ON SOME SECOND ORDER NONLOCAL FUNCTIONAL
AND ORDINARY BOUNDARY VALUE PROBLEMS

P. CH. TSAMATOS.

ABSTRACT. In this paper we prove the existence of multiple positive solutions for
second order nonlinear functional and ordinary nonlocal boundary value problems.
The results are obtained by using a fixed point theorem on a Banach space, ordered
by an appropriate cone.

1. INTRODUCTION

Let R be the set of real numbers, R =: [0,+00) and I =: [0,1]. Also, let
g €[0,1) and J :=[—q,0]. For every closed interval B C J U I we denote by C(B)
the Banach space of all continuous real functions ¥ : B — R endowed with the
usual sup-norm

¥l = sup{|4(s)] : s € B}.
Also, we define the set C*(B) as follows

C*(B):=={v € C(B) : ¥ > 0}.
Itz € C(JUI) and ¢ € I, then we denote by z; the element of C(J) defined by
zi(s) =z(t+s), se |
Now, consider the equation
{1.1) z'(t) + flt,ze) =0, te,

along with the boundary conditions

(1.2) zo = 9,
and
1
(1.3) 2(1) = /D 2/(s)dg(s),

where f : R™ x C¥(J) - R* and ¢ : J — R™ are continuous functions, g : T — IR
Is a nondecreasing function, such that g(0) =0 and 1 — g(1) > 0.
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The problem of existence of positive solutions for boundary value problems for
second order differential equations which involve a nonlocal condition like (1.3) has
been treated recently by Karakostas and Tsamatos [8-11] and Tsamatos [20]. More-
over, boundary value problems with integral boundary conditions for second order
differential equations with retarded arguments is the subject of the papers [12] and
[17]. In the recent years an increasing interest is also observed for boundary value
problems concerning functional differential equations (see [5,6] and the references
therein). Fixed point theorems on Banach spaces ordered by appropriate cones is
usually the tool for proving multiple positive solutions for boundary value problems.
The famous Guo - Krasnoselskii fixed point theorem [13,22] seems to be used in the
largest part of the papers on this subject. Also the well known Leggett-Williams
fixed point theorem [14] and some recent generalizations of it are used in proving
multiple positive solutions for various types of boundary value problems.

For a detailed exposition of the theory of functional differential equations, like
(1.1), the reader can refer to the books due to Hale and Lunel [4] and Azbelev et
all. [3].

In this paper, we choose to use a fixed point theorem, on an ordered by cones
Banach space, due to Avery and Henderson [1] (see also [15,19])which, apart from
guarantying the existence of two positive solutions, has the advantage to offer some
additional information on these solutions. In our results, the values of these solu-
tions at three given points of their domain are upper or lower bounded by a-priori
given constants. We note that this fixed point theorem was used recently in several
papers (see [2,5,15,16,18,19] and the references therein).

Since the results we present are new even in the ordinary case, we mention them
for this case too, underlining the necessary adjustments that have to be made to
the hypothesis referring to the functional case.

The paper is organized as follows. In section 2 we present the definitions and
the lemmas we are going to use, as well as the fixed point theorem, on which we
base our results. In section 3, we present the new results for the functional case
and then in section 4 the results for the ordinary case. Finally, in section 5 we give
some applications of our results.

2. PRELIMINARIES AND SOME BASIC LEMMAS

Definition. A function z € C(JUI) is a solution of the boundary value problem
(1.1)=(1.3) if z satisfies equation (1.1), the boundary condition (1.3) and, moreover
z|J = o.

Lemma 2.1. A functionz € C(JUI) is a solution of the boundary value problem
(1.1)=(1.3) if and only if = is a fized point of the operator A: C(JUI) — C{JUI),

with
#(t), teJ
ALiL)= { 101 t ol
$(0) + Ct [y [; fr,z-)drdg(s) + [, [, f(r.z,)drds, t€1,

where 1= 1—_;-(1-—)-.

Proof. Suppose that z is a solution of the boundary value problem (1.1) — (1.3).
Then, obviously, z|J = ¢. Moreover, by integrating (1.1) we get

1
(2.1} £ = 2'[1} +/ f(s,zs)ds, t el
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FUNCTIONAL AND ORDINARY BOUNDARY VALUE PROBLEMS

Also from (1.3) and (2.1) we have

1
#(0)= [ 2/(5)ds(s)

= /01 (3;’{1) - /:f(r, xr)dr) dg(s)

i 1 1
=) [ dote)+ [ [ 5t )ardgte).
Therefore
1

2.2 s =¢ [ [ stz )irdol).
Combining (2.1) and (2.2) we conclude that

1. 7l 1

“0=¢ [ [ fran)drdg(s) + | fezaas, ter,

which by integration from 0 to ¢, ¢ € I gives

z(t) = z(0) + thol /;1 f(r,z;)drdg(s) +j:/: f(r,z,)drds
= ¢(0) + Ct‘/ol /Sl f(r.z,)drdg(s) —1’—/;/: fr,z,;)drds.

The above step gives that, if z is a solution of the boundary value problem (1.1) —
(1.3), then z = Azx.

For the inverse, suppose that z is a fixed point of the operator A. Then, obviously,
#(t) = z(t) = (0 + t) = zo(t) for t € J. Also from the form of A we have

| 1
(2.3} :c’(t)=§/(; f f(r,sc,.)drdg(s)-l-ft flr,z)dr, tel.
Therefore
1 41
(2.4 #W)=¢ [ [ fadrdg(s).

Then from (2.3), (2.4) and the fact that ¢ := 1—_-gl—(ﬁ, g(0) =0, we get

i
(2.3) 2y =@'(1) -i-f fls,zs)ds, tel.

Using (2.4) and (2.5) we have
1 1
2'(1) = 2'(1)g(1) + J{ f F(r, ) drdg(s)
1 1 1
= (1) /0 dgls) + fg / F(r,z)drdg(s)

= fol (z’(l)—ff: f(r, :cr)dv) ag(s)

1
= f z'(s)dg(s).
0
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Finally, from (2.5) we have

'(t)=2'(1) - Ltf(s,ms)ds, tel

and so
z'(t) + f(t,z:) =0, tel

The proof is complete. O
The following lemma can be found in [21].

Lemma 2.2. Let function z € C(I) be concave and non negative and £ € (0, 1).
Then

Ielt 0<t<o
(1) =(t) > 7 f0<o<l,
lzll{=%, o<t <1,

(@) =) > |zt 0< ¢ <1, fo=1,
(3) 2(t) > el (1 —1), 0<t< 1, o =0,

(4) =(t) = &lizll, for allt € [§,1-¢€],
where ||z|| := sup{|z()| : 0 £t < 1} and o € [0,1] such that z(o) = ||z]|.

The results proved in this paper are based on the following Theorem 2.6 due to
R. I. Avery and J. Henderson [1] (see also [15] and [19]). As we mentioned in the
introduction, this theorem ensures that our boundary value problem (1.1) — (1.3)
has at least two distinct positive solutions and, moreover, for each of these solutions,
we have an upper bound at some specific point of its domain and a lower bound
at some other specific point of its domain. Also, both solutions are concave and
nondecreasing on I. In order to apply this theorem some definitions are necessary.

Definition 2.3. Let E be a real Banach space. A cone in E is a nonempty, closed
set P C E such that

(1) ku+ v eP forallu,vePandalls, A>0

(i1) u, ~u € P implies u = 0.
Definition 2.4. Let P be a cone in a real Banach space B. A functionaly : P — B
is said to be increasing on P if ¥(z) < ¥(y), for any z, y € P with z < y, where <
is the partial ordering induced to the Banach space by the cone P, i.e.

z<y ifendonlyif y—xz €P.

Definition 2.5. Let ¥ be a nonnegative functional on a cone P. For each d > 0
we denote by P(v, d) the set

P(¢,d) :={z € P: ¢(z) < d}.
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FUNCTIONAL AND ORDINARY BOUNDARY VALUE PROBLEMS

Theorem 2.6. LetP be a cone in a real Banach space E. Let o and -y be increasing,
nonnegative, continuous functionals on P, and let 8 be a nonnegative functional on
P with 8(0) = 0 such that, for some ¢ >0 and © > 0,

7(z) <0(z) < ofz) and |jz]| < Oy(x),

for all x € P(v,c). Suppose there exists a completely continuous operator A :
Ply,c) =P and 0 < a < b < ¢ such that

0(Az) < X(z), for 0<A<1 and ze€ 9P(6,b),

and
(4) v(Az) > ¢, for all z € 8P(v,c),

(¢4) 0(Ax) < b, for all = € OP(6,b),
(iit) P(a,a) # 0, and o(Az) > a, for allz € OP(e, a),
or
(7") v(Az) < ¢, forallz oP(v,c),
(¢¢') 6(Az) > b, for all z € AP(6,b),
(327) P(av,a) # 0, and o(Az) < a, for all z € 0P(a, a).
Then A has at least two fized points z; and T2 belonging to P(v,c) such that
a<alzy), with 6(z;) <b,
and

b<B(zz), with y(z)<ec

3. MAIN RESULTS

Define the set
K={zeCJUIl:z(t)>0, teJUI, z/I is concave and nondecreasing},
which is a cone in C(J U I). Also let
0<rm<ro<r3<1
and consider the following functionals
Y(z) =z(r1), z €K,

f(z) =z(rz), z€ K

and
a(z) =z{r3), K.

It is easy to see that a, v are nonnegative, increasing and continuous functionals on
K, 0 is nonnegative on K and 6(0) = 0. Also, it is straightforward that

(3.1) (z) £ 6(z) < o(z),
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since z € K is nondecreasing on I. Furthermore, for any z € K, by Lemma 2.2
(inequality (2)), we have

¥(z) = z(r1) > rilzll;.
So

(3.2) Izl < %v(xx zeK.

Additionally, by the definition of 8 it is obvious that
f(Az) = M(z), 0<A<L1, zeK.
Now, if D C I, consider the functions H : C(I) — C(I) and H, : C(I) — C(I) by

i
(Hz)(s) :==f z(r)dr, sel

and

(Hpz)(s) :=[ z(r)dr, sel.

Dnfs,1]

At this point, we state the following assumptions:

(H;) There exist M > 0, continuous function u : I — R and nondecreasing
function L : R™ — R¥ such that

Flt.y) u(®)Lwls), tel, ye CH(J)

and also
1 2
@(0) + L(M) ((rg'/o (Hu)(s)dg(s) +j; (Hu)(s)ds) < Mrs.

(H3) There exist a constant § € (0,1) and functions 7 : I — [0, q], continuous
v:I — R™ and nondecreasing w : RT — R™ such that

flty) 2 v@w(y(-7(t)), te X, ye{heCH(J):|als < M},

where
X:={tEI:5§t—7‘(t)§l},

sup{v(t) : t € X} > 0, meas(X N [s,1)) > 0 for all s € [0,1) and M is
defined in (H;).

(H3) There exist py, p3 > 0 such that

. 1 i
& < 6(0) +w(p:) (n{ fo (Eooet) S /0 (Hxv)(s)ds), i=13,

and

P3 P1
3 < Mre < 5"

Notice that if ¢(0) # 0, then these p;, ps always exist.
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FUNCTIONAL AND ORDINARY BOUNDARY VALUE PROBLEMS
Remark. It easy to see that sup{v(t) :t € X} > 0 and meas(X N[s,1)) >0,s¢€
[0,1) in the assumption (Hs), imply that fol (Hxv)(s)dg(s) > 0 and [;* (Hxv)(s)ds >
0.2=123.
Theorem 3.1. Suppose that assumptions (H 1)—(H3) hold and furthermore ||¢||; <
M. Then the boundary value problem (1.1) — (1.3) has at least two concave and

nondecreasing on I and positive on J U I solutions ., T such that z1(rs) > £,
z1(rz) < Mra, 22(r2) > Mry and zo(ry) < &.

Proof. First of all, we observe that, because of (H1), f(t,-) maps bounded sets into
bounded sets. Therefore A is a completely continuous operator.

Now weset a = £2, b= Mry, c= 2. and we consider a z € K(v,c). Then since
¢ >0 and f(¢,2;) > 0 for every ¢ € I, we get that Az(¢) >0, ¢t € I. Also Az(t) =
8(t) 20, t € J. Thus Az(t) > 0, t € JUI. Moreover, (Az)"(t) = —F(t,2:) £ 0,
which means that Az is concave on I. Also it is clear that (Az)/(t) > 0 for ¢ € I.
So A:K(y,c) = K.

Now let z € 0K(v,c¢). Then v(z) = z(r1) = ¢ and so ||z||; > c. Having in mind
assumption (Hs), we get

1 1 T1 1
v(Az) = Az(r1) = ¢(0) + (r; f(r,z;)drdg(s) + flr,z)drds
0 s 0 s

1 1
-+ y L y L d
> ¢(0) §r1/0 j;(ﬁ[s,l] f(r,z:)drdg(s) +[0 /.;'ﬂ[s,lj f(r,z,.)drds

2 6(0)+ ¢ [ 1 /. 1 Yl (=) drdg(s)
! fo h /X Ve )drds

= 60) +¢r, [ 1 /. g VOl = ())drdo()
+ A fXﬂ[s,l] v(r)w(z(r — 7(r)))drds

> 6(0) + ¢y fo fX oy Ve Odrds()

+f071 [Xﬁ[s,l] v(r)w(z(6))drds.

Additionally, by assumption (H3) and inequality 2 of Lemma 2.2, we have
+(Az) > 6(0) + w(s]=l) (nc / (Hew)(s)da(s) + / (Hxv)(s)ds)
2 T1
> $(0) + w(dc) (7"1(: /U (Fet)ta) i) /0 (Hxv)(s)ds)
1: T1
= 4(0) + w(p) (nc | @) + | (Hxv)ts)ds)
P
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This means that condition (i) of Theorem 2.5 is satisfied.
Now let z € 9K (6,b). Then 6(z) = z(r2) = b and so by inequality 2 of Lemma
2.2 we get

[y 1
T2 To T9

Also we assumed that ||¢]; < M = £, so |z|jur < % Now, by (H;), we have

T'z’

6(Az) = Az(rs)
= 6(0) + ¢r /0 1 j " f(r, z)drdg(s) + fo N f " $r, e )drds
<o)+ | [ wtLlimlarase)+ [ [ urndie s
< 6(0) + Crz fo 1 f lu(r)L(%)drdg(s)-i— /0 " f lu{r)L(;bz—)drds

= 6(0) + L(M) (Crz | s + / ” (Hu)(s)ds)
< MT‘2 = b

So condition (77) of Theorem 2.5 is also satisfied.

Now, define the function y : JUI — R with y(¢) = %. Then it is obvious that
a(y) = § < a,s0K(a,a) # 0. Also, for any z € 0K(c, a) we have o(z) = z(r3) = a.
Therefore |z||; > a. Now, having in mind assumption (H») and as in the case of
the functional v above, we get

a(Az) = Az(rs)

1
> $(0) + ¢r3 ]O fX IRCECOILEYD

-i-/:a Ln[s,ljv(r)w(x(5))drds.

Then, by assumption (H3) and inequality 2 of Lemma 2.2, we also have

o(Az) 2 $(0) + w(sa) (TsC f@ (Hxv)(s)dg(s) + fo (qu)(s)ds) >F=a

Consequently, assumption (4iz) of Theorem 2.5 is satisfied.
The result can now be obtained by applying Theorem 2.5. [

The above Theorem 3.1 has been obtained by using the requirements (i) — (347)
of Theorem 2.5. Using the requirements (i') — (4ii’) of the same theorem we can
also obtain another existence theorem (Theorem 3.2 below) for our boundary value
problem (1.1) — (1.3). For this purpose we need the following assumptions.

(I:j 1) There exist M, M3 > 0, continuous function v : / — IR™ and nondecreasing
function L : R~ — R~ such that

ft,y) <u@L(lylly), tel, ye CT(J)
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and also

$(0) -+ L(M;) (gn- [o (B (s)da(s) + /O n(Hu)(s)ds) < Mir;, i=1,53.

(H,) There exist a constant § € (0,1) and functions 7 : I — [0,q], continuous
v: I — R" and nondecreasing w : R¥ — R* such that

fty) 2 v(@u(y(-7(t), te X, ye {heC*(J): |hlls < min{M;, Mz}},

where
X={tel:6<t—-7(t) <1},

sup{v(t) : t € X} > 0, meas(X N[s,1]) > 0 for all s € [0,1) and M is
defined in (Hy).

(ﬁa) There exists p > 0 such that

1 T2
§ <o)+ wie) (re [ Eo)eiaate) + [ (myeras).

Notice that if ¢(0) # 0, then this p always exists.

Theorem 3.2. Suppose that assumptions (H 1)—(1{}3) hold and furthermore ||¢]|; <
min{ M}_, Ms} .

Then the boundary value problem (1.1) — (1.3) has at least two concave and
nondecreasing on I and positive on JUI solutions z1, To such that z1(r3) > Mars,
z1(r2) < &, zo(rs) > £ and zo(r1) < Myry.

Proof. Consider the functionals v, 6, & as in Theorem 3.1. Our purpose is to prove
that requirements (i'), ('), (iii’) are satisfied.

Let a = Msrs, b= £, c = Mir; and z € 8K(v,c). Then v(z) = z(r1) = ¢ and,
by Lemma 2.2 (inequality 2), we get

=l < ;ll—z(rl) = %’y(z) = ;cl—

Also we assumed that ||¢]l; < My = <, so ||lz[lyjur < <. Then, by (I?l) and

o — T
following the same arguments as in the proof of Theorem 3.1 we can easily prove
that

“Az) < ¢

So condition (i') of Theorem 2.5 is satisfied.

Now let z € 0K(6,b). Then 6(z) = z(rs) = b, so ||z||; > b. Hence, having in
mind assumptions (I;Tg}, (ﬁg) and inequality 2 of Lemma 2.2, as in the proof of
Theorem 3.1, we can prove that

6(Az) > b.

This means that condition (#i') of Theorem 2.5 is satisfied.
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Now, define the function y : JUI — R with y(f) = £. Then it is obvious that
a(y) = £ <a, so K(a,a) # 0. Also let z € K(a,a). Then a(z) = z(r3) = a. So,
by Lemma 2.2 (inequality 2) we get

1 1 a
&£ - = e B
flzllr < T3$(T3) r3a($) 7'3
Also we assumed that |glly < Ms = 2, so lallur < £. Now, by (Hy), we can
easily prove that
a(Az) < a.

Consequently, assumption (i7¢’) of Theorem 2.5 is satisfied and our proof is com-
pleted. O

The obtained solutions z;, z2 in Theorems 3.1, 3.2 above are all nondecreasing.
Thus, in the special case when 7y = rp = r3 = 1, we have that z;(r;) = z;(1) = ||z,
1=1,2, 7 =1,2,3. Therefore, we have the following corollary of Theorems 3.1 and
3:2:

Corollary 3.3. Suppose that assumptions (Hy) — (H3) (resp. (f—fl) - (f:Ig)) hold
and furthermore ||¢||; < M (resp. ||¢|ly < min{Mi, M3}). Then the boundary
value problem (1.1) — (1.3) has at least two concave and nondecreasing on I and
positive on J U I solutions 1,Ts such that

B <ol < M < flaall < 2

(resp. M3 < ||z1]| < & < |lz2]| < Mq).

It is remarkable to observe that this corollary can be also obtained by applying
twice the Krasnoselkii’s theorem under the same assumptions (H;) — (H3) (resp.
(H:) — (H3))-

4. THE ORDINARY CASE

In this section we suppose that ¢ = 0. Then J = {0}, so the boundary value
problem (1.1) — (1.3) is reformulated as follows

(4.1) () + f(t, z(t)) =0, tel,
(4.2) z(0) = N,

1
(43) 2(1) = fo 2/(s)dg(s),

where f: R™ x R™ — R is a continuous function, g : ] — R™ is a nondecreasing
function, such that g(0) =0, 1 — g(1) > 0 and N € R*. Note that equation (4.1)
is equivalent to the following form

() + f(t,z(0)) =0, tel

and C*({0}) =R, s0 f: R™ x C7({0}) —» R™.
Now, the analogue of Lemma 2.1 for this case is the following
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Lemma 4.1. A function z € C(I (I) ts a solution of the boundarg value problem
(4.1) — (4.3) if and only if z is a fized point of the operator A : C(I) — C(I), with

( N-i-thffr:rr)drdg(s /ff(r:r (r))drds, t eI,

where C = E::g-{-].‘)_

Assumptions (H;) — (Hs) and (Hy) — (Hj), for the special case ¢ = 0, are stated
as follows:

(H1)o There exist M > 0, continuous function « : /] — R+ and nondecreasing
function L : R — IR™ such that

flty) Su(t)L(y), te LLye R*
and

N+ L(M) (CTz / ' (Hu)(s)dg(s) + / " () (s)ds) < Mra,

where the function H is defined in the previous section.

(H2)o There exist § € (0,1) and functions v : I — R™ continuous and w : RT —
R™ nondecreasing such that

fit,y) 2 v(tw(y), teZ:=[61], yc [0, M]
and sup{v(t) : t € Z} > 0.
(H3)o There exist p1, p3 > 0 such that
Pi

& <N +ulp) (rg f Ee)(e)do(s) + [ (Heo)(o)ds) =13
where the function H, is defined in previous section. '

(H 1)o There exist M 1, Mz > D continuous functionu : I — R™ and nondecreasmcr
function L : IR™ — IR~ such that

flty) Su(t)L(y), tel, ye]Rf
and

N + L(M;) (Cnfl(Hu)( )dg(s)—l—f (Hu)(s) ds) < M;r;, 1=1,3

where the function H is defined in the previous section.

(ﬁg)o There exist a constant § € (0,1), continuous function v
nondecreasing function w : RT — R™ such that

fty) 2 v(tuly), teZ:=[§1), yeR"
and sup{v(t) : t € Z} > 0.

(}?3)0 There exists p > 0 such that

£ <N +ulp) (TzC / (Hav)(s)dgle) + / ”(sz)(s)ds) ,

where the function H, is defined in the previous section.

Therefore, we have the following theorems, which are the analogue of Theorems 3.1
and 3.2 respectively:

: I — R and
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Theorem 4.2. Suppose that assumptions (ﬁ 1) — (ﬁg) hold and furthermore N <
M. Then the boundary value problem (4.1) — (4.3) has at least two concave, non-
decreasing and positive on I solutions z;, To such that z1(r3) > &, x1(r2) < Mry,
$2(T2) > Mro and 32(7‘1) < %

Theorem 4.3. Suppose that assumptions (I‘-Ir 1)o— (1?3)9 hold and furthermore N <
min{M;, Mz}. Then the boundary value problem (4.1) — (4.3) has at least two
concave, nondecreasing and positive on I solutions z1, zo such that z1(r3) > Msrs,
z1(r2) < £, z2(r2) > § and z2(r1) < Myr:. ‘

Also, the following corollary corresponds to Corollary 3.3.

Corollary 4.4. Suppose that assumptions (Hy)o — (Hz)o (resp. (ﬁl)g - (1’1}3)0)
hold and furthermore N < M (resp. N < min{M;, M3}). Then the boundary
value problem (4.1) — (4.3) has at least two concave, nondecreasing and positive on
I solutions x1,zo such that

B <zl < M < flzall < &
(resp. Mz < |lz1]] < £ < ||lz2]| < Ma).
5. APPLICATIONS
1. Consider the boundary value problem
A\ 5
(5.1) ”(t)+( t——)-——) +1=0, tel:=[0,]1]
” 5 1
(5.2) o) =¢(t):=t°, tedJ:= [—5,0]
and
1
(53) ()= [ &/()da(s),
0

where g(t) = 3¢, t € I.

Obviously, f(t,y) := (y — £)® + 1 and ¢ is nonnegative on R* x C+(J),q'> is
nonnegative on R™ and g is nondecreasing, with g(0) = 0 and 1 — g(1) = >0
Setry =2, o =% andrs = £. Define L(t) = (t — £)° + 1, t € R™, and u(t) = 1,

t € I. Since inequality

L(M) < %M

holds for M = 5, assumption (H 1) is satisfied.
Additionally, set =1, 7(t) =3,t€ I, v(t) = 1,t € I and w(t) = (t — i)" + 1,
t€R™. Then, X =[2 = 1] and the inequalities in assumption (H3) take the forms

64 32
w(pr) > =p1 end w(ps) > 5P
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which are satisfied for p; = 6 and p; = 516' Finally, it is obvious that ||¢]|; < %,
so we can apply Theorem 3.1 to get that the boundary value problem (5.1) — (5.3)
has at least two concave and nondecreasing on I and positive on JU I solutions z;,

Ts, such that

4 1 3 21 3 21 2
3«‘1(3) > % 551(5) <5 zz(g) > 5 and Zg(g) <9

2. Once again, consider the boundary value problem (5.1) — (5.3). As mentioned
in Application 1, f(t,y) := (y — £)° + 1 is nonnegative on R* x CT(J), ¢ is
nonnegative on R™ and g is nondecreasing, with g(0) =0 and 1 — g(l)=%>0.

Having in mind Corollary 3.3, we set r; = 7o = r3 = 1. Define L(t) = (t—£)5+1,

t€ R, and u(t) =1, ¢ € I. Since inequality
LM)< M

holds for M = 11, assumption (H;) is satisfied.
Additionally, set 6 = 3, 7(t) = 3, t € [,w(t) =1, ¢ € ] and w(t) = (¢ — 2)°+1,

t € R™. Then, X = [2,1] and the inequalities in assumption (H3) take the forms

64 64
w(py) > —p1 and w(ps) > = Ps)

-— 101
so we can apply Corollary 3.3 to get that the boundary value problem (5.1) — (5.3)
has at least two concave and nondecreasing on I and positive on JU I solutions z;,

3, such that '

which are satisfied for p; = %g— and p3 = . Finally, it is obvious that liglls < &

3 <llzull < 22 < flzafl < 2
ST
3. Consider the boundary value problem
(5.4) z”(t) + 8arctan(10z(t) — 14) + 12=10, ¢t € I := [0, 1]
(5.5) 2(0) = 0,
and
1

(556) (W)= [ #()dgls),

0

where g(t) = 3¢, t € I.

Obviously, f(t,y) := 8arctan(10y — 14) + 12 is positive on R x R* and g is
nondecreasing, with ¢(0) = 0 and 1 — g(1) = % > 0. Set r = %, Ty = % and
r3 = 3. Define L(t) = 8arctan(10t — 14) + 12, t € R, and u(t) = 1, t € I. Since
inequalities

L(Ml) < ;:—Ml and L(Ms) < %;—M;;
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hold for M; = 30 and M3 = ﬁ, assumption (I?l)o is satisfied.

Additionally, set § = 3, v(t) = 1, ¢t € I and w(¢) = 8arctan(10¢ — 14) + 12,

t € R™. Then, Z = [3,1] and assumption (H3)o takes the form

i) 2 2
P 15P7

which is satisfied for p = :5"- Finally, it is obvious that N =0 < 1—(1,5 = min{M;, M3},
so we can appiy Theorem 4.3 to get that the boundary value problem (5.4) = (5.6)
has at least two concave and nondecreasing and posikive on I solutions z;, 2, such

that
o1l ey Sl e o Y i ali)
47 a000 127 T 5 TR T 2y Ty
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