariate linear regression models using fully observed explanatory variables
and possible missing values from response variables. Tang et al. (2003) consider the
same model with missing data in the response variables, when the nonresponse mecha-
nism depends on the underlined values of the responses and hence is nonignorable. In a
recent paper Raats et al. (2002) consider the problem of multivariate linear regression
analysis, in the context of normally distributed error terms, for the specific case where the
observations of the dependent variables appear a monotone missing pattern. Monotone
missing data is a particular type of missing data which is common in practice (cf. Hao
and Krishnamoorthy (2001)) and on the other hand, a non-monotone data set can be
made monotone or nearly so by reordering the variables according to their missingness
rates (cf. Schafer (1997), p. 218). There is an increasing interest in the development of
statistical methods for handling monotone missing data from normal or elliptical popula-
tions (cf., for instance, Kanda and Fujikoshi (1998), Krishnamoorthy and Pannala (1998),
Hao and Krishnamoorthy (2001), Chung and Han (2000), Batsidis and Zografos (2005)
and references therein).

In this paper we extend the classic multivariate linear regression model in two aspects:
on the one hand adopting elliptically contoured distributed errors and on the other hand
considering monotone missing data for the response variables. More specifically, we con-
sider a p—dimensional vector of response variables on a g—dimensional vector of explana-



tory variables when the explanatory are completely observed while the responses have
missing values of a monotone pattern. These data are assumed to be missing completely
at random (MCAR), that is the missing data mechanism can be ignored for inference
(cf. Rubin (1976)). Practical examples of such data patterns, according to Raats et al.
(2002), are experimental designs where new dependent variables are added during the
experiment, panel surveys with drop outs or new members.

In the frame described previously, in the next section some preliminary concepts will
be presented related. to.the elliptic. family of distributions, monotone missing data and
multivariate linear regression model. The necessary notation is also stated. In Section
3, the explicit form of the maximum likelihood estimators (MLE) will be derived for the
parameters of the model. In Section 4, we will obtain the likelihood ratio test statistic
in order to examine the existence of linear constraints on the regression parameters. In
the final Section 5, we illustrate the results of this paper to a numerical example. In the
Appendix, we deal with the special case of the constant term as sole explanatory variable.
This case has been treated previously in the literature in the context of multivariate
normal distribution by many authors (cf., for instance, Anderson (1957), Jinadasa and
Tracy (1992), Fujisawa (1995)) and in the framework of elliptically contoured distribution
by Batsidis and Zografos (2005). It will be shown that in this particular case of a constant
term as sole explanatory variable, the main results of this paper lead to the similar ones
mentioned above.

2 The model and Preliminaries

Let us suppose that the N x p random matrix Y = (y1, s, ..;Yn)t has an elliptical
distribution with an N x p location matrix u and an Np x Np scale matrix £ @ Iy,
withy; € RP, i =1,..., N, T a positive definite matrix of order P, In the identity matrix
of order N and ® denotes the Kronecker product of the respective matrices. Then, its
density function is given by

BT f [t {=7 (Y ~ ) (Y - )], (1)

where f is a one-dimensional real valued function such that (cf. Gupta and Varga (1993,
p- 31))

0< [uNP/271f (4) du < 0.
0

We use in this case the notation ¥ ~ ECpy,(1, £ ® Iy), and we call f(-) the probability
density function generator (p.d.f. generator).

Hence, we note (cf. Anderson et al. (1986)) that this distribution is written as a
univariate elliptic distribution and then all the properties of univariate elliptic models,
are still valid. Moreover, y1,%s,...,yn can be considered as N uncorrelated realizations
from a p-dimensional elliptic population (cf. Diaz-Garcia et al. (2003), Gupta and Varga
(1993)) and relation (1) is in fact the likelihood function of them. We will present in the
sequel some properties related to the univariate elliptic models.



Consider a N x p random matrix Y from an elliptically contoured distribution, as
mentioned above, with unknown location matrix y and unknown scale matrix ¥ ® Iy,
with ¥ a positive definite matrix of order p. Let Y be partitioned as (Y1, Y, ..., Yz ), where
Y. is a N x p; random matrix, i = 1,...,k, and p; +p2 + ... + p = p.

Following the notation of Kanda and Fujikoshi (1998), let the partitions of the location
parameter y and the scale matrix ¥, according to the ones of Y, be

Y B - - Bu
Yo oy - - Xy _
nu’[z] = (”17 Moy --ey PL,) and E(l,...,i}(l,...,i) = - o . = ’ 2 = 17 “eey k:
Ta D - - Xy
where p;, is N x p;—dimensional and X, are p; X p, matrices, with X;; positive definite
for j,£ = 1,...,i. Then, it is well known (cf. Fang and Zhang (1990), Gupta and Varga
(1993)), that each Y;, is distributed as an elliptically contoured ECxyxp. (1, Zs ® In),
=1 K

Let now the transformation of the initial parameters y and ¥ to 7 and A = (4y),
defined respectively by

T = p 0= M~ Ry, =2,k

A =2y, Ap =AY =25, Ajj = X5 — E::i(l-«j—I)E(_1.1..;;-1)(1...3-'—1)E(l---j—ll:r'a

2
» @
Aq.j-n; = s = A;‘(l...j-l) = 2(_1%..3'—1)(1...3'—1)2(1---3'-1)3' ]

AVIRY

for j =2,...,k. Under this notation we can easily seen that the conditional distribution
of Y;|Yji—y, Yjiey = (Y3,...,¥i1), is an elliptically contoured with a p.d.f. generator g;,
location parameter n; + Yi-1A1..i-1i> ¢ = 2,...,k, and conditional covariance matrix
Cov (Y:;ly[i—u), 1 =2, ..., k, respectively

Cov (Y2|Y1) = Aphy [tr {AT (Y1 — 7)(Y1 — 1) }] ® In, and for i = 3,....k,

Cov (Yi|Yiyy) = (A ® In) x h; {tr [(Yi—ny.Yia =y — Vi A i—2yi-1) X (3)
diag (A1_11: A'i——l]'i—l) ( YVi=my s Hid =M~ Vi A i2)i1 )t} 3

where h;, i = 2,...,k, is a scalar function. This is a well known result appeared, for
instance, in Fang et ol (1990, p. 45, 67) and Gupta and Varga (1993, p. 63). The
expression for hy of specific elliptic models, like Pearson type VII etc., has been derived
in Batsidis and Zografos (2005), for the case of univariate elliptic models.



Consider now the multivariate linear regression model with p dependent variables, ¢
explanatory variables and V; items. This means that we consider the model

Y =XB+E, (4)

where Y is a N1 x p observation matrix of responses, X is a known N; x ¢ model matrix
of full column rank ¢, B is a ¢ x p matrix of regression parameters with unknown values
and F is a N; x p random matrix with £ = (€1, €2, ...,eNl)t, where¢; € RP, i =1,..., Ny.
The matrix F is known as error matrix. Further, we assume that the error matrix F has -
an elliptical distribution ECh, x,(0, £ ® Iy,) and hence the density of ¥ is given by (1)
with p = X B. This is typically called the elliptical multivariate linear regression model
(cf. among others Diaz-Garcia et al. (2003)) and extends the respective classic linear
model by using elliptic distribution for the error matrix F instead of multivariate normal
distribution.

Motivated by the work of Raats et al (2002), let us modify the classical elliptical
multivariate linear regression model mentioned above. We assume that the observations
of the dependent variables are incomplete and can be divided into k, k > 2, ordered groups
according to the pattern of increasing missing rate. Group r contains p, variables for which
exactly the first N, observations are available, 7 =1, ..., k, with N; > No > ... > N; and
P1+p2+ ...+ pr=p. Thus Y has the following form

[ ¥ Y - Yia
Yie Y - Yk
i 4 75
¥ = |EEER )

i 3
Yin. Yon,

yiN] )

1.1 1
nr Yi

where each y,; is p, —dimensional vector, j = 1,..., N,, r = 1,..,k, withpi+po+.. 40 =p
and we denote by Y; = (y1,Yre, .-, %n.) the N,x p, matrix which contains all the
available observations of group r, with r = 1,...,k. Such a pattern is called k-step
monotone missing pattern (cf. for example, Kanda and Fujikoshi (1998)).

We will present in the sequel the notation of this paper. The error matrix E is given
by

b 4 z
€11 ‘5%1 T €
€y €y - €ho
E=| ™ 2k ; (6)
t 1 t
&N, fany €&y

where each ¢,; is p, —dimensional vector, r = 1, ..., k,7=1,..., Ny, with p;+po+...4+pp = p.
Similar to Y;, we denote by E, the N, x pr matrix given by E, = (&r,60,..., erN,)t,



r=1,..., k. We will denote by Y{,_1) and E¢_1y the N, X p(—1) matrices, where p_1) =
P1+ ... + pr—1. These matrices contain the first IV, observations of the foregoings groups
for r = 2,..., k, while Y{g) = E(g) = 0. This means that

1 t t t
Y1 - Y1 €11 " &1
i .t t Lt
Y12 Yr—12 €12 €12
1f('r—-l) = . N . aE(r—l) = . . . » T=2,.., k. (7)
t t t t
Yin. " YUrain, EIN, 77 &-1N,

Further let X;; denotes the observed value of the [ explanatory variable, [ = 1, ..., ¢, for
the j item, j =1, ..., V;. We assume that complete data are available for the explanatory
variables and X is of the following form

X11 X21 T qu
X1 Xoo - - qu

X = . S (8)
XIN)_ X2N1 = XqN;_

Following the notation of Raats et al. (2002) let us denote by X, the N, x ¢ matrix which
contains the first /N, observations of all explanatory variables, r = 1,...,k. According to
this we have that '

Xu Xo1 - - qu
X1z Xoz - - Xpo
X, = . . S . ,r=1,..k (9)
Xin, Xon, - - Xgn,
Moreover, we will assume that the matrix B of the regression parameters has the form
ﬁ 11 1612 T 51::
B Baz - - Ba
B=| - - .. | =(Bi,Bs.. By, (10)
qul Bq2 o 'qu

where each §,,,is 1 xp,, Il =1,...,q, 7 =1, ..., k, with p; +ps+ ... + pr = p and B, denotes
the ¢ X p. submatrices of B. Denote also by B(,_1) , the ¢x pi—_1), pr—1) = P1+ ... +Pr-1,
submatrices of B, defined as follows

511 T 51,1——1
ﬁ21 Tt JB‘Z,'r——l

By = - : st B (11)
ﬁql e 18q,r—1



Using the notation introduced by relations (5)-(11) the multivariate linear regression
model (4) can be expressed in the following equivalent form

q
yf-j = ZXUBIT oF €:jar =1,.., k?.’] =1, »a%y NT‘:
=1

Y =X,B,+E, =p. +E, r=1,..k, (12)

and
1/(1'-—1) = XTB(T-I) + E(r—l) = K(r-1) o E(r—l): r= 27 =y k. (13)

3 - Estimation of the model

In this section we will present the maximum likelihood approach for the estimation of the
regression coefficients as well as the parameters of the elliptically contoured distribution
in the presence of monotone missing data in the response variables. In particular, in
the next subsection the maximum likelihood estimators (MLE) of B and T are derived.
Consistent estimators of the parameters B, as well as, of the covariance matrix of the
elliptically distributed error matrix E will be derived in Subsection 3.2 below.

3.1 Maximum likelihood estimators

Following the maximum likelihood approach we seek values of the unknown B and ¥ that
maximize the likelihood function. The likelihood function is the joint density of Y and it
is denoted by Ly (B, X).

Theorem 1 Consider the multivariate linear regression model given by (4), under the
assumption that the error matriz E is distributed according to an elliptic distribution
ECn,xp(0,Z ® Iy,). On the basis of monotone missing pattern observations for the re-
sponse variables of the form (5), the MLE of B and & are respectively

211 i12 i glk
B (BB By ot B ] " B2 T
im gkg R ikk

where

—

By = (XiX;) Xy,

o . t - t
. & = ( = e ) ( . )Y,-, forr=2,..k k>2,
Al o1 Eir—1)Ar  E(r_1)€(r—1) €(r-1)



with €r—1) = Y(r—1) — ﬁ(r-—l)r while

B = Aut = Ana(01)Q(B1),
Zr(tr=1) = Br(tr-) D(Lr-1)(.r-1)s

Y.= Ar‘r T AT‘(I...T—I)2(1...?-——1)(1...7‘—1)A{l...?‘—l)‘ru

forr=2,...k k > 2, where Q(B1) = (i - X,B1)!(Ys — X, B1), Q(B,, Aq._r-1)-) denotes
the quantity

—~ t -
B, B
Y. - Xr r— ~ 7 Y, — X: r— e "
( ( &=y ) ( A(1__.‘.l'—1)1r- )) ( ( fr-1) ) ( A(1...1"—1)1" ))

and h,, the function related to the conditional covariance matriz Cov (Ve Vieiy) 7 =
2,....k, k > 2, given by (3). Moreover, g, and g,, r =2, ..., k, are the nonincreasing, by as-
sumption, p.d.f. generators respectively, of the marginal density of Y1 and the conditional
density Y, [Y(,—1), while Anax(g1) denotes the point at which the function \~NP1/2g, (p1/X)
arrives at its mazimum and &, .,.(gr) the point at which the function £~NP/2g (p, /€)
arrwes at its mazimum, r =2,...,k, k> 2.

Proof. The proof follows the conditional likelihood approach introduced by Anderson
(1957). Writing the joint density as the product of the marginal and conditional densities
functions and taking into account relation (1) and the reparametrization (2), we can
express the likelihood function as follows

LY (1“’:- 2) = LY1 (771 ) AIE)LYﬂYu) (7727 A12') A??)---LYMYEk_U (7?.&: A(l...ic-—l)k: Akk) . (14)

In view of (2), there is a one-to-one correspondence (cf. Anderson (1957), Little and
Rubin (2002, p. 135)) between the initial (, X) and the natural parameters (7, A) in
the conditional approach. Therefore, it is enough to derive the MLE of (m,A). We will
obtain, at the beginning, the MLE of 7n; and A;; based on Ly,, and then, replacing in the
expression of Ly,iv,,y, 71 and Ay by their MLE, we will derive the MLE of 75, A and
Agy based on the conditional likelihood. We repeat this procedure until the last part of
the product given by the right-side of relation (14). Therefore, the MLE of 7 and Apq
will be obtained, at the beginning, by the maximization, with respect to 7, and A;;, of
the first part of the likelihood which, using relation (1), is given by

Ly, (m, Au) = [Au ™2 (tr {AF (Y — )" (Y = m0)}) (15)

where g1, is the nonincreasing, by assumption, p.d.f. generator function of the marginal
density of ¥3. By monotonicity of gy, for a given A1; > 0, we have to minimize according
to 7y, the quantity (Y —n,)*(¥1 —7,). Thus, based on the relations (2) and (12), we have
to minimize with respect to B, the quantity (Y1 — X1B,)}(Y; — X1B1). This quantity is
minimized by B; = (XX;)~XtY;.



Hence the concentrated likelihood is
Ly,(By, An) = | Ay /2, [tT(AﬁlQ(ﬁl))] ;

with R R R

Q(B1) = (V1 — X, B)' (Y1 — X1 By). (16)
Following now the steps of the proof of Theorem 4.1.1, of Fang and Zhang (1990), the
MLE of Ay, is given by " N
An = Anax(91)Q(B1). (17)
We will now concentrate on the MLE of the parameters T, A21 and Ags. The condi-

tional likelihood Ly, |v;,) = Ly, v, (2, D12, Age), in view of relations (1) and (3), is defined
by

Lyyvyy = |Aggho| ™™/
xga {tr [(hela2) ™" (Yo — my — Yy Ara)(Yz — 75 — YinyAga)] }
with hs related to the conditional covariance matrix Cov (Y3|Y;), defined by (3). If we
replace in the expression of Ly;1v,,,, 11 and Ay, by their MLE, then using monotonicity of

92, the maximum of Ly,|y,,, (7, A12, Ass) with respect to 7, and A;, arTives at the values
of 7, and Ay which minimize the quantity

(Y2 = ny — YiyAr2)t(Ys — 735 — Yi)Qg).

(18)

From relation (2), we have that 7, = p, — p1yAi2. Hence, if we replace gy by its MLE
we have to minimize with respect to u, and A;, the quantity

(Y2 — po = (Yiy = Byy)Da2)' (Yz — g — (Yay — Byy) D).

Using the fact that u, = X5B,, we have to minimize with respect to By and Ay the
quantity
(Y2 = XoBs — (Y1) — fiyy) A2) (Yo — XoBy — (Yypy — Hy)Aiz),

or equivalently the quantity

e w0 (2)) (-5 a0 (8)

where ey = Y3y — (- After some algebra we obtain that

B XiXs  Xieq )‘ ( X )
b - Ys. 19
( Ay ) ( enXz epen ey ) ? (19)

In order to derive the MLE of the parameter Ago, we have to maximize the quantity

f—Ng/?

" ~ o o N
Ly (s (T Do1, Agg) = Jh2(ﬁ1;4511) X Ago a2 {tT [(hz(”lh,ﬂu) X /—\22) Q(B21A12)J } ;



where

Q(é‘z,&z):(yz—(xz e(1>)(§;)) (Yz—(Xz em)(f;)). (20)

Following again the steps of the proof of Theorem 4.1.1, of Fang and Zhang (1990), we
obtain the MLE of A = 22.1, that is

Agp =55, = MQ(E}, An). (21)

ho(Th,, A1)

If we repeat the same procedure, the last term Ly, Ypeery = Lviliosy (e Ar. k=101 Dii),
of the likelihood function (14) becomes

LkaY(k—l) = IAkkh‘kl*Nk/z x

i [tr { (Brehe) ™ (Y — M — Y-y A e—ne ) (Ve — 1 — Ye-nAw.e-1) } »
where the scalar functions g; and h; are respectively the p.d.f. generator of Ye|Yik-1)s
and the function related to the conditional covariance matrix of Yi|Yix-1), k£ > 2, defined
in (3).
In a similar manner, as in the case of the maximization of Ly,|y,,y, we obtain the MLE

estimator of ( Be ) to be
A k-1

XEX Xieq_ - Xt
e @ e k)%, (23)
Ek—1)k  E(k—1)E(k-1) €(k-1)

(22)

where e_1) = ¥{x—1) — [(;—1)- Moreover, we have that
: ~ : L
Apr = %:XQ(B::, A k-1)k)s (24)

for k > 3, with &, .. being the point at which £~"**/2g, (p, /¢) arrives at its maximum
and Q(B, A(l...k—})k) is

i ? ~

Bk Bk
Yi—( X s -~ Ye—( X - -~ . (25
( k ( ko E(k—1) ) ( A(L._k—l)k )) ( k ( k E(k-1) ) (A(l...k—l)k )) ( )

Based on the previous discussion, the MLE 7i and & of the initial parameters p and
%, can be obtained by using relation (2). Hence, using the relations

%11 = éll:’\

§21 = 921211’:‘ . - e

Tgp = Xy +A22121_112’1\2 = Ago + Ay A1 Aga,

Zik(rk=1) = Dk k-0 EQ k-1 k-1, K23,

Tk = Apr + Dp(r. k-1 2@ k1) (1. k-1 D k-1k> £ =3,

10



we obtain the desired results. B

Remark 1. a) An application of Theorem 1 for Ny = N, = ... = Ny, leads to the MLE
of B and X of the elliptic multivariate linear regression model, in the complete data case
(cf. Diaz-Garcia et al. (2003)).

b) Taking into account Theorem 1, we can obtain after some algebra, the following equiv-
alent expressions for the MLE of Aq..r-1)r and B;,

A.ryr = (efr-n)Uree—) ey UL Y, (26)

and N e
B,- = (X:Xr)_ X: [}/r - e(r—l)A(l...r—l)rjl (27)

forr=2,..,k, k>2, with U, = I — X, (XtX,)” X?. The above expressions will be used
later in the study of the consistency property of the MLE of Theorem 1.

A particular multivariate linear regression model is the constant term model obtained
from (4) when X = ly,, with 1y, the N, x 1 unity vector and B = (B1, B, ..., Bi),
where each B; is 1 X p; dimensional with p; + ps + ... + Pr =p. The N; X p error random
matrix E is supposed again elliptically distributed ECy, (0, ® I ~,)- In other words,
we assume the elliptical multivariate linear regression model with the constant term as
explanatory variable, under the extra assumption that there exist monotone missing data
for the response variables.

This model has received a lot of attention in literature under the assumption of mul-
tivariate distributed error terms. We refer among others to Anderson (1957), Jinadasa
and Tracy (1992), Fujisawa (1995) and references therein. These results have been also
obtained by Raats et al. (2002). Our aim is to prove that the MLE for the regression co-
efficients, as well as, for ¥ obtained previously reduce to the same expressions determined
recently by Batsidis and Zografos (2005) in the case of elliptically contoured distributions.

In the sequel we will denote

s Nig = o
Yr = R.l; Z_,;yf-y = ’i%li\-,y;' and Srr,r == (Y,;,. = 1NrYr)t(Y; - lNrYT')) r=1

pr— — t —
Y('r—l) = NLT]-?VT}QT—I) and S(l...r—l)r,'r = (lf(-r—l} - ]-N,-Y(r—l)) (Y; - le-Y'r) y >

— . g
S(l...r—l)(l...r—l),r = (}/(TLI) - ]-NTY{T—I)) (Yz'r—l) - lNrY(T—].)) 22
Sr-(l...r—l),r = Srr,r - Sr(1...:r—1).rS(_lfl__,._l)(1___,._1),,.5(1..:—1)?-,1-: r>2.

In the next proposition we obtain the estimators of the constant term model. The
proof of the proposition is outlined in the Appendix.

Proposition 2 Consider the multivariate linear regression model given by (4), with the
constant term as a sole explanatory variable, under the assumption that the error matriz E
13 distributed according to an elliptical distribution ECn,xp(0,2® Iy,). On the basis of a
monotone missing pattern observations for the response variables, the MLE of B and . are

1



gu §12 - - Dk
respectively B= (§1,§2, ...,§k) and T = 2_21 2_22 ok , where §1 =Y
S0 Sk - - S
and B, =Y, — (?('r—l) - B(r—l)) Aq..em1yrs with Ay_s1yr = 3(_1_1__,._1)(1__.,-_1),rs(l...r—l)r,,-,
forr =2,..,k, while 1, = Ay = Amax(91)S11,1 and S, is given by the relation e =

A+ Er(l...r—l)f:(l...r—l)(l...r-—l)3(1...7-—1)7'; for v = 2,...,k, where 31-1' =. 5,% re(1...r—1),rs
with g1, hr, Gr, Amax, & max 05 given in Theorem 1, forr =2,...,k.

3.2 The consistency property

Consistency refers to a limiting property of an estimator and it is usually considered a
basic requirement of an inference procedure. Qur object in this subsection is to derive the
consistent estimators of the parameters B of the model (4), as well as, of the covariance
matrix of the elliptically distributed error matrix E of this model. Similar work has been
made previously by Sutradhar and Ali (1986) for multivariate t—distributed errors in the
model (4) and complete data for the responses. Recently, Raats et al. (2004) derived
the respective consistent estimators under the assumption of normally distributed error
matrix and monotone missing observations for the responses Y of the model (4). In this
respect the results of this subsection generalize in both aspects the results of the above
mentioned papers.

It will be shown, in the sequel, that the MLE B derived in Theorem 1 is a consistent
estimator of the parameters B of the model (4). A similar conclusion it is not true in
general for the MLE £ of the scale matrix ¥ of the elliptically distributed error matrix E.
This point will be clarified later on in a remark at the end of this subsection. We will use
the symbol plim to denote converge in probability, as N; — oo, i = 1, ..., k. Convergence

N;—co
in probability of random matrices is considered in the element-wise sense.

Consider the multivariate linear regression model (4), that is, ¥ = XB + E and
suppose, as above, that E ~ ECy, xp(0, E®1In, ). The covariance matrix of E is Cov(E) =
2 ® Iy, , where € is a positive definite p x p matrix related with the scale matrix by the
equality £2 = cZ, where ¢ = —2¥’(0) is a constant which depends on the characteristic
function ¥ of E (cf., for instance, Gupta and Varga (1993, p. 33)). Let the following
partition for the covariance matrix Q:

Qi Q2 - - Qu
Q91 Q22 = 921‘

Qi) (1d) = - e =cXq,. )1 1=1,..,k,
Qil Qi? o Qii

12



similar to the partition defined previously for the matrix . Further, denote by

Ql’r
921'
Q(I...’r—l)r = Q:(I___,-_;[J = . = Cz(l...r—l)rr r= 2: ssy k.

Q'r—l,r

Under these circumstances the consistent estimators of B and ) are derived in the next
theorem. The keynote in the proof of the theorem is the convergence in probability of
submatrices of the error matrix E to suitable submatrices of . Although it is immediate
in the case of a multivariate normal distributed error matrix E, in view of the weak law
of large numbers, it is not so obvious in the case of an elliptic error matrix E considered
here. The next lemma establishes the convergence in probability of submatrices of E.
The results of the lemma are proved under the additional assumption that the elliptic
distribution ECy, (0, £ ® Iy,) of E possesses a consistency property as it is defined and
studied by Kano (1994). Consistency property of the elliptical density function of E is
equivalent, according to Theorem 1 of Kano (1994), to the fact that the characteristic
function of £ and hence the constant ¢, which appears in the Cov(E) = (¢Z) ® In;, does
not depend on the dimension of the distribution. This assumption permits to prove the
following lemma.

Lemma 3 Consider the multivariate linear regression model (4 ) and suppose that the den-
sity function of the error matriz E ~ ECn,xp(0,Z ® Iy,), obeys the consistency property
of Kano (1994). Then, under the assumption that A}Im (wl—:X:Xz) epists; 4 = 1y,
i) plim (B, X,) =0,
i) 2l (ﬁ;Efr_l)E(r—l)) = CX(1..r-1)(1..r—1);
i6) plim (;&:E’fr_l)E,) = S ro1yr-
Proof. We will prove part ii). The proof of parts i) and iii) are similar and they are
omitted. If (Efr_l)E(,._l))ij denotes the (7, j) submatrix of E?T_I)E(T_l), then

1 i Ll _
-A-T: (E{T_I)E(r—l})zj — E;Edejb ™= 27 ceey k.

We observe that eaeéz, ! = 1,..,N;, are uncorrelated p; xp; random matrices with
E (ez€})) = Cov (62',363-1) = Qy; = cZ;;, where ¢ does not depend on the sample size N,
taking into account the consistency, in Kano’s (1994) sense, of the density of the error
matrix E. If we apply the weak law of large numbers (cf. Rao (1973, p. 112)) to the
sequence of random matrices €; '5;17 €i2€50,0mm, €N, €; ., We have that

_[1 1 &
pim { & (BosBoon), | = plim {50} =0y = s,

Nr—eo Nr—oo

13



hence :
plim {F (Ef,__l)E(r_l))} = Q.r-1)(1.7—1) = CT(1_r-1)(1..r—1)>

Ny—oo

which proves the desired result. @

Lemma 4 Under the assumptions of Lemma 3,
thA(l r=Lr= th {( Efr—l)E(r-l)) (N%Efr—nEr)} .

Ny—oo Nr—oo

Proof. Using relation (26), we obtain after some algebra that
Aoty = (BloyUrEger))” By U By, forr=2,..,k,
where U, = I — X, (X!X,)"X? = I— H,. Hence,
1 B 1
PMA(I -1 = plim {(Rr“‘Efr—l)UrE(r—l)> } plim (ﬁE(tr—l)UrEf) 2 (28)

Nr—oo Npo—o0o Npr—oo

Using the fact that U, = I— H,, we obtain that

: 1 ) 1
E,.lﬂilo (-]V_TE?'J‘—I)UTE':-) = E}iﬂt (N Efr I)E ) - z{r)}_l}?o (_N:Ezr—l)HrEr)
1

= i 7 r § 5 29

pim (55 ) )
because of
; L 1yty )
g (52 = pim 55} i { )
. A _

gl % e} —o

in view of Lemma 3 i). Moreover, taking into account again Lemma 3 i)

. 1
plim (EEE__I)HTE(,._D) =0,

Nr—oo

and hence : )
plim (FEfr—I)UrE(r—l)) = plim {'N:Efr—l)E(r-l)}' (80)

Nr—oe Nr—oo

Therefore from (28), taking into consideration the intermediate results (29) and (30),
we obtain that

: 1 !
ﬁlfiA =)y = flffo{ (N_;EET—I)E(T—Q) (E:Efr—i)Er)}r

which is the desired result. l

We are now ready to derive the consistent estimators of B and 2 in the next theorem.

14



Theorem 5 Under the assumption that Nlim {(Klri—XfX,) “} exists we have that:

i=+00
a)m? hmf\(l___,_1)r = Aq.r-nyr forr=2, ..,k
b) plim B; = B;, fori=1,...k and
Ni—¥00 P -
C) ﬁhﬂlﬁu = Qn, while gHJIIArr = — Q'r(l...r-—l)Qa:_l__r_l)(}__",-._]_)Q’(l...f‘-—l)r:

with 511 = %;Q(gl) and E,.,. = N%Q(ﬁ,.,ﬁ(l,__r_l),.), forr = 2,... k. Moreover, B =
(§17§21 ---1§k) and 3(Ll...'i'—l)r'; as well as, Q(ﬁl) and Q(ET: 3(1...1'—1)1‘): = 21 gt k! are
defined in Theorem 1.

Proof. a) Based on Lemma 3 ii) and iii) it can be easily seen that

. 1 (1 o
ﬁ.hﬁ{(EEfr-z)E(r—l)) (FE?r-I)ET)} = E(li.r—l)(1...?-1)2(1---7"’1)7'

S A(L..‘r—l)r- (31)

Relation (31) and Lemma 4 complete the proof of part a).
b) Motivated by Raats et al. (2004), we will prove that plim B; = B;, for i=1,....%, by

N;—ec
using an induction argument. For i = 1, we have that

By = (X{X))"Xiv
and taking into consideration (12) we obtain
By = (X!X1)" X! (X1By + B) = B, + (X! X))~ X E.

Hence

= 1 1
im (B, - B;) = plm{(—=X'X;) —Xx*
ghim (P B) ﬁf_ﬁi{ (wxi%) & E}

. 1 4 T { - .
— N];lf.loo (FIXIXI) £11_lglo (EXIEI) = 0,
in view of Lemma 3 i).

Afterwards, using the induction assumption that plimB; = B;, fors = 1,....k—1,

Ni—oo

which implies that plimﬁ(kﬁl) = B(x-1), We are going to prove that p im B = B;.. Based
Np—oo Ni—o0
on relation (27) and taking into account (12), we have that

B.=B.+ (XiXe)™ Xi [Ek - e(k—l)a(l...k—l)k} .
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or equivalently
Bk . Bk = (X};Xk)— X]i [Ek - e(k—l)'A(l...k—l)ﬁc] =

Hence,
: Do = e ¢ -yt _ A
g (5.~ ) = pim {0600 34 -]}
Using the fact that phmB(k_g) = B(x-1), phmA(l k=1t = A(1._k-1)k, We have that
Np—o0o Nyp—oo
plim (Lﬁk—Bk) = lim (—I—thk) plim ( XkEk>
Ni—oo Ny—ee Nk Ni—oo Nk
. 1 -
— lim (———thk) plim (—X E(k 1)) A(l A1)k =0,
Nyp—co Nk Nk—»cc

in view of Lemma 3 i). Therefore, the proof of part b) of the theorem is now completed.
¢) In order to prove this part of the theorem we note that

Q(By) = (i — XaB)(Yi - XiB)) = EiE;,

and so in view of Lemma 3 ii) we have that

plimAy; = plim {f\,l—@(ﬁl)} = plim (; EfE) nBy
1 1

Ny—00 Ni—ce Ny—co

Afterwards, based on relation (27), we obtain that
K’ . Xrﬁr - e(r—l}g(l...'r—l)r Hodt U‘r (Y;‘ = e(r—l}a(}....r—-l)'r) (32)
= Ur (E‘r == e(r—l)a(l...r—l}r) 3

with U, = I - X, (X!X,)” X!. Taking into account that U, is symmetric and idempotent,
we have that

t %
Q(BT: A(l 'r'-l)‘r) = ( —€ r—l)A(l T—l)‘)‘) U'r (Er - e(r—l)A(l...r—l)'r') y T = 2; iy k.
From this relation after some algebra we have

Q(gr: 5(l..:r'—l)-r) — E:UrEr - E:Ure(r—l)/-a(l...r—l)r
_Ail...r—l)re%r—l)U.?‘ET &3 Afl...r—l)re?{tr-—l)U"e("‘—l)A{l---T—l)"

and using that Ue(._1) = U.Y,_1) = U, E(r_1), We reach the relation

OB, N sy = EOE ~ BB sl oap
_A(l r1yr Blr—1yUrEr +/-\(1 1) By UrEtr—)A(1...r—1)r-
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Based on .7_\\.(1“,r_1)r — (Ef,,_l) U,,E'(,_l))_ E(‘ —1) U.E. , we obtain that

Q(§r1 3(1...1"—1)1') = E:-UTET - E:UrE(r—l) (E?r—l) UrE(r—l))_ Efq-_]_)UrE'r-
Therefore
Q(E'rs 3(3....1’—1)':") = E:UTET - 321...7—-1)1'EE1‘—1)UfE("'—l)3(1---7""1)‘-"

Afterwards, using that ph'ma(l_._r_l), = Aq..r—1)r, for r = 2,..., k, and applying Lemma

Nr—oo
3 i) and iii) to the matrices - Eo_1yEr, % ELE, and - Efr_1)B(r-1), we complete the

proof of the theorem. W

Remark 2. a) We derived in Theorem 5 above the consistent estimators of the parameters
B and Q of the model Y = XB+ E, E ~ ECnyx»(0, Z® Iy,), with Cov (EY=Q8Iy, =
(¢X) ® In,. Theorem 5 is only valid for members of ECl,,(0,E ® Iy,) which obey the
consistency property of Kano (1994), that is for scale mixtures of normal distributions,
which include the multivariate normal and multivariate ¢ distributions, as particular cases.
Even for these special members of the elliptic family of distributions, the MLE B of B is
also a consistent estimator of B. The same is not always true for the MLE ¥ in view of
Theorem 5 c). 2

It can be easily seen that the MLE T of T is a consistent estimator of the covariance
matrix 2, which means that A;; and ZS,,. are consistent estimators of €;; and Q. —
Q,(l_",.._l)ﬂ(‘l.l._r_l)(1__.1,_1)9(1._.,,_1),., respectively, for r = 2, ..., k, if the following conditions
are ed :

lim (AmaxN1) =1 and plim (%N,) =1, (33)
Ni—voo Nr—o0 h..

In the Appendix 1 in Batsidis and Zografos (2005) explicit expressions have been
obtained for the quantities Amax and &, ., of specific elliptic distributions. Taking into
account this appendix it can be easily seen that (33) are only satisfied for the multivariate
normal and ¢ distributions. Hence, in summary, the MLE ¥ is consistent estimator of the
covariance matrix 2 only for the multivariate normal and ¢ distributions. The same has
been proved by Sutradhar and Ali (1986) for the case of complete data in the responses.
b) If we apply Theorem 5 in the special case of the design matrix X =1 Np» With 1p, the
N x 1 unity vector, then we obtain the consistent estimators, in the light of the above
remark, for the location parameter, as well as, for the covariance matrix of elliptical
distributions studied in Batsidis and Zografos (2005).

4 Test of hypotheses

In the previous section, we obtained the MLEs of the regression parameters B , as well as,
of the scale matrix ¥ of the model (4), under the assumption that monotone missing data,
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of the form (5), are available in the response variables. In this section, we will obtain in
the context mentioned above, the likelihood ratio test statistic for testing the hypothesis

Hg i Cz'Bi = OMiXPi'JV 7= 1, asey k,

with C; a M; x ¢ known coefficient matrix, of rank M; < g and Opy, xp,, the M; x p; matrix
with zero elements. This null hypothesis expresses the existence of M; linear constraints
on the parameters B;.

In order to derive the likelihood ratio test statistic, we note that the null hypothesis
H(] : CiBz' — O,V 1= 1,..., k,
can be equivalently stated in the form

B;

HO ¥ CIBI = OMIXpl a-nd ( Ci OMpr{i_l) ) ( A(l __1).

) = Optinp, Vi =2,..,k, (34)
where pi_yy =p1+ ... +pic1and py + ... +pp=p, for i > 2.
4.1 Likelihood Ratio Test Statistic

The likelihood function is given by

LY (B’ E) = LY:L (771= A11 )LYQIY(}.) (7?27 Al?-) A22)"‘Lﬁ|yv(k_;) (nk: A(I...k—-l)ka Akk)a

where L‘y1 (7717 A11)'1 LYMY(;) (7?27 A12: A22) and LYk[Y(;‘-_D (nk? A(l...k—l)k: Akk) are defined by
(15), (18) and (22) respectively. Using the MLE, obtained in Theorem 1, it can be easily
seen that

_Mip ~|—F _Nom ~ -~ -
SpL(B,%) = raad 6 ( = )\Q(Bl)l " 52,m:xgz( - )lQ(Bz,Am)\
B, max 52,max
_ififﬁ ~ o~ _Nk/2
Kioss 36 B s Ok ( gkpk ) 'Q(Bk:A(l...k—l)k)l 5 (35)

where Q(ﬁl), Q(§2, 312) and Q(Ek,ﬁ(l___k_l)k) are defined by (16), (20) and (25) respec-
tively, while Amax and & pay: & > 2, are defined in Theorem 1.
In order to derive the supL(B,Z), under the null hypothesis Hy : C;B; = 0, V¢ =
BX

1,..., k, or the equivalent null hypothesis given by (34), following the procedure of Theorem
1, which is based on the conditional likelihood approach, we have, at the beginning, to
maximize the quantity Ly, (n;, A1) given by (15), subject to the constraint C1B; = 0.
After some algebra, the constraint MLE By of B; is given by the following relation

B =B - (xtx)) ¢t [cl (Xt%,)" cﬂ " C\B.. (36)
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Following again the procedure of Theorem 1 we easily verify that

Ani = daax(91)Q(B1)- (37)

After that, we concentrate our interest on the maximization of Lyvy (M2, A1z, Agz), which

is given by (18), subject to ( C2 Oagxp, ) ( fz ) = Opfyxp- After some algebra we
12

obtain that the MLE of ( B, ) is
Agp

B\ _ (XéXz Xé"{(n)-’xé)n_(xzxz Xte(l)) (C'é)
Ay enXz EyEw (5?1) enXz e 0°

(G 0)(XX2 X2€{1>) (%)]_(Cg 0)

XX, XZe X3
(B Y (2)
€2 €€ C)

with €1y = Y{1) — Zi(;) and 0 the M, x p; zero matrix.
Following again Theorem 1, we obtain that

522 — §2-1 - 52,max(g2)

,A
hz(m,Au)Q( 2, A12) ,

where

Q(Bo,Ap) = (Yg— (X2 &) (f; )) (Yz- (X2 &) (f; ))

In a similar manner, the maximization of the quantity Ly ¥geesy (Ties A1 k—1)k> Dii),
B,

=0 ;
AT ¥ el

defined by (22), subject to the constraints ( Cy Onfy xp0e_1y ) (
implies that

B; _ ( XiXe Xke(k—lJ >_( X )y _
A - X B e e k
(1..k=1)k €lk—1)*k  €(k—1)C(k~1) (k—1)
( XX XiEg-y )- ( Ct )
(k Xk ek: l)e(k_l) 0*
By e )‘( ct ) )
% C 0 k k (& k
[( ’ )(Et(k—nxk €lk-1)8(k-1) 0*

XX, Xienw_1 - Xt
x{C. 0 k k L ) k Y,
( k ) ( ’é?k—nXk éfk-l)e(k—l) & *
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with 0 the M X p(—1) zero matrix and

ék,max (gk)

Akk = hk

Q(éka 5(Zl....?c--l)k) b

for k£ > 3. Hence, we obtain that

_.N P
sup L(B,X) = Ama—.xzz—lgl (X&—) |Q Bl)\ fz,max g2 ( £
max

B,Z,Hq:C; B;=0

) (B B

_NePi 2
X X Ep 2 G ( ) ‘Q By, Aq. k—1)k)‘ (38)

The likelihood ratio test statistic for testing the hypothesis Hy : C;B; =0,Vi=1,...,k,
or its equivalent form (34) is

€k max

sup L(B,Y)
B,Z,Hp:C;B;=0

o supL(B,X)
BT

and taking into account (35) and (38), A becomes

No
]

L(B,S 5 o
= 2 et St = o 2
A o . (B,X) ’Q(Bl)l Q(Bs, Ag2) X ... X ‘Q(Bk, A(l...k—l)k)’

supL(B,T) |~ -2 . . -2 P I
5 |@B)| 7 |@Ba Bu)| T x . x |@(Be B senw)|

(39)
The investigation of the distribution of the test statistic A is now in order and it is the
subject of the next subsection.

4.2 Distribution of A

We observe that the likelihood ratio test statistic, obtained above, coincides with the
similar one for testing the same hypothesis Hy : C;B; = 0, V i = 1,...,k, under the
assumption of multivariate normal error (cf. Raats et al. (2002)). This point will help
us to derive the null distribution of the test statistic A. Indeed, by Theorems 8.1.2
and 8.1.3 of Gupta and Varga (1993), we can easily verify that the null distribution of
statistic A, given in (39), is invariant in the class of elliptical distributions. Hence the
null distribution of A is the same as the null distribution of A in the case of multivariate
normal distributed errors in the model (4). This last distribution of A has been studied
by Raats et al. (2002) and Raats (2004). Before we will proceed with the derivation of
the distribution of A and for the sake of completeness, we give the definition of the said
generalized Wilk’s distribution.

Definition 1 Let A; = m'—f_-]a- with A; ~ W, (s;) and C; ~ Wy, (t;) independent of A;,

and Wy, (s;), i = 1,..., k, denotes the Wishart distribution. Suppose that A; are indepen-
k

dent and follow Wilk’s A— distribution A(d;,t;,8;), i = 1,....,k. Then the product []A%,
=1
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witha; =1, a; € (0,1), fori el supls follows the generalized Wilk’s distribution Ay pr.s
with parameters A = [a, ... } =[d1, ., di] , T = [t1,...., %] and S = [s, ..., 8.

In order to produce the null distribution of the test statistic A, we can prove, taking
into account relation (39), that
k
AN = TTA%, (40)
i=1
with .
[Q(Bl)l |Q(B:, Rgimn)|
and A; = for

" ed)| Bl)} N

where q; = -—1 s Jor i=1, ...k
After some algebra, we can obtain that

ri=2, ..k, (41)

QB) = QBY+%X (xix)~ct{a (Xix) G} o (x3x) ™ xin

= Q(B)+Y{PuY,, (42)
with
Py =X (XiX:)” CH{C (x3%) ci} o (xix) " xt (43)
while for z = 2, ..., k, we have that '
Q(B;, 4&(1...2'—1)2') = Q(B, 3(1...5—1)5) + Y P,Y;, (44)

where Py;, 1 =2,..., k, is the N; x N; idempotent matrix given by the following relation

Xt A XX Xigey " Cct
GU X @y e 03
(i-1) (k -1)“*k Cp_1)C(k-1) iXP(i-1)
t( XiXe  XiEw-y )-( Ci )
b i
MXP(zfn Et{kml)Xk Eik—l)e(’c"l) OkaP(k—I)

( )( XX, Xiegn )( b ) )
OM XPi-1) -e%k—l)X’c ’é?k—l)e(k—l) 31(5_1)

Hence from (40) using relations (41), (42) and (44) we have that

ey . ( |@(Bx Ba.ccpd) ) ) "
’Q(§1) o YfPqu)’ =2 ’Q(En B(l...z‘—l}z‘) + YEPMYQ‘)[ '

AZ/Nl —

Moreover, from (16), we have that

Q(B1) = Y{PuYs, (47)
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with
Pm == IN1 -—X]_ (X;.Xl) Xf (48)
In this context, taking into account that the quantity Q(ﬁ,—, 3(1___,-_1),—) is equal to

~ t -~

B; B
Yi—(Xi eu- : Yi— (X ep : ;
( (X ean ) (Au . )) ( (Xi ee ) (Au - ))

for ¢ = 2, ..., k, we can obtain after some algebra that
Q(Bi, A1) = Y Py, fori=2,..,k, (49)

where Py, ¢ = 2,..., k, is the N; x N; idempotent matrix given by the following relation

_ XiX;  Xieen \ [ X -
Pﬂz' = IN ( X e(z 1) ) ( e(z_l)X- eEi_l)e(i__l) 6?2_1) 3 fOr 1= 2, weey k. (50)

Using these results, it is immediate to see, applying Theorem 7.8.3 of Gupta and Nagar
(2000), that under Hp the random quantity Q(Bz,A(l 4-1)i) is described by a Wishart
distribution, W, (rank(Py;), Ay), for ¢ =1, ..., k, while the quantity Y}P;Y; can be easily
proved that follows a Wishart distribution W . (rank(Py;), Ay). Moreover, , applying The-
orem 7.8.5 of Gupta and Nagar (2000), we can easily seen that the Q(Bz, A(l 4-1)) is in-
dependent of Y} Py;Y;, because of Py;Py; = On,xn;,, for i = 1, ..., k. Hence, the distribution
of A;, given by (41), is Wilk’s A(d; = p;, t; = rank (Py),s; = rank(PGi)), fori=1,...k
with rank(A) being the rank of the matrix A. Thus from Definition 1, we have that
under the null hypothesis, the likelihood ratio test statistic A of relation (39), follows the
generalized Wilk’s distribution, A4 pr,s With parameters A = [ay, ..., ax], D = [dy, ..., dx],
S = [s1,...,8¢) and T = [ty, ..., £, which are given by the following relations

N;

A ,d; = p;, s; = rank(Py;) and t; = rank (Py) . (51)
1

a; =
Since we do not have available an analytical expression for the quantiles of the generalized
Wilk’s distribution, the critical values for testing the hypothesis under examination, are
determined by simulation. In order to avoid this procedure, Raats (2004) proved that the
generalized Wilk’s distribution can be approximated by y?—distributions. In particular,
motivated from Theorem 3.1 of Raats (2004), we have that a second order approximation
of the distribution of .

V=-2log (HA:“) ,
i=1

is

P(V <v)=(1—w)P (x} <vq) + woP (xirs < vg) + O(N73), (52)
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where

k d;
F=22t
i=1j=1
1 Ee t; -
9=d52 2 e (25— 2+ 1), (53)
L — J=

k d;
w2=—£+4&%fzz%%{3(si+j+1)(si+j+ti+1)+(t,-—2)(tz-——1)}.

i=lj=
Also from Raats (2004) we have that a first order approximation is given by the relation
P(V <v)=P(x; <vg). (54)

The results of Subsections 4.1 and 4.2 are summarized in the next theorem.

Theorem 6 Under the assumptions of Theorem 1, the likelihood ratio criterion for testing
the hypothesis Hy : C;B; = Oatixps> Vi=1,...., k, with C; a M;xq known coefficient matriz,
of rank M; < g, is

) a;

with Q(El) and Q(R‘,Ea...i—ni), for i > 2, are given by (47) and (49), respectively,
while Py and Py, for i > 2, are given by (42) and (47), respectively. The test statis-
tic follows under the null hypothesis o generalized Wilks distribution Asprs with pa-
rameters A = [1,%,..,%],1) = [p1,- D], S = [rank(Py), ...,rank(Py)] and T =
[rank(Py1), ...,rank(Py)]. Moreover, a second order approzimation of the distribution of
—2log A2 is given by relations (. 52) and (53), while a first order approzimation is given

by (54).

A2/N1 —

=2

@By . ( |Q(B:, B.say)
’Q(El) + Y7 P, Y;) tQ(ﬁi: 3(1...5-1)2') +YIP;Y:)

Remark 3. If we apply the results of Theorem 6 in the special case of the constant
term model obtained from (4), when X = 1y, with 1y, the N; x 1 unity vector and
B = (Bi, By, ..., By) , where each B; is 1 x p; dimensional with +pe+ ..+ =p,
under the further assumption that C; = 1, we reach the results obtained previously in
Krishnamoorty and Pannala (1998).

5 Numerical Example
Sutradhar and Ali (1986) dealt with a multivariate linear regression model under the

assumption that the errors have a multivariate ¢-distribution. This model, which is a
direct multidimensional generalization of Zellner’s (1976) regression model is used in the
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area of the stock market analysis. Sutradhar and Ali (1986), in order to illustrate their
results, considered a stock market problem relating to four selected firms, having the
regression model

vi; =a;+Bmi+ei=1,...,4, j=1,..,20,

where y;; denotes the monthly return on $100 of capital invested on the ¢ stock during
the j month, while m; denotes the weighted average of these returns during the j month
for the aggregate of all stocks trading on the New York Stock Exchange and the error
variable was assumed to have a t-distribution. The available data are given in Table 1 of
Sutradhar and Ali (1986).

Therefore, if we use the notation of Section 2 we state the regression model

¥'=XB4+E,

where Y is a 20x4 observation matrix of responses, X is a known 20x2 model matrix of full

column rank, with the elements of the first column equal to 1, B = ( o )
By B2 Bs Bs

is a 2 x 4 matrix of regression parameters with unknown values, and the error matrix £
is a 20 X 4 random matrix, which has a matrix variate ¢ distribution Mt29x4(0,X ® Iag).
In the sequel and in order to illustrate the main results of this paper, we discard from
Table 1 of Sutradhar and Ali (1986) the last six observations on the fourth firm-response
variable. That means that we obtain a 2—step monotone missing sample for the response
variables with
p1=3, p2=1, N1=208..11dN2=14

Using the complete data set of Sutradhar and Ali (1986), the estimators B. of the para-
meters of the model and the estimator ¥, of ¥ are

B _ —0.2749 -—0.8904 0.2159 —2.0095
= 1.1815 1.0132 0.9513 1.1196
and
7.8015 6.0204 —4.0966 —0.8160
i . 6.0204 12.3543 -—-1.1775 —3.6845

°7 | —4.0966 —1.1775 13.6160 9.5150
—0.8160 —3.6845 9.5150 22.6846

Using the estimation procedure introduced in Section 3, the respective MLE'’s are

5. _ [ —0-2749 —0.8904 0.2159 —1.0708
M=\ 11815 1.0132 09513 1.1299

and
7.8015 6.0204 —4.0966 —2.9186

| 6.0204 12.3543 —1.1775 —T7.6747
M= 1 _40066 —1.1775 13.6160 6.1773
—29186 —7.6747 6.1773 16.7292

[N}
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The MLE’s based on partially complete data (the complete data obtained by discarding
the additional data on the first p; = 3 components) are:

5, _ [ —0:3057 —0.8884 0.2673 -1.0616
PC=\ 1.0550 0.7955 0.7361 1.1234

and
0.4591 6.2461 —5.4823 —2.9323
S _ | 62461 .13.8200 —2.3845 —9.4512
PC™ | —5.4823 —2.3845 8.7979 3.7541 |°
—2.9323 —9.4512 3.7541 17.0437
respectively.

Using measures such as the scale ratio and the likelihood displacement, which was used
to measure the influence of dropping observations by Diaz-Garcia et al. (2003), we can
see that the estimators based on the whole monotone data are closer to the similar one
based on complete data than to the estimators based on partially complete data. Thus,
in this sense, using the whole monotone data we are able to recover the information lost
due to the deletion of the six observations.

In order to illustrate Theorem 6, let us consider in the sequel the following hypothesis
testing problem, related to the numerical example of this section. Suppose that we want
to test, for instance, according to the notation of Section 4, the null hypothesis

Hy:C;B; =0,Yi=1,2, against H, : 3i € {1,2} such that C;B; # 0,

where

= ay az das _ [27] . . _ .
Bl_(ﬁl B, ﬁs)’Bg_(B4)’MthQ_( 1 1),i=12

Following the results of Section 4, we obtain that the test statistic of Theorem 6 follows
under the null hypothesis a generalized Wilk’s distribution A A,pT,s With parameters A =
(1,0.7,D = [3,1], T = [1,1] and S = [18,9]. Moreover A = 0.0016, V = —2log A% =
1.2863, while from relation (53) we have that f = 4, ¢ = 7.7054 and ws = 0.0158, with
p—value = 0.0456.

According to the standard procedure for the same hypothesis (cf. for instance Diaz-
Garcia et al. (2003), Siotani et al. (1985, pp. 298-299), Muirhead (1982, pp. 458460)
and references therein) based on partially complete data with N = 14, the value of the
likelihood ratio test statistic is 0.0032 with p—value = 0.0883. We observe that the test
statistic based on the monotone data, provides more evidence against the null hypothesis
than the statistic based on partially complete data. If, in addition, we test the hypothesis
by using the whole sample, the value of the test statistic, based on the standard procedure,
15 0.0025 with p—value= 0.0487. This value is closer to the respective value of the test
proposed in this paper, than the similar one obtained by using partially complete data
method.
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Appendix.
Proof of Proposition 2. Using a mathematical induction argument, we will prove, at
the beginning, that the desired results are true for a k = 2 step monotone pattern. Then,
under the assumption that the conclusions of Proposition 2 holds for k£ — 1 step pattern,
we will prove that it is also true for £ step monotone pattern.

In the sequel, we will use the following relations, which can be easily obtained,

1

U,Y, = (I =

1y, 1% ) Y, =Y, - 1nY,, (55)

and
YUY, = (GY) UY, = (% - 1Y) (% = 15,Y7) = Sep (56)
with U, = I — +1n,1},, for 7 = 1,..., k. Moreover,
— t —
ee-nUree-1y = (Y1 = Y1) (Yo-n — InY-n)
= S1.r=1)(L.r=1);rs : (57)
and forr =2, ..., k,

= t _
€rUrYr = (Y(r—l) - 1NTB(1--1)) (Y —15,Y,)

= (Y- WYe-y) (% = 1nYs) = Sar-eer (58)
Relation (57) can be easily proved, combining that
o £ v
€r-n(r-1) = (Y(r—l) - 1N,.B(r-1)) (Y(r-1) = ]-N,-B(r—l))

= (Ye-1— Y1) (Y — .Y -)
+ (Pomy = §(r—1))t e n. (Fen) - Biy).,
and
-plnliver-n = (Ther-n) (Lhern)
= N (?(r—l} - E(r-l))t (?(r—l) — E(r—l)) ;

Now we are ready to present the proof of Proposition 2. For a k = 2 step monotone
pattern, using Theorem 1 and in view of X; = 1y,, we have that

N
-~ 1 _ —
Bl = (X;X]_)__Xl-y}_ = (13;1 ].Nl)-—llgvi})i = Fl E yiu = yi,l = Yl-

v=1
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Moreover from Theorem 1 we have that Zin = Amax(gl)Q(ﬁl), where Q(El) = (¥; -

X1B,){(Y: — X1B1). Because of X; = 1y, and B; = Y, we obtain that
Bux = Duse91) (Y3 — 1% Y1) (Y1 = 13 Y1) = Anax(91) 111
Following Remark 1b) we have that the MLE estimator of Ay, for this special case, is
312 = [efl)Uzeu)] - Bfl}Uzyéa

with ey = Yo — ﬁ(l} =Yu — 1N2§(1) =Yy - 1N2}_’1 and Up =T — Nilezlﬁ\rz.
Taking into account (57) and (58), we have that

Ap= S12512,2- (59)

Moreover, using Remark 1 b) we have that

—~

By

(Tha1r) " 1, (Y:z - 6(1)312)
1 -~
= miwYe- e

= Yy— (?(1) = ?1)312

because it holds that w-1},e) = 2l Yo —1mY1) =Yy - Y.
In order to obtain 322, we have to compute the quantity Q(Eg, 312), which is given,
using Theorem 1 and relation (32), by the following relation

o~ o~ e t e
Q(By,Ap) = (Yz — 6(1)A12) Us (Yz - 6(1)512)
= YiU,Y, — Z‘:21€3f1)U21"'2 = YgtUze(nau + 32lef1)U2e(1)512-
Using (56)-(59) we obtain that
Q(Bs,Ap) = Sag — 2\215'12,2 — Sn ol + 321511,2312

_1 _
= Sao— 52125755122 = S22

Assuming now that the desired results hold for a k — 1 step monotone missing pattern,
we are going to prove that Proposition 2 remains valid for a k step pattern. The MLE
estimator of A 1)k, for £ > 3 is

Aqiorye = lele—1)Uree-1)] ~ €he_1yUsYs,
with eg—1) = Yjg_1) — ﬁ(k—n = Y1) — lNk-é{k—l)~ In view of relations (57) and (58), we

obtain N
A(l---f‘c—l);'c = S(—1.1..k—1)(1...k-1),kS(1---k—i)k,k- (60)
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Moreover, using Remark 1 b)

By = (1y1w) 1, (Yk—etk—nﬁ(x."k—nk)

1 1 t ~
A 1 %~ A Iy, er—0An.k—1)k

= Yi— Y- — §(k-1})3(1...k—1)k= for k = 3,

because it holds that 1§vk"3(k—1) = N, (?(k_l) — §(k_1)) .

In order to compute the estimator of &,k, we have to compute the quantity Q(Ek, Zi(l___k_l}k) ;
which is given in view of Theorem 1 and (32), by the following relation

s —~ t -
Q(Bk, Aq..k-nk) = (Yk = e(k—l)A(l...k—l)k) Uk (Yic % e(k-—l}A(l...k—l)k)
= YiUpYe + Zik(l...k-l)e?k_nUke(k—l)z(l...k—l)k
-Aku...k—l)efk..l)UkYic = HUke(k-—l)A(L..k-—l}k-
Using relations (56)- (58) and relation (60), we reach the following relation

Q(Brs A k-1k) = Skick -Sk(1...k—1),kS(';_1__k_l)(1___;:._1)#5(1...;:—1)::,:;
= Sk(l.k-1)k
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Abstract. In this work we consider boundary value problems of the form
flt,z,z,2") =0, 0 <t < 1; z(0) =0, z'(1) =b, b >0,

where the the scalar function f(t, z, p, ¢) may be singular at z = 0. As far as we know, the solvability
of the singular boundary value problems of this form has not been treated yet. Here we try to fill in
this gap. Examples, illustrating our main result, are included.

Keywords and phrases: Singular boundary value problems, equations unsolved with respect
to the second derivative, existence of positive solutions.

2000 Mathematical Subjct Classification: 34B15, 4B16, 34B18.

1.INTRODUCTION

In this paper we are dealing with the existence of positive solutions to the bound_a.ry value problem
e, 2 ) =0 0<i<l, (1.1)

z(0)=0, Z(1)=8, b>0, {1:2)

where the scalar function f(¢, z, p, g) may be singular at z = 0, i.e. f may tend to infinity when z
tends to zero on the left and/or on the right hand side. In fact, we need f to be defined at least for

(t733,p,Q) € [07 1] X {Dm\{o}} X Dp x DQ’
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where the sets D;, Dp, D; C R may be bounded. We need also D., D, and D, to be such that
0€ D, 0 € D, and the sets D = D, N (0,+cc), D; = (—oc,0)ND, and {y € D, : y > 0} to be
. not empty as well as the first derivatives of f to be continuous on a suitable subset of the domain
of f.
Results on the solvability of various singular BVPs for ordinary differential equations, whose main
nonlinearity does not depend on the highest derivative, can be found, for example, in [1-17] and
references therein. The papers [3,15] deal with higher order differential equations. In [3,14,15] the
main nonlinearity satisfies Caratheodory conditions, while in [14] a differential equation with impulse
effects is considered. The results in [2-4,7,9,13,17] guarantee the existence of positive solutions.
The solvability of various nonsingular BVPs for second-order differential equations, whose main’
nonlinearity depends on z”, has been investigated in [18-27]. The case where the main nonlinearity
of the equations is continuous on the set [0, 1] x R is considered in [18-26], while the case where the
main nonlinearity is continuous on the set [0,1] x R* x R* x Y, where ¥ C R", is considered in [27].
The results in these works guarantee the existence of solutions which may change their own sign.
As far as we know, the solvability of singular BVPs for equations of the form (1.1) has not been
studied yet. In this paper we want to fill in this gap. In order to establish the existence of positive
solutions to the BVP (1.1), (1.2) we proceed as follows. For A € [0,1] and n = 1,2, 3, ... we construct
a family, say (®),, of regular BVPs. For example, two-parameter families of BVPs have been used
also in [4,5,16]. As in [10,25] suitable ”barrier strips” yield a priori bounds independent of A and
n for z, z' and z",where z € C?[0,1] is an eventual solution to the family (®). These bounds
alow us to apply the topological transversality theorem [28, Chapter I, Theorem 2.6] to prove the
solvability of the family (®), for each n = 1,2, 3... Finally, we establish a bound for z/” independent
of n in appropriate domain so that the Arzela-Askoli theorem yields a solution to the problem (1.1),
(1.2) as the limit of a sequence of solutions to the problems (®),, n=1,2,3, ...

2. BASIC HYPOTHESES
In order to obtain our results we make the following three basic hypotheses.

H1. There are positive constants K, @, P;, i =1,2,3,4 and a sufficiently small £ > 0 such that
P3+ESP1$bSPQSP4_€1 P1<P27(07P2+5}QDI1 [P3:P4]§DP:

[hg — &, Hy+ <] C Dy, where hy=—Q+ P —band H,=Q + P> — b,

and the following ”barrier strips” conditions are satisfied
ft,z,p.q) + Kg >0 for (¢,2,p,9) €[0,1] x D x [P, P4} x Dy, (2.1)
ftz.p,q) + Kq<0 for (t,2,p,9) €[0,1] x Dy x [P, ] x D}, (2.2)
q(f(t,a:,p, q) + Kq) <0 for (t,z,p,¢9) €[0,1] x (0, P, +¢] x [P, P2] X {DouD5}, (2.3)
where D) = D \{0},D; ={2€D,:2<—-Q} and Dy ={2€ D,: 2> Q}.

REMARK. Since [-Q, Q] C [hy — &, Hy +¢] C Dy, the sets Dg; and D} are not empty.
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H2. The functions f(t, z, p, g) and fy(¢,z,p,q) are continuous on the set [0,1] % (0, P, +¢] x [P —
€, Py +¢] X [hg — e, Hy + €] and there is a constant K, > K such that

fo(t,2,p,9) < =K, for (t,z,p, q) €[0,1] x (0, +¢] x [P, —¢, Py +¢e] x [hg— €, H, +¢],
where K, Q, P, P,, hq, Hy, and ¢ are as in H1.

H3. The functions f,(t, z, p, q), fz(t,z,p,q) and f,(t,z,p,q) are continuous for (¢,z,p, g) €[0,1] x
(0‘, P2 -+ E] X [Pg_, Pz]“"x [hq, Hq] ‘

3. AN AUXILIARY RESULT

For A €[0,1] and n € N we construct the family of BVPs
K(;c” = {1 = X' — b)) o (K(:.: w (1= Ryt = b)) + f(t, 2,2, 2" — (1 - \)(z' — b}))

2(0) = % ) = b

?

(3.1)x
which for A = 1 includes the BVP (1.1), (1.2) and where the constant K > 0 is as in H1, when it

Is satisfied. Relatively the following proposition is fulfilled.

LEMMA 3.1. Let H1 be satisfied and let z(t) € C?[0,1] be a solution to the family (3.1),. Then

o
A
3|
A
8

(6) < P+ % P<2(t)< P, hy<z'"(t) < H, for tec 0,1, neN, n>1/e

Proof. Let the number n € N, n > 1 /¢ be fixed and suppose that the set
§= {t S [O, H P < .’.C!(t) < P4}

is not empty. The continuity of 7'(t) and the boundary condition at ¢ = 1 imply that there is an
interval [a, 5] C S such that

z'(a) > 2'(8). (3.2)
Then there is a v € [q, 8] such that
z"(y) < 0.

Without loss of generality, assume that z(7y) # 0. Since z(t) is a solution to (3.1),, we have
(720,202 (0) = (1 = )(&'(2) = 5)) € [0,1] x DY x D, x D
But /() € (P, Py and z(v) — (1=A)(z'(v) — b) < 0. So,

(720, 2/(0,2"(0) - (1 = V() - 1)) € [0,1] x DY x (By, B x D;

and by H1 we obtain
0> K(2"(2) = (1= (') - )=
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=A(K(f%ﬂ—(1—xxfmo—bﬂ+f@nﬂvxdtnnﬂw>—(1—Axfha—bﬂ)zo,

which is impossible. Therefore,
Z'(t) < P for t€]0,1].

Similarly, the assumption that the set
So={te0,1]: B <2 () < P}
is not empty leads to a contradiction, and therefrom we conclude that
0< P, <Z(t) for t€]0,1].

But the fact that z'() > 0 on [0, 1] means that z(¢) > 1/n for ¢ € [0, 1] and for fixed n € N. On the
other hand, by the mean value theorem, for each ¢ € (0, 1] there is a ¢ € (0,t) such that

z(t) — z(0) = z'(§)1,
from where it follows that
z(t) <P +1/n<P+e for t€0,1].
Suppose now that there is (tg, Ag) € [0,1] x [0, 1] such that
2"(t0) — (1= A0) (' (t0) — b) < —Q.

Then, using the fact that (to, z(to), x'(to), :):”(to)—(l—Ao)(z’(to)—b)) € [0,1]x(0, Po+e]x [P, Po]x Dy,
and having in mind (2.3), we find that

0> K(a"(th) ~ (1= )&/ (o) ~ ) =

e (K(z"(to) — (1= X0)(2'(to) — b)) + f(to,z(to),x'(zo), 2"(to) — (1 — Xo)(Z' (o) — b))) >0.

The obtained contradiction shows that

—-Q <z"(t) — (1 - X)(z'(t) — b) foreach (¢,)) €[0,1] x [0,1].
In a similar way, assuming that there exists (¢1,;) € [0,1] x [0,1] such that

() — (1= M)(@'(t1) = 0) > Q

and using (2.1), we again lead to a contradiction. So, we see that

-Q<z"(t) - (1 -N)(2'(t) —b) <Q for (¢,)) €[0,1] x [0,1]
which yields

hy=—Q+P-b<z"(t) <Q+P—-b=H, for t€[0,1]. O
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4. AN APPROPRIATE EXTENSION OF THE MAIN NONLINEARITY

In order to prove our main result, it is necessary to extend the function f on the set [0,1] x R® -
in a suitable way. With that end in view, we proceed as follows.
For a fixed n € N we construct the functions

£, (20)7,p,q), (t,2,p,9) € [0,1] x (=00, (2n)™Y) x [P, — ¢, P + &) X [hg— &, Hy + ¢
p= 1 flt:z.p,q), (t,2,p,9) €[0,1] x [(2n)"L, P, + &) x [Pi—e,Po+e] x [hy—e, Hy +¢]
f&. Po+e,p.0), (t,2,p,9) €[0,1] x (Po+e,00) x [P, —¢, Py + &] X [hg — €, Hy + €],

where h,, Hp, e and P,,i = 1,2, are the constants of H1.

REMARK 2. Observe that any other function considered below, which involves the function ¢,
depends on this fixed value of n € N. But, for the sake of simplicity, in the sequel we will omit all
n-indexes.

Some properties of the function ¢ are described by the following two lemmas.

LEMMA 4.1. Let H2 be satisfied. Then o(t,z,p,q) and its derivative q(t,z,p,q) are continuous on
=01 xRx[P—¢,P+¢] x [hg — &, Hy + €] and @, (t,z,p,q) < -K, for (t,z,p,q) € Q,.
Proof. Clearly, o(t, z, p, q) and

ftzp,9),  (t2,0,9) €[0,1 X [(2n) 7, ot &) x [P — &, Py + &] x [, — &, Hy+¢]
fq(tsp2+5$p1Q)1 (t,-’L‘,P,Q) S [071:[ X (P2+E,OO) X [PI—E:P2+€] X [hq_sz-Hq"f_E}

{ Jalt (2n) . p.q), (t,2,p,q) € [0,1] x (=00, (20)™1) X [Py ¢, Py + €] X [hy — &, H, + ¢]
$g =
are continuous on €,. Besides, in view of H2,
fo(t,z.p.q) < =K, for (t,z,p,q) € [0,1] x [(2n)™Y, P +¢] x [P, — ¢, P, +ée] X [hg — e, Hy +¢].
In particular, for (¢,p,q) € 0,1] x [P, ~2, P, +¢] x [hq — &, H, + £] we have
folt.(2)7,p.0) S ~K; and fi(t, P +e,p.q) < K,
Consequently

Pq(t,z,p,q) < —K, for every (¢,%,p,¢) €[0,1] X Rx [P —¢, Py + g] X [hg — &, Hy + £].0

LEMMA 4.2 . Let H1 be satisfied. Then the function ¢ (¢, z, p, q) has the following ”barrier strips”
properties

¢t z,p,q) + Kqg >0 for (t,z,p,q) € [0,1] x R x {P} x [hy —¢,0), (4.1)
©(t,z,p,q) + Kqg >0 for (t,z,p,q) €[0,1] x R x [P, Po] % [hg — &, —@Q)] (4.2)
¢(t,z,p,q) + Kg <0 for (t,z,p, 9) €0,1]x Rx {P} x [0, H, +¢]. (4.3)
and
o(t,z,p,q9) + Kg <0 for (¢,z,p, 9) €[0,1] x Rx [P, R] x [Q, H, + ¢]. (4.4)
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Proof. In particular, by the definition of ¢, we see that
o(t.z,p,q) = f(t,z,p,q) for (t,z,p,q) €[0,1] x [(2n)™, P, + £ x [P2, Py + €] X [hy — €,0).
Now, since [(2n)™%, P, +¢] C D2, [Py, P> + €] C [P, Py] and [hg —£,0) C Dy, in view of H1, we get
f@t.z,p,q)+Kg >0 for (t,z,p,q) € [0,1] x [(2n)7%, P, +¢] X [P, Py + €] X [hy —€,0).
Therefore,
o(t,z,p.q) + Kq >0 for (t,z,p,9) €[0,1] x [(2n)"Y, Py +¢] x [Py, Po+ €] x [hg—€,0). (4.5)

Next, having in mind H1 and the fact that (2n)~! € DY, [P, Py+¢] C [Py, P;] and [h,—¢,0) C D,
we see that

f(&(2n)" ,p,q) + Kq >0 for (t,p,q) € [0,1] X [Py, Py + g] X [hy —€,0).
But, since the definition of « implies
e(t,z,p,9) = f(t,(2n)™,p,q) for (¢,z,p, ) € [0,1] x (o0, (2n)™*) X [Po, Py + €] X [hy — €,0),
we conclude that
©(t,z,p,q) + Kg >0 for (t,z,p,q) € [0,1] x (—o0, (2n)™) X [Py, Py + €] X [hg —,0). (4.6)
In a similar way, we obtain
o(t,z,p,q) + Kg>0 for (t,z,p,q) € [0,1] x (P +¢,00) X (P2, P2 + €] x [hy — €,0),
which together with (4.5) and (4.6) gives (4.1). Remark that the sé.me reasoning as above yields
(4.3"_)[:0 prove (4.2), observe first that, by the definition of ¢,
o(t.z,p,9) = f(t.z,p,q) for (t.z,p,q) €[0,1] x [(2n)™, Py + €] x [P1, Py) X [y — £, —Q),
and then, using (2.1), we obtain
©(t,z,p,q) + Kg >0 for (t,z,p,q) € [0,1] x [(2n) ™, P+ €] x [P, P3] x [hg — &, —Q).
Besides, (2.1) implies that
f(t,(2n)7",p,q) + K¢ >0 and f(t,Py+¢,p,q) +Kg>0
for (t,p,q) € [0,1] x [P, P2] % [hy; — &, —Q) and, by the definition of 0, we derive
olt,2.2,9)+Kq2 0 for (t,2,p,9) € [0,1]x {(~o0,(2n) ) U(Po+e,00) } x [Py, By] x [hg —&,~Q).
Thus, we see that
(t,z,p,q) + K¢ 2 0 for (t,z,p,9) €[0,1] x Rx [P, Py x [hg — £, —Q).

Finally, by the same arguments, we conclude that

¢(t,z,p,q) + Kq <0 for (t,2,p,9) €[0,1] x R x [P, P x (Q,Hy+¢].0
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Now, using the function ¢ we introduce the function

o(t.2,P1,q), (t,z,p,9) €[0,1] X RX (—00, P}) x [k — &, H, + ],
ot 2,p9) =1¢ ¢(t2.2.9), (t2.p,q) €[0,1]x Rx [P, By x [hy — ¢, H, +¢],
ip(t: Z, P21 Q)) (t: mapr Q) = [0’ 1] X R X (PQ, OO) x [hq —-& Hq + EL

whose properties are describing by the following proposition.

LEMMA 4.3. Let H2 be satisfied. Then ®(t,z,p,q) and its derivative ®,(t,z,p,q) are continuous on
2 =[0,1]] x Rx Rx [hy —¢, H, +¢] and &,(t,2,p,q9) < —K, for (t,z,p,q) € Q.
Proof. Clearly, ®(t,z,p, g) and

(,Cg(t,I,Pz, Q): (ta z,p, Q) € [07 1] x R x (P2: OO) X [h'q — &, Hq + E]:
@o(t:2,0.0) = { ¢o(t,7,0,9), (t:2,p,0) €[0,1] x Rx [Py, Py] x [hy — &, H, + €],
@q(tzl': PIJQJ: (t: z,p, Q) = [O= 1] X R X (_OO:Pl) X hq - E:Hq +5]

are continuous on €,. Besides, by Lemma 4.1,
wq(t,z,p,q) < —K, for (t,z,p, q) €[0,1] x Rx [P, P5] x [hg— e, H, + ¢,
and hence it follows that

(I)q(ta j:7p:| Q) S _Kq fOI' (t: .T.,p, Q) E QP‘EJ

In order to extend appropriately the main nonlinearity, we suppose that the condition H2 is
satisfied. We assume also that ¢ is a function with the properties '

U(t,z,p,q) and ¥ (t,z,p,q) are continuous on [0,1] x R? x [Hy + €, 00),

U(t,z,p, Hy+e) = (¢, z, p, Hy+e) and U, (t,z,p, Hyte) = &,(t, z, p, Hg+e) for (t,z,p) € [0,1]x R?

and
Yo(t.z.p.q) < =K, for (t,z,p,q) €[0,1] x R® x [H, + ¢, 00),

which is possible because, by Lemma 4.3, ®o(t,z,p, Hy+¢) < —K, for (t,z,p) €[0,1] x B2
Finally, suppose that ¥ is a function with the properties :

¥(t,z,p,q) and y(t.z,p.q) are continuous on [0,1] x R? x (—ox, he — €],

U(t, z,p, hg—c) = ®(t, 2, p, hg—z) and ¥,(t,2,p, hg—e) = ®,(¢, z, p, hg—e) for (t,z,p) € [0,1] x R®

and
Yq(t, 2,p.9) < —K, for (t,2,p,q) € [0, 1] x R? x (=00, hy — €],

which is possible since, by Lemma 4.3, Dy(t.z,p. hp —€) < —K, for (t,z,p) € 0, 1] % R=.
Now we are ready to extend the function f to the function defined in [0,1] x R? by
3 { U(t,z.p.9), (t,2.p.9) €[0,1] x B? x (—00,hy —¢),

fltapg) =% St2, g9), (t,z,p,q) €[0,1] x R? x [hg — e, Hy + £,
U(t,z,p,q). (t,z,p,q) €[0,1] x R? x (H, + £, ).
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The next two lemmas establish some useful properties of the functions f,, and its derivative

{ ¢q(t:I:p7 Q)t (trxspa Q) € [01 1] X Bx R x (-—-OO,hg - E)

(Tn)q(tu"r:pa Q) = Qq(t7 $7p3 Q), (tax:pa Q) 6 [0: ] X R X R X [hq - 67 Hq + E]

1
Y,(t.z,p.9), (t,z,p,q) €[0,1]x Rx R x (H,+¢,00)

LEMMA 4.4. Let H2 be satisfied. Then

Fa(t.z,p,q) and (f,)4(t, 7, p, q) are continuous on [0,1] x R®

. and N
(fn.)q(t! z, D, Q) < _Kq for (f,x,P,q) S [0, 1] X R3

Proof. Since the conclusion of this lemma, follows by the properties of the functions ¢ and ¥ and by
Lemma 4.3, the details of the proof are omitted.O

LEMMA 4.5. Let H1 and H2 be satisfied. Then the function f. has the following "barrier strip”
properties:

falt,z.p,q) + Kq >0 for (t,z,p, q) €[0,1] X Rx [Py, P+ 2] x (—00,0),

Falt,2.0.9) + Kq <0 for (t,7,p,q) €[0,1] x Rx [P — &, By] x (0, %) (4.7)

and
o Fult2.p,0) + Kq)< 0 for (t,2,p,0) € [0,1] x Rx [P, Py] x {r\[-e.ql}.

Proof. The definitions of the functions & and [, imply that
Falt.z,p,9) = o(t,z,p,q) for (t,z,p,9) €[0,1] x R x [P, P3] x [hy— ¢, Hy +¢]. (4,8)‘
On the other hand, by Lemma 4.2,

o(t.z, P, q)+ Kq >0 for (t,z,q) €0, 1] X Rx [hy —¢,0).

So, from the fact that

falt.z.p,q) = @(t, 2,p,9) = ¢(t. 2, P2,q), p> Py, g € [hy—¢,0)
it follows that
Falt,z.p,¢) + Kg >0 for (t,z,p,q) €[0,1] x R x [Py, Py + €] x [hg —¢,0). (4.9)
Observe that, by Lemma 4.4, for each (¢, z, p, q) € [0,1] x R x [Py, Py + ] x {—o00,0) we have
(ﬁ(tap, g) + KG)Q = (fadat,2,2,0) + K < (Fo)olt, .0, ¢) + K, <0,
which together with (4.9) yields
Falt.z,0,9) + Kg >0 for (t.2,p,9) € [0,1] x R x [Py, P + &] x (—0o0,0).

Now, note that the same reasoning as above yields (4.7).
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Note also that, in particular, from (4.8) it follows that

falt:z.p,q) = 0(t. 2.p,q) for (t,z,p,q) €[0,1] x R x [Py, B)] x (Q, H, + ],
from where, according to (4.3), we get .
Falt2,0,9) + Kq <0 for (t,2,p,9) €[0,1) x Rx [P, Py] x (Q,Hy +¢]. (4.10)
In view of Lemma, 4.4, for each (t,z,p,0) €[0,1] x R x [P, Ps] x (0, c0) it follows that
( Falt,z,p,9) +Kq)q = (Fadt.z.0.0) +K < (Fo)olt,zp,0) + K, <O0.
So, by (4.10), we conclude that
fultiz,p,9) + Kg<0 for (t.z,p.9) €[0,1] x R x [Py, P)] x (Q, ). (4.11)
Finally, observe that the inequality
Fultsz,p,0) + Kg >0 for (t.2,p,9) € [0,1] x R x [P, Py] x (—o0, —Q)

can be obtained in a similar manner.O

Now, for A€[0,1] and neN, n>1 /€ consider the family of regular problems

K(:r”— (1= (z' - b)) = A(K(sc” —(1=X)(z —b) +3‘hn(t,x,3:’,$” —(1=X)(z' —b)))

20) ==, 2(1)=b,
(4.12),

The following two lemmas establish some useful properties of solutions to the family (4.12),.

LEMMA 4.6. Let H1 and H2 be satisfied and let z(t) € C*0, 1] be a solution to the family (4.12),.

Then
—?1; Sz(t)<P+e PL<Z(t) < P, hy < 2"(t) < H, for t €0, 1},

Proof. Since the conclusions of Lemma 4.5 hold, the proof of this lemma is similar to that of Lemma,
3.0

The next result is a direct consequence of Lemma 4.6 and the definition of the function f,,.

LEMMA 4.7. Let H1 and H2 be satisfied. Then each C?[0, 1]-solution to the family (4.12), is also
a solution to the family (3.1),, A € [0, 1].

Proof. Observe that, in view of Lemma 4.6, for each solution z(t) € C?[0,1] to (4.12), we have
(t,x(t),z’(i),m”(t)) €[0,1] x v, P+ €] X [Py, By] x [y, H,].

On the other hand, the definition of f,, implies that

Falt.2,p,0) = f(t,2,p,q) for (t,2,p,0) €[0,1] x [n~%, Py + ] x [P, Py] x [hy, Hy]
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from where the assertion of the lemma follows immediately.0
We conclude this section by proving the following important

LEMMA 4.8. Let H1 and H2 be satisfied. Then for each n € N, n > 1/e the problem (3.1); has at
least one solution in C2[0, 1].

Proof. Let n be fixed. Then, using Lemma 4.4, we conclude that the functions
F(\t,2,p,q) =X folt,2,0,q) + (A= 1)Kq and Fy(\,t,2,p,q) = A (F.)e(t,2,p) + (A — DK
are continuous for (A,¢,z,p,q) € [0,1]? x R® and that
Fo(Atz,p,q) <0 for (A t,2,p) € [0,1) x R3.
On the other hand, according to Lemma 4.5, we have
Falt,z,p, Hy) + KH, <0 for (t,z,p) €[0,1] x R?
and
Falt.z,p,hg) + KRy > 0 for (¢,z,p) € [0,1] x R2.

So, we see that F < 0 for ¢ = H, and F > 0 for ¢ = h,.Thus, there is a unique function
V(A t,z,p) € (hy, H,), which is continuous on the set [0,1]> x R? and such that the equations

g=V(A\tz,p), (At z,p)e€ 0,1 x R?

and '
F(\t,z,p,q) =0, (\t,z,p,q) €[0,1]2 x B

are equivalent. This means that for any A € [0,1] the family (4.12), is equivalent to the family of
BVPs

2~ (1= N -b) =V(\tz,2), te0,]]

; (4.13),
==, (1) =b
z(0) = T (1):=5
Note that F(0,t,z,p,0) = 0 yields
V(0,t,z,p) =0 for (t,z,p) €[0,1] x R (4.14)

Denote now C%[0,1] == {z(¢) € C?[0,1] : z(0) = 1/n, z'(1) = b} and define the maps
j:C30,1] — C0,1] by jz=z,
Ly:C3[0,1] = C[0,1] by Lyz=2"—(1-X)(' -b), A€o, 1],

and
Vi: CYo, 1]—C[0,1] by (Viz)(t)= V(AL z(t),2'(1), t€]0,1], A e [0, 1],

ki

Let introduce the set

1 r
U={$€C§[O,1]: Eﬁ<x<‘p2+€’ Pl-—s<x’<P2—:—e,hq—-s<3: <HQ+E}
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which is a relatively open set in the convex set C%[0,1] of the Banach space (2 [0,1]. Since Ly, A €
[0,1], is a continuous, linear and one-to-one map of C3[0,1] onto C[0,1], we conclude that Lt
exists for each A € [0, 1] and is also a continuous map. In addition, V, is a continuous map, while
the natural embedding j is a completely continuous map. Therefore, the homotopy

H:TU x[0,1] — C?[0,1] defined by H(z,A) = Hy(z) = LT7V3j(z)
Is a compact map. Moreover, the equations
Li'Vyj(z)=z and Lyz =Wz

are equivalent, i.e. the fixed points of H, () are solutions to the family (4.13),. Further, obverse
that the solutions to (4.13), are not elements of AU, which means that H,(z) is an admissible
map for all A € [0,1]. Besides, in view of (4.14), Ho(z) =n"!+bt. Since n~! + bt € U, we can
apply Theorem 2.2 [28, Chapter I] to conclude that H, is an essential map. By the topological
transversality Theorem 2.6 [28, Chapter I, Hy = L7'V4j is also an essential map. Consequently,
the problem (4.13); has C?2[0, 1]-solutions, which are also solutions to the problem (4.12);. Finally,
by Lemma 4.7, the solitions of the problem (4.12); are also solutions to the problem (3.1);. O

9. MAIN RESULT

Using the results of the previous sections, we are ready to prove our main result, which is the
following existence

THEOREM 5.1. Let H1, H2 and H3 be satisfied. Then the problem (1.1), (1.2) has at least one
solution z(t) € C[0,1] N C2(0, 1] with the property z(t) > 0 on (0,1].

Proof. Consider the sequence {z(t)} € C?[0,1], where z,(), n e N, n > 1 /€ is a solution to (3.1);.
Note that, by Lemma 4.8, the above sequence exists and, by Lemma 3.1, for n € N, n > 1/e the
elements of this sequence satisfy the bounds

% STlt) S Pr+e, P <2(t) < Pohy < 2(8) < H,, te 0.1 (5.1)

Therefore, in view of H2 and H3, from the differential equation (3.1)1 we conclude that for ¢ € (0,1)
and A small enough

[=Falt: 2n(t), 24 (2), @un(8)] [22(t + B) — 22 (2)]
=hfi(Tan) + fo(Ton) [2n(t + h) — 2,.(2))]
+fo(Ton)lan (t + k) - 2, (2)]
= fi(Tn) + fo(Tn)z, () + fo(Tn)2li(t), for h— 0,
where T = T, (¢, z(t), «/,(1), 1(t)) and the points Tin, Ton, Tss and (¢, on(2), 2/, (£), gus (£)) tend to

T,.. Because of (5.1), (5.2) and in view of H2 and H3, it follows that z//(t) exists for every ¢ < [0,1],
is given by the formula

20 (&) = {i(To) + £2(To)2n(8) + folTa)2(e)}/ [~ Fo(To)], (5.3)
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and is continuous on [0, 1].
Next, integrating the inequality P, < z/,(¢) < P, from 0 to ¢ witht € (0, 1], we obtain

1
= 4+ Pyt < 2a(f) < % 4Bt te01]. (5.4)

Let the constant o € (0, 1). Then, in view of (5.4)
zZp(t) 2 Pa>0, te€]al]
According to H3, using (5.1) and (5.3) we find that
|z O] < (Ifel + | fellan] + 1fllzn) /Ky < Co,  t € [a1],

where the constant C,, does not depend of n. Now the Arzela-Askoli theorem guarantees the existence
of a subsequence {z,,}{2, converging uniformly on C? [, 1] to some function z € C?{a, 1], which is a
solution of the differential equation (1.1) for ¢ € [, 1]. The boundary condition z'(1) = b is obviously
satisfied. Thus, for ¢ € (0,1] there exists a solution z(t) € C?(0, 1] of the differential equation (1.1),
which satisfies the boundary condition z’(1) = b. Moreover, according to (5.4), we see that

0< Pit < z(t) < Pst for te(0,1) (5.5)

and thus z € C[0,1] and z(0) = 0, which implies that z(¢) is a solution to the boundary value
problem (1.1), (1.2) for which, in view of (5.5), we have z(¢) > 0 for every ¢ € (0,1]. O

6. ILLUSTRATIVE EXAMPLES

We conclude our investigation with the following examples, illustrating our main result.

EXAMPLE 6.1. Consider the problem

:.CH

exp((t - 2)1”) + (' = 5)(z' — 10) — 22" — m =0, Gtz

z(0) =0, 2/(1) =8.

It is easy to check that for K =1, Q =15, P, =7, P, =11, P, =6, P, = 12 and for a
sufficiently small € > 0 the hypothesis H1 is satisfied. Hence, the hypothesis H2 is satisfied for
K, = 2. Moreover, D, = D? = (—o0,0) U (0,30) U (30,00), D, = D, = R, h, = —16 and H, = 18.
Obviously, the functions

g(60 — 4z)
(x(30 — :);))3

are continuous for (t,z,p,q) € [0,1] x (0,12] x [7,11] x [—16, 18]. Therefore, the hypothesis H3 is
fulfilled and, by Theorem 5.1, the considered problem admits a C[0, 1] N C?(0, 1]-solution.

ft(th;p;Q) =qexp(Q(t_2))J fz(t,.'l?,p,Q): and fp(tax!pa Q) =2p—'_15
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EXAMPLE 6.2. Consider the problem

V225 — (z')2sing’ — -

—(")*—052"=0, 0<t< 1;
V400 — (2)2/z(625 — 72) @)

Ir

2(0) =0, /(1) =5.

Here D, = [~15,15] and D, = (—20, 20). Since (0) = 0, we will investigate this problem only
for D2 = (0,25). Clearly, the function

. g 3
t,z,p,q) = /225 — p2sinp — —qg° — 0.5
f( P:q) pisinp \/400 - qz\/x(ﬁ% — z2) g i

Is singular at z = 0 and satisfies the hypothesis H1 for K = 0.5, Q = 10, A=4, P=7 P =
3.5, P,=75and a sufficiently small £ > 0. The functions

1 400 _
V(625 — 22) | /(400 — )2

are continuous on 2 = [0, 1]x (0, 8+¢]x [4—e, T+&] x[~11—e¢, 12+¢]. Besides, £,(t,z,p,q) < —0.5— 5=
for (t,z,p,q) € Q. Thus, H2 is satisfied for Ky = 0.5 + 1z55. Now observe that the functions

ft,z,p.q) and f,(tz,p,q) = 3¢ -05

625 — 3z2
Ft,2,0,0) =0, fu(t,z,p,q) = —=2

s \/ (::(625 - z’*’))s

and

fot,z,p,q) = cospy/225 —p?cosp — % sinp
—p

are continuous on the set [0,1] x (0,8] x [4,7] x [-11, 12]. This means that H3 also is satisfied.
Consequently, by Theorem 5.1, the considered problem has a C[0,1] N C?(0, 1]-solution.

EXAMPLE 6.3. Consider the boundary value problem
[tz 2"} =0, 0<t<],
{ 2(0) =0, (1) =35,
where

+e—q_ (2+t)g—6 for (f,ﬂ:,p: q)
_q(r_:g + 1) for (t; z.p, q)

[0,1] x [0, 00) x R2,

f(t,:':,p, Q) = { & [0, ]_} b € (—OO1 0) X Rz-

€
S
It is easy to check that for K = L, @=10, Po=4, B, =T, P,=3 P, =8anda sufficiently
small £ > 0 the hypothesis H1 is satisfied. Note also that the functions
ft.z.p,9) =p+e?—(2+t)g—6 and f,(t z,p,q) = e~ — 2Z+1)

are continuous on the set 2 = [0, 1]x (0, 8+¢e|x[4—e, T+e] x[-11—¢, 12+¢] and that f,(t,z,p,q) < —2
for (¢,,p,q) € Q. So, the hypothesis H2 is fulfilled for K; = 2. Observe now that

ft(t7 I:p: Q) = -'Q1 fz(t; xupa Q) = 0 and fp(f: 3:: p: Q) = 1

43



to conclude that H3 is satisfied. So, by Theorem 5.1, the above problem has a C[0,1] N C%(0,1] -
solution.

ExaMPLE 6.4. Consider the problem
Fltgal 2t )=10, OxiL]l,
z(0} =0; a/(1)=35,

where

. ¢ /30 —z
1/225 — p?sinp 0= = 0.5¢
for (t,2,p,q) € [0,1] x (0,30] x [~15, 15] x (=20, 20),
ft,z,p,q) = J
q 1
1/400 — ¢2 \/z(z? — 900) e
for (t,z,p,q) € [0,1] x [-30,0) x [—15,15] x (—20, 20).

/225 — p?sinp —

\

The function f(t,z,p, q) satisfies the hypothesis H1 for K = 0.4, Q = 10, Po=4, P,=T7, P, =
3.5, P; = 8 and some sufficiently small ¢ > 0. Note that the functions

3 30—
f(t,z,p,q) = /225 — p? sinp — J % 0.5
400 — g2 V. T

and f(t,z,p, q) are continuous on the set 2 = [0,1] x (0,8 +&] X [4—&,7T+¢] x [-11 —¢,12 + g
and fo(t,z,p,q) < —0.5 for (¢,z,p,q) € Q. So, the hypothesis H2 is fulfilled for K, = 0.5. Further,
observe that the functions

filt.z,p.q), fo(t,z,p,q) and fo(t,z,p,9)

are continuous on the set [0, 1] x (0,8] x [4,7] x [-11, 12]. Hence, the hypothesis H3 is also satisfied.
Therefore, in view of Theorem 5.1, we see that the above problem has a C [0, 1] N C?(0, 1]-solution.
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Abstract

Some of the properties of the completely regular fuzzifying topological spaces
are investigated. It is shown that a fuzzifying topology T is completely regular
iff it is induced by some fuzzy uniformity or equivalently by some fuzzifying
proximity. Also, 7 is completely regular iff it is generated by a family of prob-
abilistic pseudometrics.

Key words and phrases: Fuzzifying topology, Fuzzifying proximity, fuzzy
uniformity, probabilistic pseudometric.
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Introduction

The fuzzifying topologies were introduced by M. Ying in [15]. A classical topology is
a special case of a fuzzifying topology. In a fuzzifying topology 7 on a set X , every
subset A of X has a degree 7(A) of belonging to 7, 0 < 7(4) < 1. In (1] we defined
the degrees of compactness, of local compactness, Hausdorffnes e.t.c. in a fuzzifying
topological space (X, 7). We also gave the notion of convergence of nets and filters
and introduced the fuzzifying proximities. Every fuzzifying proximity & induces a
fuzzifying topology 75. In [4] we studied the level classical topologies 79,0 < 0 < 1,
corresponding to a fuzzifying topology 7. In the same paper we studied connected-
ness and local connectedness in fuzzifying topological spaces as well as the so called
sequential fuzzifying topologies. In [3] we introduced the fuzzifying syntopogenous
structures. We also proved that every fuzzy uniformity ¥, as it is defined by Lowen
in [8], induces a fuzzifying proximity & and that , for every fuzzifying proximity 4,
there exists at least one fuzzy uniformity I/ with § = &y.

In this paper, we continue with the investigation of fuzzifying topologies. In par-
ticular we study the completely regular fuzzifying topologies, i.e those fuzzifying
topologies 7 for which each level topology 7¢ is completely regular. As in the clas-
sical case, we prove that, for a fuzzifying topology 7 on X, the following properties
are equivalent: (1) 7 is completely regular; (2) 7 is uniformizable, i.e. it is induced
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by some fuzzy uniformity; (3) 7 is proximizable, i.e. it is induced by some fuzzifying
proximity; (4) 7 is generated by a family of so called probabilistic pseudometrics on
X. We also give a characterization of completely regular fuzzifying spaces in terms
of continuous functions. Many Theorems on classical topologies follow as special
cases of results obtained in the paper.

1 Preliminaries

A fuzzifying topology on a set X (see [15]) is a map 7 : 2X — [0,1], (where 2¥ is
the power set of X) satisfying the following conditions:

(BT 7(X) =1{0)= 1.

(FT2) 7(A1 N As) > 7(A1) AT(432).

(FT3) (U 4;) > inf; 7(4;).

If 7 is a fuzzifying topology on X and z € X, then the 7-neighborhood system
of z is the function

Nz = N7 : 2% 5 [0,1], N;(4) = sup{r(B) : z € B C A}.
By ([15], Lemma 3.2) we have that 7(A4) = inf,c 4 Nz (A).

Theorem 1.1 ([15], I, Theorem 3.2). If T is a fuzzifying topology on a set X,
then the map £ — N; = NJ, from X to the fuzzy power set F(2%) of 2X has the
following properties:
(FN1) No(X) =1 and N.(A) =0 ifz ¢ A.
(FN2) Nz (A1) Az2) = Nz (A1) A Nz (Az).
(FN3) Nz(A) < sup,¢epc 4 infyep Ny (D).
Conversely, if a map £ — N, from X to F(2X), satisfies (FN1) — (FN3), then the
map

7:2% = [0,1],7(4) = inf N (A),

€A

is o fuzzifying topology and Ny = N7 for every z € X.

Let now (X, 7) be a fuzzifying topological space. To every subset A of X cor-
rersponds a fuzzy subset A = A™ of X defined by A(z) = 1 — N;(A4¢). A function
f; from a fuzzifying topological space (X, 7'1) to another one (Y, 72), is said to be
continuous at some z € X (see [2]) if No(f~1(4)) > N #(z)(A) for every subset A of
Y. If f is continuous at every point of X, then it is said (71, T2)—continuous. As it
is shown in [2], f is continuous iff 72(4) < 71(f~1(A)) for every subset A of Y. For
f:X — Y a function and 7 a fuzzifying topology on Y, f~(7) is defined to be the
weakest fuzzifying topology on X for which f is continuous. By [2], f~1(r) is given
by the neighborhood structure N (4) = N 7(2) (Y \ F(49). X (73)ier is a family of
fuzzifying topologies on X, we will denote by Vier T, or by sup7;, the weakest of
all fuzzifying topologies on X which are finer than each 7;. As it is proved in [2],
Vier 7i is given by the neighborhood structure

No(A) = sup{}g?N;"(Ai) ze ) AiC Al
i€
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where the infimum is taken over the family of all finite subsets J of I and all A; C
X,1 € J. For Y a subset of a fuzzifying topological space (X,7), 7|y will be the
fuzzifying topology induced on Y by 7, i.e. the fuzzifying topology f~1(7) where
f:Y — X is the inclusion map. For a family (X;, 7;)ier of fuzzifying topological
spaces, the product fuzzifying topology 7 = [[7 on X = 1 X; is the weakest
fuzzifying topology on X for which each projection 7; : X — X; is continuous. Thus
7=\V;7; '(r;) and it is given by the neighborhood structure

N, (A4) = sup{inf N, (4:) : 2 € (771 (4:) C A,
icJ
where the supremum is taken over the family of all finite subsets J of I and A€ X,
for i € J (see [2]).
The degree of convergence to an z € X, of a net (z5) in a fuzzifying topological
space (X, ), is the number ¢(z5 — z) = ¢"(z5 — ) defined by

c(zs = z) =inf{l — Ny(A4) : AC X, (z5) frequently in A}

As it is shown in [4], for A C X and z € X, we have

A(z) = max{c(zs — ) : (z5) net in A}.
The degree of Haudsdorffness of X (see [2]) is defined by

T5(X) = 1 — supsup{c(zs — =) Ac(zs = y : (z5) net in X}.

TFY
Also, the degree of X being 7} is defined by
Ti(X) = inf inf sup{Na(B) : y ¢ B}.

Let now (X, 7) be a fuzzifying topological space. For each 0 < 6 < 1, the family
By ={A C X : 7(A) > 6} is a base for -a-classical topology 7% on X (see [3]).
It is easy to see that a subset B of X is a m%-neighborhood of z iff Nz(B) > 0.
By [4], To(X) (resp. T1(X)) is the supremum of all 0 < 6 < 1 for which 7¢ is T,
(resp. T1). Also, for 7 = V7;, we have that 7% = sup; 7¥ (see [3], Theorem 3.5). If
7 =[] 7 is a product fuzzifying topology, then 7¢ = I177 (see [3], Theorem 3.5).
If Y is a subspace of (X, 7) and m; = 7|¥, then 7¥ = 7|Y. By [3], Theorem 3.10,
for a fuzzifying topological space (X, 7), co(X) coincides with the supremum of all
0 <@ < 1 for which 7!~¢ is compact.

Next we will recall the notion of a fuzzifying proximity given in [2]. A fuzzifying
proximity on a set X is a map 4 : 2% x2% — [0, 1] satisfying the following conditions:
(FP1) 6(A, B) =1 if the A, B are not disjoint.

(FP2) 6(A,B) = §(B, A).

(FP3) 4(0,B) = 0.

(FP4) 6(A; U Ay, B) = 6(A;1, B) V 6(As, B).

(FP5) 6(A, B) = inf{6(A,D) Vé(D*,B) : D C X}.

Every fuzzifying proximity ¢ induces a fuzzifying topology 75 given by the neighbor-
hood structure N;(A4) = 1 — §(z, A). A fuzzifying proximity d; is said to be finer
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than another one 4§, if §; (A4, B) < d2(A4, B) for all subsets A, Bof X. For f : X = Y
a function and 4 a fuzzifying proximity on Y, the function

F7H6) - 2% x 2% = [0,1], 71 (6)(A, B) = 8(F(A), f(B)),

is a fuzzifying proximity on X (see [2]) and it is the weakest of all fuzzifying
proximities d; on X for which f is (4, d)-proximally continuous, i.e. it satis-
fies 6:(A4,B) < 6(f(A), f(B)) for all subsets A,B of X. As it is shown in [2],
Ti-1(5) = [~H(75).

Let now (d))xea be a family of fuzzifying proximities on a set X. We will denote by
d = \/, dx, or by supdy, the weakest fuzzifying proximity on X which is finer than
each §). By [2], Theorem 8.10, § is given by

J(A, B) = inf{sup inf 5)(.2‘1@,3;,‘)},
i,j AEA

where the infimum is taken over all finite collections (4;), (B;) of subsets of X with
A =JA;, B=JB;j. Moreover, 75 = \/ 75, (see [2]).

Finally we will recall the definition of a fuzzy uniformity introduced by Lowen in [8].
For a set X, let Qx be the collection of all functions o : X x X — [0,1] such that
a(z,z) =1forall z € X. For o, 3 in Qx the a A B,c0 3 and o' are defined by
anB(z,y) = a(z,y) AB(z,y), a0 B(z,y) = sup, B(z, z) Aa(z,y),a" z,y) = a(y, z).
If @ = o7}, then « is called symmetric. A fuzzy uniformity on X is a non-empty
subset U of 2x satisfying the following conditions :

(FUL) f o, €U, thena AB € U.

(FU2) If o € U is such that, for every e > 0, there exists a 8 € U with 8 < o+,
then o € U.

(FU3) For each o € U and each € > 0, there exists a B € U with BoB < a+e.
(FU4) fa €U, then o~ € U.

A subset B, of a fuzzy uniformity U, is a base for U if, for each o € I/ and each
€ > 0, there exists # € B with 8 < a + €. It is easy to see that, for a subset B of
Qx, the following are equivalent :

(1) B is a base for a fuzzy uniformity on X.

(2) (a) If @, B € B and € > 0, then there exists v € Bwithy<a A B+e.

(b) For each & € B and each € > 0, there exists 5 € Bwith fo8< a+e.

(c) For each o € B and each € > 0, there exists 8 € Bwith 8 <ol +e.
In case (2) is satisfied, the fuzzy uniformity I/ for which B is a base consists of all
a € Qx such that, for each € > 0, there exists a f € Bwith S < a+e.
By [3], every fuzzy uniformity &/ on X induces a fuzzifying proximity d;; defined by

ou(A,B) = inf sup ofz,y).
a€U zc A ycB

In case B is a base for I/, then

ou(A,B) = inf sup a(z,y).
o€B zc A yeB
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Every fuzzy uniformity ¢/ induces a fuzzifying topology 7 given by the neighborhood
structure
Nz(A) =1 - dy(z, A°) = 1 — inf sup a(z,y).
acld ygA

For every fuzzifying proximity ¢ there exists at least one compatible fuzzy uniformity,
Le. a fuzzy uniformity U/ with 6y = ¢ (see [3], Theorem 11.4).

2 Probabilistic Pseudometrics

A fuzzy real number is a fuzzy subset u of the real numbers R which is increasing,
left continuous, and such that limy, e u(t) = 1,lims,_ o u(t) = 0. A fuzzy real
number u is said to be non-negative if u(t) = 0 if ¢ < 0. We will denote by R; the
collection of all non-negative fuzzy real numbers. To every real number r corresponds
a fuzzy real number 7, where 7(¢) = 0if ¢ < r and 7(t) = 1 if ¢ > r. For u,v € R,
we define u <X v iff v(t) < u(¢) for all £ € R. If A is a non-empty subset of R;‘ and
ifu, € R;f' is defined by u,(t) = sup,c4v(%), then wu, is the biggest of all u € R;
with u < v for all v € A. We will denote u, by inf A or by A A. For uj,uz € RT,
we define u = u; Quy € Rg by u(t) = sup{ui(t1) Aual(ty) : t = ¢; + to}. Also, for
u € R} and A > 0, we define Mu by (Mu)(£) = u(A~1¢). It is easy to see that, for
u € R;' and A > 0, we have (A @ u)(¢) = u(t — A).

Definition 2.1 A probabilistic pseudometric on a set X (see [1]) is a mapping
F: X xX— R;’ such that, for all z,y,z in X, we have

F(z,2) =0,F(z,y) = F(y,2), F(z,2) X F(z,y) © F(y,2).

If in addition F(z,y)(0+) =0 when = # y, then F is called a probabilistic metric.

If r1,7o are non-negative real numbers, then 77 < 75 iff »; < ry. Also, for
T = |r; — ra|, we have that

T=MueR]:m=2ud7 and 7T X udr).

In fact, let u, = A{u € R; 17, 2 u®7 and 7T <X u @75} and assume
(say) 7y > ro. Let u € ‘R;‘ be such that 7 X u ® 7,77 < u & 73. Then 77(¢) >
(u®T3(t) = u(t — o) for all &. If s < 7y, then 0 = 71(s) = u(s — r2) and so
u(ry — o) = SUPs<r, (s — r2) = 0 which implies that 7 < u. Thus 7 < Uo. On the
other hand, we have &7 = 77 and 7®7T = 2r; — 5. Since 75 < 2r1 — rg, it follows
that u, < 7 and hence 7 = u,. Motivated from the above we define the following
distance function on R;

D:RI xR;‘ ——>RI, D(ul,m):/\{ueRg fu Sup Bu,ur 2 udu )

Then D is a probabilistic pseudometric on ’R,z In fact, it is clear that D (u1,up) =
D(ug,u;). Also, since v = u @ 0, when u € R;, we have that D(u,u) = 0.
Finally, let D(u1,u2)(t1) A D(ug,us)(tz) > 6 > 0. There are v,V € ’R,; with
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ur X vp @ ug,up =X v1 ®up,uz 3 V2 B U, up = ve B uz,v1(t1) > 0,v2(t2) > 0. Now
U 28U XN @ (1ouz) = (V1 @v)Puzand uz TV B U XV O (V1 B u1) =
(vi ®vg) ®uy.Thus D(ug,us3) < v; ® vy and D(uy,uz)(t1 +t2) > v1(t1) Ava(te) > 6.
This proves that D(uj,us) = D(uj,us) @ D(ug,us) and the claim follows. We will
refer to D as the usual probabilistic pseudometric on ’R,;f' g

Let now F' be a probabilistic psedometric on X. For ¢ > 0, let ur; be defined on
X2 by ups(z,y) = F(z,y)(t). The family Bp = {up; : t > 0} is a base for a fuzzy
uniformity Ur on X. Let 7F be the fuzzifying topology induced by UF.

In the rest of the paper, we will consider on ’R,; the fuzzifying topology induced by
the usual probabilistic pseudometric D.

Theorem 2.2 A probabilistic pseudometric F, on a fuzzifying topological space
(X,7), is T X T continuous iff Tr < 7.

Proof : Assume that 77 < 7 and let G be a subset of R;f' and u = F(z,,y,) with
Nu(G) > 6 > 0. There exists a ¢ > 0 such that 1 — sup,gg D(v,u)(t) > 6. For z,y
in X, we have

F(z,y) 2 F(z,%,) @ F(%o,Yo) ® F(Yo,y) = [F (2. %0) & F(y,%)] © F(o,Yo)-
Similarly F(z,,y,) =X [F(z,%0) ® F(y,¥)] © F(z,y). Thus
D(F(z,y), F(2o,Y0)) = F(z,20) & F(y, yo)-
Let

Ai={z € X :F(z,z,)(t/2) >1—0}, and Ay ={z € X : F(y,v0)(t/2) >1-6}.
Ifz € A;,y € As, then

D(F(z,y), F(%0,40))(t) = F(z,0)(t/2) A F(y,90)(t/2) 21 -6
and so F(z,y) € G. Also, N] (A1) > NJF (A1) > 1—supga, F(z,2,)(t/2) > 6 and
N7 (As) > 6. Therefore,

NI (FTHG)) 2 N7, (A1) AN (A1) 2 6,

which proves that N{Txf’;o)(F_l(G)) > Ny(z,.4,)(G) and so F is 7 x 7 continuous.
Conversely, assume that F is 7 X 7 continuous and let V77 (A) > 6 > 0. Choose ¢ > 0
such that N7 (A) > 6+ ¢. There exists a ¢ > 0 such that 1 —sup;¢4 F(z,2,)(f) >
0+e If

Z={u ER;; : D(u,0)(t) =u(t) >1—60 —¢},
then
N(Z) > 1—sup D(u,0)(t) > 6 +€> 6.
uéZ

Since F is 7 x 7 continuous and F(z,,z,) = 0, there exists a subset A; of X
containing z, such that 4; x A; C F~1(Z) and N,,(4;1) > 6. If z € Ay, then
F(z,z,) € Z and so F(z,z,)(t) > 1 — @ — ¢, which implies that z € A. Thus 4; C A
and so0 Nz, (A) > N;F(A) for every subset A of X and every z, € X. Hence 7p < 7
and the result follows.
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Theorem 2.3 Let F be a probabilistic pseudometric on a set X » T=7r, (T5)seca @
net in X and z € X. Then

c(zs = ) = E:glirr:sian(a;g,z)(t).

Proof: Let d = infys lim infs F(zs,z)(t) and assume that d < @ < 1. There exists a
¢ > 0 such that liminfs F(z5,2)(¢) < 6. Let A = {y : F(y,z)(t) > 6}. Then (z5) is
not eventually in A and so ¢(z; = z) <1 — N (4) < supyg 4 F(y,z)(t) < 6, which
proves that c¢(zs — z) < d. On the other hand, let ¢(zs — z) < r < 1. There exists
a subset B of X such that (z;) is not eventually in B and 1 — N,(B) < r. Let s > 0
be such that 1 — supy¢p F(y,z)(s) > 1 —r. For each 6 € A, there exists §’ > § with
Ty & B and so F(zy,z)(s) < supy¢p F'(y,z)(s). Thus d < liminfs F(zs,2)(s) < r,
which proves that d < c(xs — ) and the result follows.

Theorem 2.4 Let Fy, Fs,...,F, be probabilistic pseudometrics on X and define F
by
= i t).
F(.‘I:,y)(t) 122}:1%1an($’ y)( )

Then F 1is a probabilistic pseudometric and 1p = \/}, | 75,

Proof: Using induction on n, it suffices to prove the result in the case of 7 = 2. It
follows easily that F is a probabilistic pseudometric. Since F,Fy < F, it follows that
TR TR, < TF and 80 7, = Tp, V Tm, < 7p. On the other hand, let NZF(A) > 0> 0.
There exists a ¢ > 0 such that 1 — supye 4 F(y,z)(t) > 6. Let B; = {y € A°:
Fi(y,z)(t) < 1—6},5 =1,2. Then A° = By UB, and so A = A1 N'Ay, A; = B
Moreover N, (4;)>1— Supyep, Fi(y,z)(t) > 0 and thus

Nz (A) 2 N7 (A1) \ Njo(A2) > N7™ (A1) \ V272 (42) > 6
This proves that N7°(A) > N7¥(A) and the result follows.

For F a family of probabilistic pseudometrics on a set X , we will denote by 7£
the supremum of the fuzzifying topologies 77, F € F, i.e. 77 = VperTF.

Theorem 2.5 If 7 = 77, where F is a family of probabilistic pseudometrics on a
set X, then To(X)=Ty(X)=1— SUpy, infrer F(z,y)(0+).

Proof: Let d = 1—sup,., infrer F(z,y)(0+). It is always true that 75(X) < Ty (X).
Suppose that T3(X) > r > 0 and let = # y. Since 77 is Ty, there exists a 7'-
neighborhood A of z not containing y. Now N(A4) > r and hence, there are subsets
Aty-., An of X and F,..., F, in F such that (1 4z C A, N;"*(A), > r. Since y is
not in A, there exists a k with y ¢ A;. Let £ > 0 be such that

1= sup Fi(z,z)(t) >r andso inf F(z,y)(t)(0+) < Fi(z,y)(t) <1—r,
zg Ay FeF

which proves that d > r. Thus d > T1(X). On the other hand, assume that
d>6>0and let z # y. Choose € > 0 such that d > 6 + ¢. There exists F € F
with F(z,y)(0+) <1 — 60 — ¢ and hence F(z,y)(t) <1 — 6 — ¢ for some ¢ > 0. Let

A={z:F(2,2)(t/2) >1—0—¢}, B={z: F(z,9)(¢/2) > 1 — 6 —¢€}.
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Clearly z € A,y € B.If z € AN B, then
F(z,y)(t) > F(z,2)(t/2) A F(z,y)(t/2) > 1 —6 —,
a contradiction. Thus A N B = @. Moreover

Nz(A) > NJF(A) >1—supF(z,z)(t/2) 20+ €>0 and N,(A) > 6.
Z¢A

It follows that T5(X) > d and the proof is complete.

Let us say that a fuzzifying topology 7 on a set X is pseudometrizable if there
exists a probabilistic pseudometric F' on X with 7 = 7F.

Theorem 2.6 A fuzzifying topology 7 on X is pseudometrizable iff each level topol-
ogy 7°,0 < 6 < 1, is pseudometrizable.

Proof: Assume that 7 = 7 for some probabilistic pseudometric F and let 0 < 6 < 1.
For each positive integern, with n > 1/(1 — 6), let

Ap = {(z,y) € X2: F(z,y)(1/n) >1—60 —1/n}.

Then A, C A, and the family D = {4, : n € N,n > 1/(1 — 6)} is a base for
a uniformity &/ on X. The topology oy induced by ¢/ is pseudometrizable since D
is countable. Moreover oy = 7%. Indeed, let A be a og-neighborhood of x. There
exists n € N,n > 1/(1 — ), such that B = {y : F(z,y)(1/n) > 1—-6—I/n} C A.
Now
NI(4) > NI(B) > 1—sup F(z,y)(1/n) > 0+ 1/n >0
y¢B

and so A is a 7%-neighborhood of . Conversely, assume that A is a 7%-neighborhood
of z. There exists € > 0 with N;(A4) > 0 + e. Now there exists a positive integer
n > 1/e such that 1 —sup,¢4 F(z,y)(1/n) > 6 + 1/n. Hence

{y: F(z,y)(1/n) >1—-0—-1/n} C A,

which implies that A is a og-neighborhood of z. Thus ¢ = o4 and therefore each
79 is pseudometrizable. Conversely, suppose that each 77 is pseudometrizable. By
an argument analogous to the one used in the proof of Theorem 3.3 in [4], we
show that there exists a family {dp : 0 < 8 < 1} of pseudometrics on X such that
dg = supg,~pdp,, for each 0 < 6 < 1, and 7% coincides with the topology induced by
the pseudometric dy. Now, for z,y in X, define F(z,y) : R — [0,1] by F(z,y)(f) =0
ift <0 and F(z,y)(t) = sup{f : 0 < 8 < 1,d1¢(z,y) <t} ift > 0. It is clear
F(z,y) is increasing and left continuous. For 0 <r < 1 and t > d;_,(z,y), we have
that F(z,y)(t) > r and so limseo F(z,y)(t) = 1. Also F(z,z)(t) = 1 for every z
and every ¢t > 0. To show that F' is a probabilistic pseudometric on X, we must
prove that it satisfies the triangle inequality. So, let F'(z,y)(t1)AF(y, 2)(t2) > 6 > 0.
Then dy_¢(z,y) < t1,d1-¢(y,z) < t2 and so di—g(z, z) < t1 + t2, which implies that
F(z,2)(t1 +1t2) > 6. Thus the triangle inequality is satisfied and F is a probabilistic
pseudometric. We will finish the proof by showing that 77 = 7. Solet NJF >80 >0
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and choose ¢ > 0 such that 1 — supyg4 F(y,2)(¢) > 0. If now dg(z,y) < t, then
F(z,y)(¢) > 1 — 6 and thus y € A, which proves that A is a oy = 7 neighborhood
of z. Hence 7 > 7p. On the other hand, let B be a Te-neighborhood of z. There
exists 61 > 6 such that N;(B) > 6,. Now B is a 74,-neighborhood of z and so
there exists ¢ > 0 such that {y : dp,(z,y) < t} ¢ B. If Flz,y)(t) > 1 - 64,
then there exists o > 1 — 6; such that dy_o(z,y) < t and so dp, (z,y) < t..Thus
{v: F(z,y)(t) > 1 —6:} C B and therefore

NzF(B) > 1 —sup F(z,y)(t) > 8; > 6.
y¢B

Thus 7¢ > 7 and the result follows.

Theorem 2.7 Let (X, F) be a probabilistic pseudometric space, AC X andz € X.
Let

a = sup{infiyq liminf, F(z,,z)(t) : (z,) sequence in A}

B = sup{liminf, F(zn,z)(t,) : tn = O+, (z,) sequence in A}

v = sup{liminf, F(z,,z)(1/n) : (zn) sequence in A}

Then a = 8 =v = A(z).
Proof: If (z,) C A, then

A(z) > c(zn — z) = 1%E:glj_tr:TLIinfF(..'v;n,x)(if)

and so A(z) > a. Assume that 8> 6 > 0. There exist a sequence (z,) in A and a se-
quence (t,) of positive real numbers, with t, — 0+, such that lim inf,, F (Zn, T)(Er) >
6. Let ¢ > 0 and choose k such that ¢, < ¢t when n > k. For m > k we have
infrsm F(2n,2)(t) > infoom F(2n,z)(tn) > 0. Thus liminf, F(z,,z)(t) > 6 for
each ¢ > 0 and so o > 6, which proves that o > f. Clearly 8 > «v. Finally,
No(4°) > 1 - supyeaF(y,2)(1/n) and so sup,es F(y,z)(1/n) > 1 - Ny(A°) =
A(z) > A(z)—1/n. Hence, for each n € N, there exists z,, € A with F(z,,z)(1/n) >
A(z) — 1/n. Consequently,

v 2 limiof F(z5, 2)(1/n) > lim inf(A(z) — 1/n) = A(z)

and 50 vy > A(z) > a > > v, which completes the proof.

In view of [4], Theorem 4.14, we have the following

Corollary 2.8 Every pseudometrizable fuzzifying topological space is N-sequential
and hence sequential.

Theorem 2.9 If (Fy,) is a sequence of probabilistic pseudometrics on a set X , then
there erists a probabilistic pseudometric F such that 1¢ = V,.7E,-

Proof: If F is a probabilistic pseudometric on X and if F is defined by F(z, y)(t) =
F(z,y)(t) ift <1and F(z,y)(t) = 1ift > 1, then F is a probabilistic pseudometric
on X and 7z = 7r. Hence, we may assume that Fy(z,y)(t) = 1, for all n, if ¢ > 1.
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For z,y in X, define F(z,y) on R by F(z,y)(t) = 0if ¢t < 0 and F(=z,y)(f) =
inf,[2F,(z,9)](¢) if ¢ > 0. Clearly F(z,y) is increasing and F(z,y)(¢) = 1ift > 1.
Also F(z,y) is left continuous. In fact, let F(z,y)(t) > € > 0 and choose n such that
(n+ 1)t > 1. There exists 0 < s; < t such that Fi(z,y)(ks1) >0 for k=1,...,n.
Choose s; < s < t such that (n + 1)s > 1. Now Fp,(z,y)(ms) =1 if m > n. Thus

Flz,y)(s) = min [2Fi(z,1)](s) >,

which proves that F(z,y) is in R;‘. It is clear that F(z,z) = 0. We need to prove
that F satisfies the triangle inequality. So assume that F(z,y)(t1) A F(y, z)(t2) >
@ > 0. If m is such that (m + 1)(¢; + t2) > 1, then

F(z,2)(t1 +1;) = min Fi(z, z)(k(t1 + t2)).
Since
Fi(z,z)(k(t1 + t2)) > Fr(z,y)(kt1) A Fr(y, 2)(kt2) > 6,

it follows that F(z,z)(t; + t2) > 6 and so F satisfies the triangle inequality. We
will finish the proof by showing that 77 = \/ 7F,. To see this, we first observe that
%Fn = F which implies that 75, = TLip, <7tpandso7, =YV, TiF, < 7¢. On the
other hand, let NZF(A) > 6 and choose € > 0 such that NJF(A) > 6 +e. Lett >0
be such that 1 —supyg 4 F(y,z)() > 6 +e. If (m+ 1)t > 1, then

Fly,2)(t) = | gciéﬂm Fy(y, z)(kt).

Let Ay = {y: Fr(y,z)(kt) > 1 — 6 — €}. Then
NI (Ay) > No* (Ag) > 1 — sup,ga, Fi(z,3)(kt) > 0+€> 6

and (i, Ar C A. Hence NJ°(A) > mincr<m Nj°(Ar) > 6. This proves that
Trp < T, and the result follows.

Theorem 2.10 Let f : X — Y be a function and let F' be a probabilistic pseudo-
metric on Y. Then the function

FHE) X2 = REL fTUF)(zy) = F(f(2), f()

is a probabilistic pseudometric on X and Ts-1(p) = 71 (7F)-

Proof: Tt follows easily that f!(F) is a probabilistic pseudometric on X. Let z € X
and BC X. If D=Y\ f(B°), then

N/ (B) = infiso[l ~ supygp F(F(y), £(2)) (2]
= infyo[l — SUP, ¢ pe I (2, f(2))(2)]
= N7, (D) =N (),

which clearly completes the proof.
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Corollary 2.11 If F is a probabilistic pseudometric on a set X and Y C X , then
7rly is induced by the probabilistic pseudometric G = Flyxy,G(z,y) = F(z,y).

Corollary 2.12 If (X,,,) is a sequence of pseudometrizable Jfuzzifying topological
spaces, then the cartesian product (X,7) = ([] Xn,[] %) is pseudometrizable.

Proof: Let Fy, be be a probabilistic pseudometric pseudometric on X, inducing 7.
If Gn = n;1(Fy), then 7, = 7, (73) and so 7 = \/, 77} (75) is pseudometrizable.

3 Level Proximities

Let 6 be a fuzzifying proximity on a set X. For each 0 < d < 1, let 6% be the binary
relation on 2% defined by : A%B iff 6(4,B) > d. It is easy to see that 6¢ is a
classical proximity on X. We will show that the classical topology o4 induced by §¢
coincides with 71~%. In fact, let z € A € 64. Then, z is not in the o-closure of A¢,
which implies that z $%4°, i.e. 6(z, A°) < d, and so NJ(A) =1 — §(z, A°) > 1 — d.
This proves that A € 7'7%. Conversely, if z € B € 1%, then N7(4) > 1 — d and
thus 6(z, A°) < d, which implies that z is not in the o4-closure of B¢. Hence BC is
og-closed and so B is oz-open.

Theorem 3.1 If § is a fuzzifying prozimity on a set X and 0 < d <1, then

=\ &.

0<8<d

Proof: If 0 < 6 < d, then 6? is coarser than §¢ and so 6, = \/, <0< 0 is coarser than
6%. On the other hand, let A6,B. Since 8, is finer than 6% (for 0 < 6 < d), we have
that A6°B and so §(A4, B) > 4, for each 0 < 6 < d, which implies that §(A,B) > d,
ie. A¢®B. So 4, is finer than 62 and the result follows.

Theorem 3.2 For a family {y;:0<d < 1} of classical prozimities on a set X the
following are equivalent:

(1) There ezists a fuzzifying prozimity & on X such that 6% = g for all d.

(2) va = V0<g<d Yo for each 0 < d < 1.

Proof: In view of the preceding Theorem, (1) implies (2). Assume now that (2) is
satisfied and define § on 2% x 2% by §(4, B) = sup{d : Av4B} ( the supremum over
the empty family is taken to be zero). It is clear that §(A4,B) = 1 if the A, B are
not disjoint. Also §(4,B) = é6(A4,B) and §(4,B > §(41,B1) if A; C A, B; C B.
Let now 6(A,B) < d < 1. Then A /4B and so there exists a subset D of X such
that A /4D and D¢ AuB. Since A AyD, we have that 0(A,D) < d. Similarly
§(D% B) < d and so inf{6(4,D) A §(D°,B)} < 6(4,B). On the other hand, if
0(A,D) AS(D°,B) < 6 < 1, then A C D° and so §(4,B) < d(D¢, B) < 6. This
proves that § is a fuzzifying proximity on X. We will finish the proof by showing that
% = 74 for all d. Indeed, if Ay4B, then §(A4, B) > d, i.e. A6%B. On the other hand,
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let A6“B and let (4;), (B;) be finite families of subsets of X with A = U;, B = UB;.
Since §(A, B) = Vi,j 0(A;, Bj) > d, there exists a pair (1,7) such that 6(4;, B;) > d.
If now 0 < @ < d, then there exists r > 6 with A;,B; and so A;ypB;. This proves
that Av,4B since 74 = Vgcg<qve- This completes the proof.

Theorem 3.3 Let (X,61),(Yd2) be fuzzifying prozimity spaces and let f : X = Y
be a function. Then f is prozimally continuous iff f : (X, 0%) — (Y, 62) is prozimally
continuous for each 0 <d < 1.

Proof: It follows immediately from the definitions.

Theorem 3.4 Let (X»,05)rca be a family of fuzzifying prozimity spaces and let
(X,6) = (II1 X, T16x) be the product fuzzifying prozimity space. Then &% = B
forall0<d<1.

Proof: Since each projection 7 : (X,6%) — (X),6%) is proximally continuous, it
follows that ¢¢ is finer than o = []&¢. On the other hand, let Ao B. We need to
show that d(A, B) > d. In fact, let (4;), (B;) be finite families of subsets of X such
that A = UA;, B = UB;. Since AoB and ¢ = \/, 7} (6¢), there exists a pair (4, 5)
such that A;w;1(69)By, i.e. 8(ma(4;),mA(B;)) > d. In view of Theorem 8.9 in 2],
we conclude that 6(4, B) > d. Hence o = §% and the proof is complete.

We have the following easily established

Theorem 3.5 Let (Y, 0) be a fuzzifying prozimity space and let f : X —Y. Then
F7Y8)e = f~1(6%) for each 0 < d < 1.

Theorem 3.6 Let (6))xen be a family of fuzzifying prozimities on a set X and
8 = Vy0y. Then 6% = Vi 53{ for each 0 <d < 1.

Proof: Let o = \/, 6. Since § is finer than each dy, it follows that §¢ is finer than
each 6% and so ¢ is finer than . On the other hand, let AgB and let (4;), (B;)
be finite families of subsets of X such that A = UA;, B = UB;. There exists a
pair (4, j) such that A;0B;. Since o is finer than each 5§, we have that A,—JﬁBj, ie.
0x(A;, Bj) > d. In view of Theorem 8.10 in [2], we get that 6(4, B) > d, i.e. A§%B.
So o is finer than §% and the proof is complete.

4 Completely Regular Fuzzifying Spaces

Definition 4.1 A fuzzifying topological space (X, 7) is called completely reqular if
each of the classical level topologies 72,0 < d < 1 is completely regular.

Definition 4.2 A fuzzifying prozimity § on a set X is said to be compatible with a
fuzzifying topology T if T coincides with the fuzzifying topology 75 induced by §.

We have the following easily established

Theorem 4.3 Subspaces and cortesian products of completely regular fuzzifying
spaces are completely regular.
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Theorem 4.4 Let (X,7) be a completely regular fuzzifying topological space and
define 6 = &(7) : 2% x 2X = [0,1] by

0(4,B) =1-sup{d:0<d <1,3f : (X,7%) = [0,1] continuous F(A) =0, f(B) = 1}.

Then: (1) ¢ is a fuzzifying prozimity on X compatible with T.

(2) If &1 is any fuzzifying prozimity on X compatible with T, then § is finer than
b1.

Proof: 1t is easy to see that § satisfies (FP1), (FP2),(FP3) and (FP5). We will
prove that § satisfies (FP4). Let

o =inf{dA,D) V(D% B): D C X}.

If 6(A, D)vé(De, B) < 6, then A C D°and so §(4, B) < §(D°, B) < 6, which proves
that §(A4, B) < . On the other hand, assume that §(4, B) < r < 1. There exist a
d,1-r <d<1,and f:X — [0,1] 7%continuous such that f(4) = 0, f(B) = 1.
Let D = {z € X : 1/2 < f(z) < 1} and define hy,hy : [0,1] — [0, 1L Ai(t) =
26,ha(t) = 010 <t < 1/2 and hy(t) = Lho(t) = 26 —1if1/2 < t < 1. If
9i = hjo f,i = 1,2, then gl(A) = O,QI(D) = ng(Dc) = O:QQ(BJ = 1. Thus
0(4,D) £1-d < r,6(D°%B) < r, which proves that o < 6(A,B). Hence 6 is a
fuzzifying proximity on X. We need to show that 7 = 5. So, let 7(A) > 8 > 0. Since
79 is completely regular, given z € A, there exists f, : X — [0, 1],Tg—continuous,
fz(z) = 0, fz(A°) = 1. Thus §(z,A°) < 1—6 and so NF(4) = 1 —o(z, A%) > 0.
It follows that 75(A) = infzec4 N7 (A) > 6, which proves that 75 > 7. On the other
hand, assume that 75(A4) > r > 0. If z € A, then §(z, A°) = 1 —NJ(A) <1-r,and
therefore there exists a d,0 <1—-d < 1—r and f: X — [0,1] 7%continuous such
that f(z) = 0,7(A°) = 1. Theset G = {y: f(y) <1/2}isin 7% and z € G C A.
Thus
Nz (A) =2 N7 (G) zd>r.

This proves that 7(4) > r and so 7 > 75, which completes the proof of (1).

Let 6 be a fuzzifying proximity on X compatible with 7 and let A, B be subsets of
X with 01(4,B) <0 < 1.Ifd=1-9, then &/ is compatible with 7%. Since A 5B,
there exists (by [11], Remarks 3.15) an f : X — [0,1] 74-continuous, with f (A) =
0,f(B) =1, and so §(4, B) < 1 — d = 0, which proves that 0(A,B) < 6;(A, B) and
therefore ¢ is finer than ;. This completes the proof.

Theorem 4.5 For a fuzzifying topological space (X, T), the following are equivalent:
(1) (X, 1) is completely regular.

(2) There exists a fuzzifying prozimity § on X compatible with T.

(8) (X,7) is fuzzy uniformizable, i.e. there ezists a fuzzy uniformity U on X such
that 7 coincides with the fuzzifying topology 1 induced by U.

Proof: By [3], (2) is equivalent (3). Also (1) implies (2) in view of the preceding
Theorem. Assume now that 7 = 75 for some fuzzifying proximity J. For each
0 <d<1,48%is a classical proximity compatible with 71~% and so 1= ¢ is completely
regular. This completes the proof.
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Theorem 4.6 Every pseudometrizable fuzzy topological space (X,T) is completely
regular.

Proof: If T is pseudometrizable, then each 7¢,0 < d < 1, is pseudometrizable and
hence 7¢ is completely regular.

Theorem 4.7 For a fuzzifying topological space (X, T), the following are equivalent:
(1) (X,7) is completely regular.

(2) If F = F; = cp(X) is the family of all probabilistic pseudometrics on X which
are T X T continuous as functions from X2 to R'*' then T = T£..

(3) There exzists a family F of probabilistic pseudometrzcs on X such that 7 = 7.

Proof: (1) = (2). For each F € F;, we have that 7 < 7 (by Theorem 2.2) and
so 77, < 7. Let now A C Xandmﬂ € X with N (4) > 6 > 0. Since 7¢ is

completely regular, there exists a 7%-continuous function f from X to [0,1] such
that f(z,) = 0, f(A°) = 1. For z,y € X, define F(z,y) on R by

0 if $<0
F(z,y)(f)={ 1-6 i |f(z)-Fflw)|>t>0
1 if |f(z)-Ffy)l <t

Clearly F(z,y) = F(y,z) € R} and F(z,z) = 0. We will prove that F satisfies
the triangle inequality. So, assume that F(z,y)(t1) A F(y,2)(t2) > F(z, 2)(t; + t2).

Then, t1,20 > 0, F(z, z)(t1 + tg) = 1-6,F(z,y)(t1) = F(y,2)(t2) =.1. Thus
t1 > |f(z) — f ()], 12 > |f(y) — f(2)| and hence |f(z) — f(2)| < i1+ %2, which implies
that F(z,z)(t; +t2) = 1, a contradiction. So F is a probabilistic pseudometric on
X. Next we show that F is 7 x 7 continuous, or equivalently that 77 < 7. So assume
that NJ7(B) > r > 0. Let 6; > r be such that NJ*(B) > 6;. Choose ¢ > 0 such
that 1 — sup,gp F(z,y)(¢) > 6; and so F(z,y)(t) = 1 — @ and |f(z) — F(y)| > t if
y ¢ B. Thus {y: |f(z) — f(y)| < t} C B. This shows that B is a 7%-neighborhood
of z. Asr < 0, B is a 7"-neighborhood of z, i.e. NJ(B) > r and so 75 < 7. Finally
ify ¢ A, then |f(y) — f(z,)| =1 and so F(y,z,)(1/2) = 1 — 6, which implies that

N;7(A) 2 N;T(A) 2 1—sup F(y,z,)(1/2) > 6
YEA
This shows that N7 > N; and so 7 < 77, which completes the proof of the
implication (1) = (2).
(3) = (1) Assume that 7 = 7 for some family F of probabilistic pseudometrics on
X For each F € F,7F is completely regular and so 75 is completely regular since
s = Vper 72 for each 0 < d < 1. Hence the result follows.

We will denote by [0,1]4 the subspace of R consisting of all u € R with
W) =1 1.

Theorem 4.8 A fuzzifying topological space (X, T) is completely reqular iff the fol-
lowing condition is satisfied: If N, (A) > 8 > 0, then there ezists f : X — [0,1],4
continuous such that f(z,) =0 and f(y)(t) =1—-0ify¢ A and 0 <t < 1.
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Completely Regular Fuzzifying Topological Spaces

Proof: Assume that (X, 7) is completely regular and let N;,(A) > 6> 0. Since 79 is
completely regular, there exists & : (X, 7%) — [0,1] continuous, h(z,) = 0, h(y) =1
ify & A. For z,y in X, define F(z,y) on R by

0 if £<0
F(z,y)(t) = { 1-6 if |h(z) —hA(z,)|2t>0

1 if |h(z) — h(z,)| <t
Clearly F(z,y) € [0,1]. Also F(z,z) < F(z,y) & F(y, z). In fact, assume that
F(‘r-:y)(tl) A F(yvz)(t?) >r > F(.’B,Z)(tl =+ t2)‘ Then t1,t2 > O:F(‘T,y)(tl) =
F(y,z)(t2) = 1. Now |h(z)—h(y)| < 1, |h(y)—h(z)| < t» and so |h(z)—R(2)] < t1+t2
which implies that F(z,z2)(t; + t3) = 1, a contradiction. So F is a probabilistic
pseudometric. Moreover Fis 7 X 7 continuous, or equivalently 77 < 7. In fact, let
NZF(B) > r > 0. There exists a ¢ > 0 such that 1 — sup,¢p F(z,z)(t) >r. If 2 ¢ B,
then F(z,2)(f) < 1—r < landso F(z,z)(t) = 1—-60 < 1 —r, ie. r < 6, and
|h(z) — h(z)| > t. Hence

M = {z:|h(z) — h(z)| < t} C B.

The set M is a 79-neighborhood of z and hence a 7"-neighborhood, i.e. NI(B) >
r. Thus 7 > 7p. Finally, define f : X — [0,1]4,7(v) = F(y,z,). Then fis
7-continuous, f(z,) = 0. For y ¢ A and 0 < t < 1, we have that f(y)(t) =
F(y,z,)(t) = 1 — @ (since |h(z) — h(z,| = 1 > t). Conversely, assume that the
condition is satisfied and let F be the family of all 7 x T continuous pseudometrics
on X. Then 7= < 7. Let N (A) > 6. There exists a 6; > 0 such that N7 (A) > 6.
By our hypothesis, there exists f : X — [0, 1]4 continuous such that f(z,) = 0 and
fly)t)=1-6,ify ¢ Aand 0 <t < 1. Define F(z,y) = D(f(z), f(y)). Then F is
T X 7 continuous and

NzZ(A) 2 N7F(A) 21— supyg 4 F(zo,9)(1)
=1—sup,g4 D0, f(y))(1)
=1—sup,g, f(y)(1) > 61 > 6.
Thus N77(A) > Nj (A), for every subset A of X and so 7 < 7+ Therefore,
7T = T and so 7 is completely regular.

For a fuzzifying topological space X, we will denote by C(X, [0,1]) the family
of all continuous functions from X to [0,1].

Theorem 4.9 A fuzzifying topological space (X,7) is completely regular iff T co-
incides with the weakest of all fuzzifying topologies 7 on X for which each f €
C(X,[0,1]4) is continuous.

Proof: Assume that (X,7) is completely regular and let 7, be the weakest of all
fuzzifying topologies on X for which each f € C(X, [0,1]g) is continuous. Clearly
71 < 7. On the other hand, let 7, be a fuzzifying topology on X for which each
f € C(X,[0,1]) is continuous. Let NZ(4A) > 6 > 0. In view of the preceding
Theorem, there exists an f € C(X,[0,1]y) such that f(z) = 0, f(y)(t) = 1 — 6 if
y¢ Aand 0 <t<1. Let

G={ue R;f' : D(f(z),u)(1/2) = u(1/2) > 1 - 6}.
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Katsaras

Then
Np(G) >1- S}elpD(f(m),u)(lﬂ) > 0.
uéG

Since f is Tp-continuous, we have that N72(f~1(G)) > 8. But f~%(G) C A since,
for y ¢ A, we have that f(y)(1/2) = 1 — 6. Thus N72(4) > 6. This proves that
NI (A) > NZ(A), for every subset A of X and so 72 > 7. This clearly proves that
71 = 7. Conversely, assume that 71 = 7. If ¢ is the usual fuzzifying topology of R,
then

T=r= v o).

feC(X,[0.1]y)

Since o is completely regular, each f~!(o) is completely regular and so T is com-
pletely regular. This completes the proof.
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Oscillations of First Order Linear Delay Dynamic
Equations
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Abstract

Consider the first order linear delay dynamic equation of the form
8 () + p(t)(r(t) = 0. (B)

New oscillation criteria are established which contain well-known criteria for
delay differential and difference equations as special cases. Illustrative examples
are given to show that the results obtained essentially improve known oscillation
results for Eq. (E).

1 Introduction and Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers. The
theory of time scales was introduced in 1988 by Hilger [7] in his Ph.D. Thesis in order
to unify continuous and discrete analysis. Several authors have expounded on various
aspect of this new theory. See [1, 2, 8] and the references cited therein.

First we give a short review on the time scales calculus extracted from [1]. For

any t € T, we define the forward and backward jump operators by
o(t) =inf{s €T :s>t} and  p(t):=sup{s € T :s < t},

respectively. While the graininess function p : T— [0, 00) is defined by p(t) == o(t)—t.

*This work was supported by the State Scholarship Foundation (LK.Y.), Athens, Greece, for a
postdoctoral research, and was done while the author was visiting the Department of Mathematics,
University of Ioannina, loannina, Greece.
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A point ¢ € T is said to be right-dense if ¢t < sup T and o(¢t) = ¢, left-dense if t > inf T
and p(t) = t. Also, ¢ is said to be right-scattered if o(t) > ¢, left-scattered ¢ > p(2). A
function f : T— R is called rd-continuous if it is continuous at right-dense points in

T and its left-sided limits exist (finite) at left-dense points in T

For a function f : T— R, if there exists a number o € R such that for all £ > 0 there
exists a neighborhood U of ¢ with |f(co(t)) — f(s) — a(c(t) — s)| < glo(t) — s, for all
s € U, then f is A-differentiable at t, and we call a the derivative of f at ¢ and denote
it by f2(¢).

fle(t)) — F(2)

A =
if ¢ is right-scattered. When t is a right-dense point, then the derivative is defined by
t) —
fA(f]=hmf() f(S)}

s—t t—s

provided this limit exists.

Assume f : T— R is A-differentiable at ¢ € T, then f is continuous at ¢. Furthermore,

we assume that g : T— R is A-differentiable. The following formulae are useful:

Fle®) = f&) +p®)f20),  (FR)g@)® = F2)g() + f(o(t)g™(2).

A function F with F2 = f is called an antiderivative of f, and then we define

/mw (b) - F(a),

where a,b € T. It is well known that rd-continuous functions possess antiderivatives.

Note that if T = R, we have o(t) = ¢, p(t) =0, f2(t)= f(¢) and

/ft)At—/ft)dt (1)

and if T =N, wehave o(t) =t + 1, p(t)=1, f4=Af and

/mm=iﬂa 2)
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while the integration on discrete time scales is defined by

If f is rd-continuous, then

o(t)
/t F(s)As = u() £ (1) @

Intermediate Value Theorem ([8]). The continuous mapping f : [r,s]— R, is
assumed to fulfill the condition: f(r) <0 < f(s), r,s € T. Then there is a 6 € [, s)
with £(8)f(o(6)) < 0.

In recent years, there has been an increasing interest in the oscillation of solutions
of some dynamic equations. See [1, 2, 14] and the references cited therein. However,
few papers only ([3, 13, 18, 19]) deal with delay dynamic equations even in the case
of first order linear equations. In this paper, we are concerned with the oscillatory

behavior of the first order linear delay dynamic equation
z8(¢) + p(t)z(r(2)) = 0, (E)

where ¢ € T, 7 : T— T is nondecreasing, 7(t) < t, lim; o, 7(t) = co and p : T— R is

a nonnegative rd-continuous function.

If 2 : T— R is defined and A—differentiable for ¢ € T and satisfies Eq. (E) fort e T,
then z(t) is called a solution of Eq. (E). A solution z has a generalized zero at ¢ in
case z(t) = 0. We say that = has a generalized zero on [a,b] in case z(t)z(o(t)) < 0
or z(¢) = 0 for some ¢ € {a,b), where a, b € T and a < b. (z has 2 generalized zero at
b, in case z(p(b))z(b) < 0 or z(b) = 0). A nontrivial solution of Eq. (E) is said to be
oscillatory on [t;, 00) if it has infinitely many generalized zeros when t > ¢,. F inally,

Eq. (E) is called oscillatory if all its solutions are oscillatory.

We list the following well-known oscillation criteria for the equation (E) in special cases

of T. f T'= R, then Eq. (E) reduces to the first order delay differential equation

z'(t) + p(t)z(7(t)) = 0. (Er)
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In 1972, Ladas et al. [11] proved that Eq. (Eg) is oscillatory if
T
limsup/ p(s)ds > 1, (Sr)
t—oo” Jr(t)
while, in 1979, Ladas [10] and in 1982 Koplatadze and Canturijia [9], proved that the

same conclusion holds if
T

liminf [ p(s)ds > 1 (Igr)
t—o0 t) [

(
Similarly, in the case that 7’ = N, Eq. (E) reduces to the first order delay difference
equation .

Tp+l — Tn + PnZr—i =0, keN, n>k>1. (EN)

In 1989, Erbe and Zhang [5] proved that Eq. (Ey) is oscillatory provided that

lim sup Z >l (Sn)

n—oo .
i=n—k

In the same year, Ladas et.al [12] presented the following condition

n—1
. k ,
117&%)1011‘ Z p; > (ﬁ—l)k'rl (In)

i=n—k

for Eq. (En) to be oscillatory.
In 2002, Zhang and Deng [18] proved the following result for any time scale 7.

THEOREM A (Corollary 2 in [18]). Define

t
o = limsup Sup{)\exp/ §uis) (—Ap(s))As}
(t)

t—oo  AEE
where E={ A | A>0, 1 —Ap(t)u(t) >0, t €T} and
l_og_(lij_hﬁ if hs£0
&nl2) = 2 it h=0.

If a <1, then Eq. (E) is oscillatory.

Later, in 2004, Bohner (3] proved Theorem A in a different way. In the same year,

Zhang and Lian [19] studied the distribution of generalized zeros of solutions of the
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delay dynamic Eq. (E). Note that in [18] and [3], the conditions (Ir) and (Iy) are
derived as a special case when T = R and T = N, respectively.
It is obvious that there is a gap between the conditions (Sr) and (Ig) (or similarly

between the conditions (Sy) and (Ix)) when the limit

T n—1
lim p(s)ds (or lim p-) o
t—oo () =00 z—gk t

does not exist. How to fill this gap is an interesting problem which has been recently

investigated by several authors. See [4,15-17] and the references cited therein.

The purpose of this paper is to establish new sufficient conditions for the oscillation
of all solutions to dynamic equation (E). Moreover, the above mentioned problem is
handled for some special cases of time scale T, and some results previously obtained
are compared with the results presented in this paper. Several illustrative examples

are given.

2 DMain Results

Since we deal with the oscillatory behavior of the dynamic equation (E) on time scales,
we assume throughout the paper that the time scale 7 under consideration satisfies

sup T = co. The following lemma is needed in our proofs.

LEMMA 1 Assume that f : T— R is rd-continuous, g : T— R is nonincreasing and
T :T— T is nondecreasing. If v < u, then
o(u)
/ F©)grsNAs 2 glrw) [ Flo)as. (5)

Proof: Since v < u, we can divide the integral into two parts

o (u)

u o(u)
£(8)g(r(s)) s = [ £()9(r(s)) s + [ £()a(r(s))As

v

Using the fact that 7 is nondecreasing and g is nonincreasing, the first part gives

f F(s)g(r(s))As > g(r(w)) / £(s)s. (6)
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Since fg(r) is rd-continuous, in view of (4), the second part yields

o(u) o (u)
fu F(s)g(7(s))As = p(u) f(u)g(T(u)) = g((u)) (#(u)f (U)) = g(7(u)) f(s)As.
(M)
Combining (6) and (7), we obtain
o(x) u o(u) o ()
F($)g(r(s)As > g(r(w)) ( | feas [ f(s)AS) =) [ fe)as

The proof is complete.

In case v = u, the monotonocity property of 7 is not needed. In view of (7), the

following corollary is immediate.

COROLLARY 1 Assume that f,g : T— R are rd-continuous, g is nonincreasing and

7:T— T is rd-continuous. Then

o(u) o (u)

f(s)g((s))As = g(r(w)) f(s)As. (8)

LEMMA 2 (Cf. [3, 19]) Assume that z(t) is an eventually positive solution of Eq.

(E) and that for some positive constant M

T

li{n inf p(s)As > M. (9)
% Jry)
Then
z(7(t))
e < ek for all large t. (10)

Proof: For some sufficiently large ¢5, z(t) > 0 when ¢ > ¢. From Eq. (E), we have
z8(t) < 0for ¢ > 771(ty) = t;. By (9), it is possible to find a sufficiently large number
ta = 771(t1) such that
/: )p(s)As > M, YVt > to. [1E)
T(
Since 771(t) > t > o, by (11), we get
+=1(t)
/t p(s)As > M, Vi>t,. (12)

Define
G(r) :=/ p(s)As — —J;{,
i
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for r € [¢t,771(2)]. It is clear that G : [t,7~!(¢)]— R is continuous and nondecreasing.

We also have

Gt) = --ﬁé”{ <0 and GEl)smM-M_M_,

M _ M
2 2
By Intermediate Value Theorem for time scales, there exists a £, € [t,771(2)) such that
G(t.)G(o(t.)) < 0. Since G is nondecreasing, we conclude that G (te) <0 < G(o(ty).

Hence there exists a t, € [t,77(¢)) such that

t. a(t.)
/ p(s)As < % and ] p(s)As > —ﬂ‘)ﬁ, for t > ts. (13)
t t —
By (9) and the first part of (13), we also have
o (t) ta ta M
/ p(s)As > / p(s)As—] p(s)As > —, for t>t.. (14)
(ta) T(ta) t 2
Using (5) and the decreasing property of z, we obtain
a(t) M
[ petrenas > st L, (15)
T(ts
and
o(ta) M )
| pemtronas > 2t (16)
t

Integrating Eq. (E) from ¢ to ¢(t,) and using (15) and (16), we obtain for ¢ > ta,

o(t.)
2() > 2(t) - 2(o(t)) = / p(s)z(r(s))As

M M M [°®
2 F(r(e) 2 Fholrte) ~a(@) = 5 [ stoetrishas
2

> Zoalr(e).

The proof is complete.

Note that Lemma 2 is a generalization of results in [9] and [6].

THEOREM 1 If
o ()

limsup/ p(s)As > 1, (17)
t—oo Jr(y)

then Eq. (E) is oscillatory.
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Proof: Assume, for the sake of contradiction, that Eq. (E) has a nonoscillatory
solution z(t). We may assume that z(t) is eventually positive by replacing = by —z,
otherwise. Since 7(t)— oo as t— oo, there is a positive number #; > t, such that

z(7(t)) > 0 for t > ¢;. In view of Eq. (E),
(t) = —p(t)z(7(t)) < 0, t>t. " (18)

Integrating Eq. (F) from 7(¢) to o(t), we have
a(t)
2(o(®) —alr(®) + | ple)a(r(s)As =0 (19)
(%)

Since z is A-differentiable, it is rd-continuous, Lemma 1 is applicable for the integral

term in the previous equation. In view of (5), it is easy to see that

o(t) a(t)
| eatrsnas 2 ar) [ ps)as (20)
() (t)
Using (20) in (19), we obtain
o (t)
z(o(t)) + z s)As—1 0, for t >t 21
eo)+ac@)([ reas-1)<0 o (21)

which, in view of the condition (17), leads to a contradiction. The proof is complete.

Observe that Theorem 1 unifies previous results related with the oscillation of first
order delay equations in the continuous and discrete case. In particular, if T = R or

T = N, condition (17) of Theorem 1 takes the form (Sg) or (Sy), respectively.

THEOREM 2 Assume that there exists a positive constant M such that

]

litm inf p(s)As > M (22)
o Jr(e)
and
t M2
lim supf p(s)As > 1— —. (23)
t—oo Jr(t) :

Then Eg. (E) is oscillatory.

Proof: Assume that z(t) is an eventually positive solution of Eq. (E) such that

z(t) > 0 and z(7(t)) > 0 for ¢t > ¢;. As in the proof of Theorem 1, integrating Eq.
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(E) from 7(t) to ¢, we have

0 = z(t) —a(r(t)) + fm p(s)e(r(a))As
2 2(t) +a(r(®)( f JROINE 1)

= m(r(t))(xg_(gg)) —i—/j p(s)As — 1), for t>¢.

)

Now, using Lemma 2, we obtain

2 T
x('r(t))(MT + /(t)p(s)As - 1) <0, for all ity

which, in view of condition (23), leads to a contradiction. The proof is complete.
Note that, in view of Theroem 1, it makes sense to consider in Theorem 2 the case
when 0 < M < 1. Also observe that Theorem 2.2 in [4] for Eq. (Eg) can be derived

from Theorem 2 when the time scale T is chosen as R.

Consider the time scale of the form
T={t,:neZ}, : (24)

where {t,} is a strictly increasing sequence of real numbers such that T is closed. For

such time scales, Bohner [3] presented the following result.

Theorem B (Theorem 2, [3]). Consider a time scale as described in (24). Let ke N

and 7(tn) = tn_y for alln € Z. If Eq. (E) has an eventually positive solution, then
i k en
im inf < A
s [ o<1
An immediate consequence is the following result.

COROLLARY 2 Consider a time scale as described in (24). Let k € N and e, ) =
toi forallne Z. If

t
g k k+1
lim inf . p(s)As > (5 T =) (25)

then Eq. (E) is oscillatory.
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Observe that when condition (25) is not satisfied, then from Corollary 2, we can not
conclude anything about the oscillatory behavior of Eq. (E). However, from Theorem

2, we have the following conclusion.

COROLLARY 3 Assume that there ezists a positive real number M such that
k&

t
M < liminf As L et 26
pizt [ p(0)8s < () (2)
and
t ‘ M2
limsup/ p(s)As > 1 — —.
t=o Jr(t) 4

Then Eq. (E) is oscillatory on the time scales described in (24) with k € N and
T(tn) =tni foralln € N.

Note that for Eq. (Ey) Theorem 2.6 in [17] can be derived from Corollary 3 when

the time scale T is chosen as N.

3 Examples

EXAMPLE 1 Let T = {t |u(t) = p, a positive constant Vt}. Consider the following
equation

z8(t) + p z(7(t)) = 0, t > to, (27)

where p > 0 and 7(t) =t — (k — 1)u, for any integer k > 1. Since

o(t)
lim supf p As =p ku,

t—oo Jr(e)

we conclude that if
pkup > 1,
then, by Theorem 1. all solutions of Eq.(27) are oscillatory.
EXAMPLE 2 Assume that in equation (27), p=1, k=09, and u = %. Since pku =
9/10 # 1, Theorem 1 can not be applied. However, it is easy to see that there exists a

positive real number M € (1/2/5,9/10) so that (22) and the condition (23)

; 9 M?
lims As=phkp=—>1——
ig})/f(ﬁ)p(ﬂ 2 =pki= 75 n

are satisfied. So, by Theorem 2, all solutions of Eq. (27) are oscillatory.
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EXAMPLE 3 (See [17]). Consider the equation on T = N

Zpt1 = Tn T PnZn-3 = 0, n=0,1,2, .., (28)
where
Pon = %, DPontl = %ﬁﬁ{h %%sinz%z, n=0,1,2,..
e = 24 3
hﬁgfif:;?‘pi =700 < (2)4:

which means that the condition (25) of Corollary 2 is not satisfied. However, it is
easy to see that there erists a positive real number M € (1/7/5%,24/100) such that

: 24 | 746 M?
=t > 1
limsup 3 2= 155+ 7555 > 1~ 3

So, by Corollary 3, all solutions of Eq. (28) are oscillatory.

EXAMPLE 4 Consider the delay difference equation

ZTntl — Tn T PnZny =0, - (29)
1 127
where DPon = 5 Pont1 = 128 n=20,1,2,..,

By Theorem A,

t
a = limsupsup Aexp f £u(s) (—AD(8))As
7(t)

t—occ  AEE

* Log(l— X\
= limsupsup A expf og( p(s),u(s))AS
t—eo  AEE (%) K(s)
n—1
= limsupsup Aexp Z Log(1 — Ap;)
ton: XEE i=n—1

= limsupsup A(1 — Ap,—;)
t—oo AEE

. 1
= limsup s
i—mco  EPn—1

because A(1 — Apn—1) takes its mazimum value at A = T Thus
n~-1
1 5
o = limsu =-=>1,
i—*cop Dn—1 4
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and therefore, Theorem A can not be applied.
Also

n—1 1 1 2
lim inf =g 2
mpf 3 n=5<(a)

that is, condition (25) is not satisfied and therefore Corollary 2 can not be applied.

However .

— 137
lim §j ;= —,
o’ 2= P17 138

and taking M € (1/4v/2,1/5), conditions (22) and (23) of Theorem £ are satisfied.
Therefore, all solutions of Eq. (29) are oscillatory.
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ON SOME SECOND ORDER NONLOCAL FUNCTIONAL
AND ORDINARY BOUNDARY VALUE PROBLEMS

P. CH. TSAMATOS.

ABSTRACT. In this paper we prove the existence of multiple positive solutions for
second order nonlinear functional and ordinary nonlocal boundary value problems.
The results are obtained by using a fixed point theorem on a Banach space, ordered
by an appropriate cone.

1. INTRODUCTION

Let R be the set of real numbers, R =: [0,+00) and I =: [0,1]. Also, let
g €[0,1) and J :=[—q,0]. For every closed interval B C J U I we denote by C(B)
the Banach space of all continuous real functions ¥ : B — R endowed with the
usual sup-norm

¥l = sup{|4(s)] : s € B}.
Also, we define the set C*(B) as follows

C*(B):=={v € C(B) : ¥ > 0}.
Itz € C(JUI) and ¢ € I, then we denote by z; the element of C(J) defined by
zi(s) =z(t+s), se |
Now, consider the equation
{1.1) z'(t) + flt,ze) =0, te,

along with the boundary conditions

(1.2) zo = 9,
and
1
(1.3) 2(1) = /D 2/(s)dg(s),

where f : R™ x C¥(J) - R* and ¢ : J — R™ are continuous functions, g : T — IR
Is a nondecreasing function, such that g(0) =0 and 1 — g(1) > 0.

2000 Mathematics Subject Classification. 34K10,34B18.
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The problem of existence of positive solutions for boundary value problems for
second order differential equations which involve a nonlocal condition like (1.3) has
been treated recently by Karakostas and Tsamatos [8-11] and Tsamatos [20]. More-
over, boundary value problems with integral boundary conditions for second order
differential equations with retarded arguments is the subject of the papers [12] and
[17]. In the recent years an increasing interest is also observed for boundary value
problems concerning functional differential equations (see [5,6] and the references
therein). Fixed point theorems on Banach spaces ordered by appropriate cones is
usually the tool for proving multiple positive solutions for boundary value problems.
The famous Guo - Krasnoselskii fixed point theorem [13,22] seems to be used in the
largest part of the papers on this subject. Also the well known Leggett-Williams
fixed point theorem [14] and some recent generalizations of it are used in proving
multiple positive solutions for various types of boundary value problems.

For a detailed exposition of the theory of functional differential equations, like
(1.1), the reader can refer to the books due to Hale and Lunel [4] and Azbelev et
all. [3].

In this paper, we choose to use a fixed point theorem, on an ordered by cones
Banach space, due to Avery and Henderson [1] (see also [15,19])which, apart from
guarantying the existence of two positive solutions, has the advantage to offer some
additional information on these solutions. In our results, the values of these solu-
tions at three given points of their domain are upper or lower bounded by a-priori
given constants. We note that this fixed point theorem was used recently in several
papers (see [2,5,15,16,18,19] and the references therein).

Since the results we present are new even in the ordinary case, we mention them
for this case too, underlining the necessary adjustments that have to be made to
the hypothesis referring to the functional case.

The paper is organized as follows. In section 2 we present the definitions and
the lemmas we are going to use, as well as the fixed point theorem, on which we
base our results. In section 3, we present the new results for the functional case
and then in section 4 the results for the ordinary case. Finally, in section 5 we give
some applications of our results.

2. PRELIMINARIES AND SOME BASIC LEMMAS

Definition. A function z € C(JUI) is a solution of the boundary value problem
(1.1)=(1.3) if z satisfies equation (1.1), the boundary condition (1.3) and, moreover
z|J = o.

Lemma 2.1. A functionz € C(JUI) is a solution of the boundary value problem
(1.1)=(1.3) if and only if = is a fized point of the operator A: C(JUI) — C{JUI),

with
#(t), teJ
ALiL)= { 101 t ol
$(0) + Ct [y [; fr,z-)drdg(s) + [, [, f(r.z,)drds, t€1,

where 1= 1—_;-(1-—)-.

Proof. Suppose that z is a solution of the boundary value problem (1.1) — (1.3).
Then, obviously, z|J = ¢. Moreover, by integrating (1.1) we get

1
(2.1} £ = 2'[1} +/ f(s,zs)ds, t el
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Also from (1.3) and (2.1) we have

1
#(0)= [ 2/(5)ds(s)

= /01 (3;’{1) - /:f(r, xr)dr) dg(s)

i 1 1
=) [ dote)+ [ [ 5t )ardgte).
Therefore
1

2.2 s =¢ [ [ stz )irdol).
Combining (2.1) and (2.2) we conclude that

1. 7l 1

“0=¢ [ [ fran)drdg(s) + | fezaas, ter,

which by integration from 0 to ¢, ¢ € I gives

z(t) = z(0) + thol /;1 f(r,z;)drdg(s) +j:/: f(r,z,)drds
= ¢(0) + Ct‘/ol /Sl f(r.z,)drdg(s) —1’—/;/: fr,z,;)drds.

The above step gives that, if z is a solution of the boundary value problem (1.1) —
(1.3), then z = Azx.

For the inverse, suppose that z is a fixed point of the operator A. Then, obviously,
#(t) = z(t) = (0 + t) = zo(t) for t € J. Also from the form of A we have

| 1
(2.3} :c’(t)=§/(; f f(r,sc,.)drdg(s)-l-ft flr,z)dr, tel.
Therefore
1 41
(2.4 #W)=¢ [ [ fadrdg(s).

Then from (2.3), (2.4) and the fact that ¢ := 1—_-gl—(ﬁ, g(0) =0, we get

i
(2.3) 2y =@'(1) -i-f fls,zs)ds, tel.

Using (2.4) and (2.5) we have
1 1
2'(1) = 2'(1)g(1) + J{ f F(r, ) drdg(s)
1 1 1
= (1) /0 dgls) + fg / F(r,z)drdg(s)

= fol (z’(l)—ff: f(r, :cr)dv) ag(s)

1
= f z'(s)dg(s).
0
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Finally, from (2.5) we have

'(t)=2'(1) - Ltf(s,ms)ds, tel

and so
z'(t) + f(t,z:) =0, tel

The proof is complete. O
The following lemma can be found in [21].

Lemma 2.2. Let function z € C(I) be concave and non negative and £ € (0, 1).
Then

Ielt 0<t<o
(1) =(t) > 7 f0<o<l,
lzll{=%, o<t <1,

(@) =) > |zt 0< ¢ <1, fo=1,
(3) 2(t) > el (1 —1), 0<t< 1, o =0,

(4) =(t) = &lizll, for allt € [§,1-¢€],
where ||z|| := sup{|z()| : 0 £t < 1} and o € [0,1] such that z(o) = ||z]|.

The results proved in this paper are based on the following Theorem 2.6 due to
R. I. Avery and J. Henderson [1] (see also [15] and [19]). As we mentioned in the
introduction, this theorem ensures that our boundary value problem (1.1) — (1.3)
has at least two distinct positive solutions and, moreover, for each of these solutions,
we have an upper bound at some specific point of its domain and a lower bound
at some other specific point of its domain. Also, both solutions are concave and
nondecreasing on I. In order to apply this theorem some definitions are necessary.

Definition 2.3. Let E be a real Banach space. A cone in E is a nonempty, closed
set P C E such that

(1) ku+ v eP forallu,vePandalls, A>0

(i1) u, ~u € P implies u = 0.
Definition 2.4. Let P be a cone in a real Banach space B. A functionaly : P — B
is said to be increasing on P if ¥(z) < ¥(y), for any z, y € P with z < y, where <
is the partial ordering induced to the Banach space by the cone P, i.e.

z<y ifendonlyif y—xz €P.

Definition 2.5. Let ¥ be a nonnegative functional on a cone P. For each d > 0
we denote by P(v, d) the set

P(¢,d) :={z € P: ¢(z) < d}.
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Theorem 2.6. LetP be a cone in a real Banach space E. Let o and -y be increasing,
nonnegative, continuous functionals on P, and let 8 be a nonnegative functional on
P with 8(0) = 0 such that, for some ¢ >0 and © > 0,

7(z) <0(z) < ofz) and |jz]| < Oy(x),

for all x € P(v,c). Suppose there exists a completely continuous operator A :
Ply,c) =P and 0 < a < b < ¢ such that

0(Az) < X(z), for 0<A<1 and ze€ 9P(6,b),

and
(4) v(Az) > ¢, for all z € 8P(v,c),

(¢4) 0(Ax) < b, for all = € OP(6,b),
(iit) P(a,a) # 0, and o(Az) > a, for allz € OP(e, a),
or
(7") v(Az) < ¢, forallz oP(v,c),
(¢¢') 6(Az) > b, for all z € AP(6,b),
(327) P(av,a) # 0, and o(Az) < a, for all z € 0P(a, a).
Then A has at least two fized points z; and T2 belonging to P(v,c) such that
a<alzy), with 6(z;) <b,
and

b<B(zz), with y(z)<ec

3. MAIN RESULTS

Define the set
K={zeCJUIl:z(t)>0, teJUI, z/I is concave and nondecreasing},
which is a cone in C(J U I). Also let
0<rm<ro<r3<1
and consider the following functionals
Y(z) =z(r1), z €K,

f(z) =z(rz), z€ K

and
a(z) =z{r3), K.

It is easy to see that a, v are nonnegative, increasing and continuous functionals on
K, 0 is nonnegative on K and 6(0) = 0. Also, it is straightforward that

(3.1) (z) £ 6(z) < o(z),
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since z € K is nondecreasing on I. Furthermore, for any z € K, by Lemma 2.2
(inequality (2)), we have

¥(z) = z(r1) > rilzll;.
So

(3.2) Izl < %v(xx zeK.

Additionally, by the definition of 8 it is obvious that
f(Az) = M(z), 0<A<L1, zeK.
Now, if D C I, consider the functions H : C(I) — C(I) and H, : C(I) — C(I) by

i
(Hz)(s) :==f z(r)dr, sel

and

(Hpz)(s) :=[ z(r)dr, sel.

Dnfs,1]

At this point, we state the following assumptions:

(H;) There exist M > 0, continuous function u : I — R and nondecreasing
function L : R™ — R¥ such that

Flt.y) u(®)Lwls), tel, ye CH(J)

and also
1 2
@(0) + L(M) ((rg'/o (Hu)(s)dg(s) +j; (Hu)(s)ds) < Mrs.

(H3) There exist a constant § € (0,1) and functions 7 : I — [0, q], continuous
v:I — R™ and nondecreasing w : RT — R™ such that

flty) 2 v@w(y(-7(t)), te X, ye{heCH(J):|als < M},

where
X:={tEI:5§t—7‘(t)§l},

sup{v(t) : t € X} > 0, meas(X N [s,1)) > 0 for all s € [0,1) and M is
defined in (H;).

(H3) There exist py, p3 > 0 such that

. 1 i
& < 6(0) +w(p:) (n{ fo (Eooet) S /0 (Hxv)(s)ds), i=13,

and

P3 P1
3 < Mre < 5"

Notice that if ¢(0) # 0, then these p;, ps always exist.

84
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Remark. It easy to see that sup{v(t) :t € X} > 0 and meas(X N[s,1)) >0,s¢€
[0,1) in the assumption (Hs), imply that fol (Hxv)(s)dg(s) > 0 and [;* (Hxv)(s)ds >
0.2=123.
Theorem 3.1. Suppose that assumptions (H 1)—(H3) hold and furthermore ||¢||; <
M. Then the boundary value problem (1.1) — (1.3) has at least two concave and

nondecreasing on I and positive on J U I solutions ., T such that z1(rs) > £,
z1(rz) < Mra, 22(r2) > Mry and zo(ry) < &.

Proof. First of all, we observe that, because of (H1), f(t,-) maps bounded sets into
bounded sets. Therefore A is a completely continuous operator.

Now weset a = £2, b= Mry, c= 2. and we consider a z € K(v,c). Then since
¢ >0 and f(¢,2;) > 0 for every ¢ € I, we get that Az(¢) >0, ¢t € I. Also Az(t) =
8(t) 20, t € J. Thus Az(t) > 0, t € JUI. Moreover, (Az)"(t) = —F(t,2:) £ 0,
which means that Az is concave on I. Also it is clear that (Az)/(t) > 0 for ¢ € I.
So A:K(y,c) = K.

Now let z € 0K(v,c¢). Then v(z) = z(r1) = ¢ and so ||z||; > c. Having in mind
assumption (Hs), we get

1 1 T1 1
v(Az) = Az(r1) = ¢(0) + (r; f(r,z;)drdg(s) + flr,z)drds
0 s 0 s

1 1
-+ y L y L d
> ¢(0) §r1/0 j;(ﬁ[s,l] f(r,z:)drdg(s) +[0 /.;'ﬂ[s,lj f(r,z,.)drds

2 6(0)+ ¢ [ 1 /. 1 Yl (=) drdg(s)
! fo h /X Ve )drds

= 60) +¢r, [ 1 /. g VOl = ())drdo()
+ A fXﬂ[s,l] v(r)w(z(r — 7(r)))drds

> 6(0) + ¢y fo fX oy Ve Odrds()

+f071 [Xﬁ[s,l] v(r)w(z(6))drds.

Additionally, by assumption (H3) and inequality 2 of Lemma 2.2, we have
+(Az) > 6(0) + w(s]=l) (nc / (Hew)(s)da(s) + / (Hxv)(s)ds)
2 T1
> $(0) + w(dc) (7"1(: /U (Fet)ta) i) /0 (Hxv)(s)ds)
1: T1
= 4(0) + w(p) (nc | @) + | (Hxv)ts)ds)
P

85



This means that condition (i) of Theorem 2.5 is satisfied.
Now let z € 9K (6,b). Then 6(z) = z(r2) = b and so by inequality 2 of Lemma
2.2 we get

[y 1
T2 To T9

Also we assumed that ||¢]; < M = £, so |z|jur < % Now, by (H;), we have

T'z’

6(Az) = Az(rs)
= 6(0) + ¢r /0 1 j " f(r, z)drdg(s) + fo N f " $r, e )drds
<o)+ | [ wtLlimlarase)+ [ [ urndie s
< 6(0) + Crz fo 1 f lu(r)L(%)drdg(s)-i— /0 " f lu{r)L(;bz—)drds

= 6(0) + L(M) (Crz | s + / ” (Hu)(s)ds)
< MT‘2 = b

So condition (77) of Theorem 2.5 is also satisfied.

Now, define the function y : JUI — R with y(¢) = %. Then it is obvious that
a(y) = § < a,s0K(a,a) # 0. Also, for any z € 0K(c, a) we have o(z) = z(r3) = a.
Therefore |z||; > a. Now, having in mind assumption (H») and as in the case of
the functional v above, we get

a(Az) = Az(rs)

1
> $(0) + ¢r3 ]O fX IRCECOILEYD

-i-/:a Ln[s,ljv(r)w(x(5))drds.

Then, by assumption (H3) and inequality 2 of Lemma 2.2, we also have

o(Az) 2 $(0) + w(sa) (TsC f@ (Hxv)(s)dg(s) + fo (qu)(s)ds) >F=a

Consequently, assumption (4iz) of Theorem 2.5 is satisfied.
The result can now be obtained by applying Theorem 2.5. [

The above Theorem 3.1 has been obtained by using the requirements (i) — (347)
of Theorem 2.5. Using the requirements (i') — (4ii’) of the same theorem we can
also obtain another existence theorem (Theorem 3.2 below) for our boundary value
problem (1.1) — (1.3). For this purpose we need the following assumptions.

(I:j 1) There exist M, M3 > 0, continuous function v : / — IR™ and nondecreasing
function L : R~ — R~ such that

ft,y) <u@L(lylly), tel, ye CT(J)
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and also

$(0) -+ L(M;) (gn- [o (B (s)da(s) + /O n(Hu)(s)ds) < Mir;, i=1,53.

(H,) There exist a constant § € (0,1) and functions 7 : I — [0,q], continuous
v: I — R" and nondecreasing w : R¥ — R* such that

fty) 2 v(@u(y(-7(t), te X, ye {heC*(J): |hlls < min{M;, Mz}},

where
X={tel:6<t—-7(t) <1},

sup{v(t) : t € X} > 0, meas(X N[s,1]) > 0 for all s € [0,1) and M is
defined in (Hy).

(ﬁa) There exists p > 0 such that

1 T2
§ <o)+ wie) (re [ Eo)eiaate) + [ (myeras).

Notice that if ¢(0) # 0, then this p always exists.

Theorem 3.2. Suppose that assumptions (H 1)—(1{}3) hold and furthermore ||¢]|; <
min{ M}_, Ms} .

Then the boundary value problem (1.1) — (1.3) has at least two concave and
nondecreasing on I and positive on JUI solutions z1, To such that z1(r3) > Mars,
z1(r2) < &, zo(rs) > £ and zo(r1) < Myry.

Proof. Consider the functionals v, 6, & as in Theorem 3.1. Our purpose is to prove
that requirements (i'), ('), (iii’) are satisfied.

Let a = Msrs, b= £, c = Mir; and z € 8K(v,c). Then v(z) = z(r1) = ¢ and,
by Lemma 2.2 (inequality 2), we get

=l < ;ll—z(rl) = %’y(z) = ;cl—

Also we assumed that ||¢]l; < My = <, so ||lz[lyjur < <. Then, by (I?l) and

o — T
following the same arguments as in the proof of Theorem 3.1 we can easily prove
that

“Az) < ¢

So condition (i') of Theorem 2.5 is satisfied.

Now let z € 0K(6,b). Then 6(z) = z(rs) = b, so ||z||; > b. Hence, having in
mind assumptions (I;Tg}, (ﬁg) and inequality 2 of Lemma 2.2, as in the proof of
Theorem 3.1, we can prove that

6(Az) > b.

This means that condition (#i') of Theorem 2.5 is satisfied.
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Now, define the function y : JUI — R with y(f) = £. Then it is obvious that
a(y) = £ <a, so K(a,a) # 0. Also let z € K(a,a). Then a(z) = z(r3) = a. So,
by Lemma 2.2 (inequality 2) we get

1 1 a
&£ - = e B
flzllr < T3$(T3) r3a($) 7'3
Also we assumed that |glly < Ms = 2, so lallur < £. Now, by (Hy), we can
easily prove that
a(Az) < a.

Consequently, assumption (i7¢’) of Theorem 2.5 is satisfied and our proof is com-
pleted. O

The obtained solutions z;, z2 in Theorems 3.1, 3.2 above are all nondecreasing.
Thus, in the special case when 7y = rp = r3 = 1, we have that z;(r;) = z;(1) = ||z,
1=1,2, 7 =1,2,3. Therefore, we have the following corollary of Theorems 3.1 and
3:2:

Corollary 3.3. Suppose that assumptions (Hy) — (H3) (resp. (f—fl) - (f:Ig)) hold
and furthermore ||¢||; < M (resp. ||¢|ly < min{Mi, M3}). Then the boundary
value problem (1.1) — (1.3) has at least two concave and nondecreasing on I and
positive on J U I solutions 1,Ts such that

B <ol < M < flaall < 2

(resp. M3 < ||z1]| < & < |lz2]| < Mq).

It is remarkable to observe that this corollary can be also obtained by applying
twice the Krasnoselkii’s theorem under the same assumptions (H;) — (H3) (resp.
(H:) — (H3))-

4. THE ORDINARY CASE

In this section we suppose that ¢ = 0. Then J = {0}, so the boundary value
problem (1.1) — (1.3) is reformulated as follows

(4.1) () + f(t, z(t)) =0, tel,
(4.2) z(0) = N,

1
(43) 2(1) = fo 2/(s)dg(s),

where f: R™ x R™ — R is a continuous function, g : ] — R™ is a nondecreasing
function, such that g(0) =0, 1 — g(1) > 0 and N € R*. Note that equation (4.1)
is equivalent to the following form

() + f(t,z(0)) =0, tel

and C*({0}) =R, s0 f: R™ x C7({0}) —» R™.
Now, the analogue of Lemma 2.1 for this case is the following
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Lemma 4.1. A function z € C(I (I) ts a solution of the boundarg value problem
(4.1) — (4.3) if and only if z is a fized point of the operator A : C(I) — C(I), with

( N-i-thffr:rr)drdg(s /ff(r:r (r))drds, t eI,

where C = E::g-{-].‘)_

Assumptions (H;) — (Hs) and (Hy) — (Hj), for the special case ¢ = 0, are stated
as follows:

(H1)o There exist M > 0, continuous function « : /] — R+ and nondecreasing
function L : R — IR™ such that

flty) Su(t)L(y), te LLye R*
and

N+ L(M) (CTz / ' (Hu)(s)dg(s) + / " () (s)ds) < Mra,

where the function H is defined in the previous section.

(H2)o There exist § € (0,1) and functions v : I — R™ continuous and w : RT —
R™ nondecreasing such that

fit,y) 2 v(tw(y), teZ:=[61], yc [0, M]
and sup{v(t) : t € Z} > 0.
(H3)o There exist p1, p3 > 0 such that
Pi

& <N +ulp) (rg f Ee)(e)do(s) + [ (Heo)(o)ds) =13
where the function H, is defined in previous section. '

(H 1)o There exist M 1, Mz > D continuous functionu : I — R™ and nondecreasmcr
function L : IR™ — IR~ such that

flty) Su(t)L(y), tel, ye]Rf
and

N + L(M;) (Cnfl(Hu)( )dg(s)—l—f (Hu)(s) ds) < M;r;, 1=1,3

where the function H is defined in the previous section.

(ﬁg)o There exist a constant § € (0,1), continuous function v
nondecreasing function w : RT — R™ such that

fty) 2 v(tuly), teZ:=[§1), yeR"
and sup{v(t) : t € Z} > 0.

(}?3)0 There exists p > 0 such that

£ <N +ulp) (TzC / (Hav)(s)dgle) + / ”(sz)(s)ds) ,

where the function H, is defined in the previous section.

Therefore, we have the following theorems, which are the analogue of Theorems 3.1
and 3.2 respectively:

: I — R and
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Theorem 4.2. Suppose that assumptions (ﬁ 1) — (ﬁg) hold and furthermore N <
M. Then the boundary value problem (4.1) — (4.3) has at least two concave, non-
decreasing and positive on I solutions z;, To such that z1(r3) > &, x1(r2) < Mry,
$2(T2) > Mro and 32(7‘1) < %

Theorem 4.3. Suppose that assumptions (I‘-Ir 1)o— (1?3)9 hold and furthermore N <
min{M;, Mz}. Then the boundary value problem (4.1) — (4.3) has at least two
concave, nondecreasing and positive on I solutions z1, zo such that z1(r3) > Msrs,
z1(r2) < £, z2(r2) > § and z2(r1) < Myr:. ‘

Also, the following corollary corresponds to Corollary 3.3.

Corollary 4.4. Suppose that assumptions (Hy)o — (Hz)o (resp. (ﬁl)g - (1’1}3)0)
hold and furthermore N < M (resp. N < min{M;, M3}). Then the boundary
value problem (4.1) — (4.3) has at least two concave, nondecreasing and positive on
I solutions x1,zo such that

B <zl < M < flzall < &
(resp. Mz < |lz1]] < £ < ||lz2]| < Ma).
5. APPLICATIONS
1. Consider the boundary value problem
A\ 5
(5.1) ”(t)+( t——)-——) +1=0, tel:=[0,]1]
” 5 1
(5.2) o) =¢(t):=t°, tedJ:= [—5,0]
and
1
(53) ()= [ &/()da(s),
0

where g(t) = 3¢, t € I.

Obviously, f(t,y) := (y — £)® + 1 and ¢ is nonnegative on R* x C+(J),q'> is
nonnegative on R™ and g is nondecreasing, with g(0) = 0 and 1 — g(1) = >0
Setry =2, o =% andrs = £. Define L(t) = (t — £)° + 1, t € R™, and u(t) = 1,

t € I. Since inequality

L(M) < %M

holds for M = 5, assumption (H 1) is satisfied.
Additionally, set =1, 7(t) =3,t€ I, v(t) = 1,t € I and w(t) = (t — i)" + 1,
t€R™. Then, X =[2 = 1] and the inequalities in assumption (H3) take the forms

64 32
w(pr) > =p1 end w(ps) > 5P
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FUNCTIONAL AND ORDINARY BOUNDARY VALUE PROBLEMS

which are satisfied for p; = 6 and p; = 516' Finally, it is obvious that ||¢]|; < %,
so we can apply Theorem 3.1 to get that the boundary value problem (5.1) — (5.3)
has at least two concave and nondecreasing on I and positive on JU I solutions z;,

Ts, such that

4 1 3 21 3 21 2
3«‘1(3) > % 551(5) <5 zz(g) > 5 and Zg(g) <9

2. Once again, consider the boundary value problem (5.1) — (5.3). As mentioned
in Application 1, f(t,y) := (y — £)° + 1 is nonnegative on R* x CT(J), ¢ is
nonnegative on R™ and g is nondecreasing, with g(0) =0 and 1 — g(l)=%>0.

Having in mind Corollary 3.3, we set r; = 7o = r3 = 1. Define L(t) = (t—£)5+1,

t€ R, and u(t) =1, ¢ € I. Since inequality
LM)< M

holds for M = 11, assumption (H;) is satisfied.
Additionally, set 6 = 3, 7(t) = 3, t € [,w(t) =1, ¢ € ] and w(t) = (¢ — 2)°+1,

t € R™. Then, X = [2,1] and the inequalities in assumption (H3) take the forms

64 64
w(py) > —p1 and w(ps) > = Ps)

-— 101
so we can apply Corollary 3.3 to get that the boundary value problem (5.1) — (5.3)
has at least two concave and nondecreasing on I and positive on JU I solutions z;,

3, such that '

which are satisfied for p; = %g— and p3 = . Finally, it is obvious that liglls < &

3 <llzull < 22 < flzafl < 2
ST
3. Consider the boundary value problem
(5.4) z”(t) + 8arctan(10z(t) — 14) + 12=10, ¢t € I := [0, 1]
(5.5) 2(0) = 0,
and
1

(556) (W)= [ #()dgls),

0

where g(t) = 3¢, t € I.

Obviously, f(t,y) := 8arctan(10y — 14) + 12 is positive on R x R* and g is
nondecreasing, with ¢(0) = 0 and 1 — g(1) = % > 0. Set r = %, Ty = % and
r3 = 3. Define L(t) = 8arctan(10t — 14) + 12, t € R, and u(t) = 1, t € I. Since
inequalities

L(Ml) < ;:—Ml and L(Ms) < %;—M;;
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hold for M; = 30 and M3 = ﬁ, assumption (I?l)o is satisfied.

Additionally, set § = 3, v(t) = 1, ¢t € I and w(¢) = 8arctan(10¢ — 14) + 12,

t € R™. Then, Z = [3,1] and assumption (H3)o takes the form

i) 2 2
P 15P7

which is satisfied for p = :5"- Finally, it is obvious that N =0 < 1—(1,5 = min{M;, M3},
so we can appiy Theorem 4.3 to get that the boundary value problem (5.4) = (5.6)
has at least two concave and nondecreasing and posikive on I solutions z;, 2, such

that
o1l ey Sl e o Y i ali)
47 a000 127 T 5 TR T 2y Ty
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