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Abstract

Some of the properties of the completely regular fuzzifying topological spaces
are investigated. It is shown that a fuzzifying topology T is completely regular
iff it is induced by some fuzzy uniformity or equivalently by some fuzzifying
proximity. Also, 7 is completely regular iff it is generated by a family of prob-
abilistic pseudometrics.
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Introduction

The fuzzifying topologies were introduced by M. Ying in [15]. A classical topology is
a special case of a fuzzifying topology. In a fuzzifying topology 7 on a set X , every
subset A of X has a degree 7(A) of belonging to 7, 0 < 7(4) < 1. In (1] we defined
the degrees of compactness, of local compactness, Hausdorffnes e.t.c. in a fuzzifying
topological space (X, 7). We also gave the notion of convergence of nets and filters
and introduced the fuzzifying proximities. Every fuzzifying proximity & induces a
fuzzifying topology 75. In [4] we studied the level classical topologies 79,0 < 0 < 1,
corresponding to a fuzzifying topology 7. In the same paper we studied connected-
ness and local connectedness in fuzzifying topological spaces as well as the so called
sequential fuzzifying topologies. In [3] we introduced the fuzzifying syntopogenous
structures. We also proved that every fuzzy uniformity ¥, as it is defined by Lowen
in [8], induces a fuzzifying proximity & and that , for every fuzzifying proximity 4,
there exists at least one fuzzy uniformity I/ with § = &y.

In this paper, we continue with the investigation of fuzzifying topologies. In par-
ticular we study the completely regular fuzzifying topologies, i.e those fuzzifying
topologies 7 for which each level topology 7¢ is completely regular. As in the clas-
sical case, we prove that, for a fuzzifying topology 7 on X, the following properties
are equivalent: (1) 7 is completely regular; (2) 7 is uniformizable, i.e. it is induced
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by some fuzzy uniformity; (3) 7 is proximizable, i.e. it is induced by some fuzzifying
proximity; (4) 7 is generated by a family of so called probabilistic pseudometrics on
X. We also give a characterization of completely regular fuzzifying spaces in terms
of continuous functions. Many Theorems on classical topologies follow as special
cases of results obtained in the paper.

1 Preliminaries

A fuzzifying topology on a set X (see [15]) is a map 7 : 2X — [0,1], (where 2¥ is
the power set of X) satisfying the following conditions:

(BT 7(X) =1{0)= 1.

(FT2) 7(A1 N As) > 7(A1) AT(432).

(FT3) (U 4;) > inf; 7(4;).

If 7 is a fuzzifying topology on X and z € X, then the 7-neighborhood system
of z is the function

Nz = N7 : 2% 5 [0,1], N;(4) = sup{r(B) : z € B C A}.
By ([15], Lemma 3.2) we have that 7(A4) = inf,c 4 Nz (A).

Theorem 1.1 ([15], I, Theorem 3.2). If T is a fuzzifying topology on a set X,
then the map £ — N; = NJ, from X to the fuzzy power set F(2%) of 2X has the
following properties:
(FN1) No(X) =1 and N.(A) =0 ifz ¢ A.
(FN2) Nz (A1) Az2) = Nz (A1) A Nz (Az).
(FN3) Nz(A) < sup,¢epc 4 infyep Ny (D).
Conversely, if a map £ — N, from X to F(2X), satisfies (FN1) — (FN3), then the
map

7:2% = [0,1],7(4) = inf N (A),

€A

is o fuzzifying topology and Ny = N7 for every z € X.

Let now (X, 7) be a fuzzifying topological space. To every subset A of X cor-
rersponds a fuzzy subset A = A™ of X defined by A(z) = 1 — N;(A4¢). A function
f; from a fuzzifying topological space (X, 7'1) to another one (Y, 72), is said to be
continuous at some z € X (see [2]) if No(f~1(4)) > N #(z)(A) for every subset A of
Y. If f is continuous at every point of X, then it is said (71, T2)—continuous. As it
is shown in [2], f is continuous iff 72(4) < 71(f~1(A)) for every subset A of Y. For
f:X — Y a function and 7 a fuzzifying topology on Y, f~(7) is defined to be the
weakest fuzzifying topology on X for which f is continuous. By [2], f~1(r) is given
by the neighborhood structure N (4) = N 7(2) (Y \ F(49). X (73)ier is a family of
fuzzifying topologies on X, we will denote by Vier T, or by sup7;, the weakest of
all fuzzifying topologies on X which are finer than each 7;. As it is proved in [2],
Vier 7i is given by the neighborhood structure

No(A) = sup{}g?N;"(Ai) ze ) AiC Al
i€
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where the infimum is taken over the family of all finite subsets J of I and all A; C
X,1 € J. For Y a subset of a fuzzifying topological space (X,7), 7|y will be the
fuzzifying topology induced on Y by 7, i.e. the fuzzifying topology f~1(7) where
f:Y — X is the inclusion map. For a family (X;, 7;)ier of fuzzifying topological
spaces, the product fuzzifying topology 7 = [[7 on X = 1 X; is the weakest
fuzzifying topology on X for which each projection 7; : X — X; is continuous. Thus
7=\V;7; '(r;) and it is given by the neighborhood structure

N, (A4) = sup{inf N, (4:) : 2 € (771 (4:) C A,
icJ
where the supremum is taken over the family of all finite subsets J of I and A€ X,
for i € J (see [2]).
The degree of convergence to an z € X, of a net (z5) in a fuzzifying topological
space (X, ), is the number ¢(z5 — z) = ¢"(z5 — ) defined by

c(zs = z) =inf{l — Ny(A4) : AC X, (z5) frequently in A}

As it is shown in [4], for A C X and z € X, we have

A(z) = max{c(zs — ) : (z5) net in A}.
The degree of Haudsdorffness of X (see [2]) is defined by

T5(X) = 1 — supsup{c(zs — =) Ac(zs = y : (z5) net in X}.

TFY
Also, the degree of X being 7} is defined by
Ti(X) = inf inf sup{Na(B) : y ¢ B}.

Let now (X, 7) be a fuzzifying topological space. For each 0 < 6 < 1, the family
By ={A C X : 7(A) > 6} is a base for -a-classical topology 7% on X (see [3]).
It is easy to see that a subset B of X is a m%-neighborhood of z iff Nz(B) > 0.
By [4], To(X) (resp. T1(X)) is the supremum of all 0 < 6 < 1 for which 7¢ is T,
(resp. T1). Also, for 7 = V7;, we have that 7% = sup; 7¥ (see [3], Theorem 3.5). If
7 =[] 7 is a product fuzzifying topology, then 7¢ = I177 (see [3], Theorem 3.5).
If Y is a subspace of (X, 7) and m; = 7|¥, then 7¥ = 7|Y. By [3], Theorem 3.10,
for a fuzzifying topological space (X, 7), co(X) coincides with the supremum of all
0 <@ < 1 for which 7!~¢ is compact.

Next we will recall the notion of a fuzzifying proximity given in [2]. A fuzzifying
proximity on a set X is a map 4 : 2% x2% — [0, 1] satisfying the following conditions:
(FP1) 6(A, B) =1 if the A, B are not disjoint.

(FP2) 6(A,B) = §(B, A).

(FP3) 4(0,B) = 0.

(FP4) 6(A; U Ay, B) = 6(A;1, B) V 6(As, B).

(FP5) 6(A, B) = inf{6(A,D) Vé(D*,B) : D C X}.

Every fuzzifying proximity ¢ induces a fuzzifying topology 75 given by the neighbor-
hood structure N;(A4) = 1 — §(z, A). A fuzzifying proximity d; is said to be finer
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than another one 4§, if §; (A4, B) < d2(A4, B) for all subsets A, Bof X. For f : X = Y
a function and 4 a fuzzifying proximity on Y, the function

F7H6) - 2% x 2% = [0,1], 71 (6)(A, B) = 8(F(A), f(B)),

is a fuzzifying proximity on X (see [2]) and it is the weakest of all fuzzifying
proximities d; on X for which f is (4, d)-proximally continuous, i.e. it satis-
fies 6:(A4,B) < 6(f(A), f(B)) for all subsets A,B of X. As it is shown in [2],
Ti-1(5) = [~H(75).

Let now (d))xea be a family of fuzzifying proximities on a set X. We will denote by
d = \/, dx, or by supdy, the weakest fuzzifying proximity on X which is finer than
each §). By [2], Theorem 8.10, § is given by

J(A, B) = inf{sup inf 5)(.2‘1@,3;,‘)},
i,j AEA

where the infimum is taken over all finite collections (4;), (B;) of subsets of X with
A =JA;, B=JB;j. Moreover, 75 = \/ 75, (see [2]).

Finally we will recall the definition of a fuzzy uniformity introduced by Lowen in [8].
For a set X, let Qx be the collection of all functions o : X x X — [0,1] such that
a(z,z) =1forall z € X. For o, 3 in Qx the a A B,c0 3 and o' are defined by
anB(z,y) = a(z,y) AB(z,y), a0 B(z,y) = sup, B(z, z) Aa(z,y),a" z,y) = a(y, z).
If @ = o7}, then « is called symmetric. A fuzzy uniformity on X is a non-empty
subset U of 2x satisfying the following conditions :

(FUL) f o, €U, thena AB € U.

(FU2) If o € U is such that, for every e > 0, there exists a 8 € U with 8 < o+,
then o € U.

(FU3) For each o € U and each € > 0, there exists a B € U with BoB < a+e.
(FU4) fa €U, then o~ € U.

A subset B, of a fuzzy uniformity U, is a base for U if, for each o € I/ and each
€ > 0, there exists # € B with 8 < a + €. It is easy to see that, for a subset B of
Qx, the following are equivalent :

(1) B is a base for a fuzzy uniformity on X.

(2) (a) If @, B € B and € > 0, then there exists v € Bwithy<a A B+e.

(b) For each & € B and each € > 0, there exists 5 € Bwith fo8< a+e.

(c) For each o € B and each € > 0, there exists 8 € Bwith 8 <ol +e.
In case (2) is satisfied, the fuzzy uniformity I/ for which B is a base consists of all
a € Qx such that, for each € > 0, there exists a f € Bwith S < a+e.
By [3], every fuzzy uniformity &/ on X induces a fuzzifying proximity d;; defined by

ou(A,B) = inf sup ofz,y).
a€U zc A ycB

In case B is a base for I/, then

ou(A,B) = inf sup a(z,y).
o€B zc A yeB
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Every fuzzy uniformity ¢/ induces a fuzzifying topology 7 given by the neighborhood
structure
Nz(A) =1 - dy(z, A°) = 1 — inf sup a(z,y).
acld ygA

For every fuzzifying proximity ¢ there exists at least one compatible fuzzy uniformity,
Le. a fuzzy uniformity U/ with 6y = ¢ (see [3], Theorem 11.4).

2 Probabilistic Pseudometrics

A fuzzy real number is a fuzzy subset u of the real numbers R which is increasing,
left continuous, and such that limy, e u(t) = 1,lims,_ o u(t) = 0. A fuzzy real
number u is said to be non-negative if u(t) = 0 if ¢ < 0. We will denote by R; the
collection of all non-negative fuzzy real numbers. To every real number r corresponds
a fuzzy real number 7, where 7(¢) = 0if ¢ < r and 7(t) = 1 if ¢ > r. For u,v € R,
we define u <X v iff v(t) < u(¢) for all £ € R. If A is a non-empty subset of R;‘ and
ifu, € R;f' is defined by u,(t) = sup,c4v(%), then wu, is the biggest of all u € R;
with u < v for all v € A. We will denote u, by inf A or by A A. For uj,uz € RT,
we define u = u; Quy € Rg by u(t) = sup{ui(t1) Aual(ty) : t = ¢; + to}. Also, for
u € R} and A > 0, we define Mu by (Mu)(£) = u(A~1¢). It is easy to see that, for
u € R;' and A > 0, we have (A @ u)(¢) = u(t — A).

Definition 2.1 A probabilistic pseudometric on a set X (see [1]) is a mapping
F: X xX— R;’ such that, for all z,y,z in X, we have

F(z,2) =0,F(z,y) = F(y,2), F(z,2) X F(z,y) © F(y,2).

If in addition F(z,y)(0+) =0 when = # y, then F is called a probabilistic metric.

If r1,7o are non-negative real numbers, then 77 < 75 iff »; < ry. Also, for
T = |r; — ra|, we have that

T=MueR]:m=2ud7 and 7T X udr).

In fact, let u, = A{u € R; 17, 2 u®7 and 7T <X u @75} and assume
(say) 7y > ro. Let u € ‘R;‘ be such that 7 X u ® 7,77 < u & 73. Then 77(¢) >
(u®T3(t) = u(t — o) for all &. If s < 7y, then 0 = 71(s) = u(s — r2) and so
u(ry — o) = SUPs<r, (s — r2) = 0 which implies that 7 < u. Thus 7 < Uo. On the
other hand, we have &7 = 77 and 7®7T = 2r; — 5. Since 75 < 2r1 — rg, it follows
that u, < 7 and hence 7 = u,. Motivated from the above we define the following
distance function on R;

D:RI xR;‘ ——>RI, D(ul,m):/\{ueRg fu Sup Bu,ur 2 udu )

Then D is a probabilistic pseudometric on ’R,z In fact, it is clear that D (u1,up) =
D(ug,u;). Also, since v = u @ 0, when u € R;, we have that D(u,u) = 0.
Finally, let D(u1,u2)(t1) A D(ug,us)(tz) > 6 > 0. There are v,V € ’R,; with
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ur X vp @ ug,up =X v1 ®up,uz 3 V2 B U, up = ve B uz,v1(t1) > 0,v2(t2) > 0. Now
U 28U XN @ (1ouz) = (V1 @v)Puzand uz TV B U XV O (V1 B u1) =
(vi ®vg) ®uy.Thus D(ug,us3) < v; ® vy and D(uy,uz)(t1 +t2) > v1(t1) Ava(te) > 6.
This proves that D(uj,us) = D(uj,us) @ D(ug,us) and the claim follows. We will
refer to D as the usual probabilistic pseudometric on ’R,;f' g

Let now F' be a probabilistic psedometric on X. For ¢ > 0, let ur; be defined on
X2 by ups(z,y) = F(z,y)(t). The family Bp = {up; : t > 0} is a base for a fuzzy
uniformity Ur on X. Let 7F be the fuzzifying topology induced by UF.

In the rest of the paper, we will consider on ’R,; the fuzzifying topology induced by
the usual probabilistic pseudometric D.

Theorem 2.2 A probabilistic pseudometric F, on a fuzzifying topological space
(X,7), is T X T continuous iff Tr < 7.

Proof : Assume that 77 < 7 and let G be a subset of R;f' and u = F(z,,y,) with
Nu(G) > 6 > 0. There exists a ¢ > 0 such that 1 — sup,gg D(v,u)(t) > 6. For z,y
in X, we have

F(z,y) 2 F(z,%,) @ F(%o,Yo) ® F(Yo,y) = [F (2. %0) & F(y,%)] © F(o,Yo)-
Similarly F(z,,y,) =X [F(z,%0) ® F(y,¥)] © F(z,y). Thus
D(F(z,y), F(2o,Y0)) = F(z,20) & F(y, yo)-
Let

Ai={z € X :F(z,z,)(t/2) >1—0}, and Ay ={z € X : F(y,v0)(t/2) >1-6}.
Ifz € A;,y € As, then

D(F(z,y), F(%0,40))(t) = F(z,0)(t/2) A F(y,90)(t/2) 21 -6
and so F(z,y) € G. Also, N] (A1) > NJF (A1) > 1—supga, F(z,2,)(t/2) > 6 and
N7 (As) > 6. Therefore,

NI (FTHG)) 2 N7, (A1) AN (A1) 2 6,

which proves that N{Txf’;o)(F_l(G)) > Ny(z,.4,)(G) and so F is 7 x 7 continuous.
Conversely, assume that F is 7 X 7 continuous and let V77 (A) > 6 > 0. Choose ¢ > 0
such that N7 (A) > 6+ ¢. There exists a ¢ > 0 such that 1 —sup;¢4 F(z,2,)(f) >
0+e If

Z={u ER;; : D(u,0)(t) =u(t) >1—60 —¢},
then
N(Z) > 1—sup D(u,0)(t) > 6 +€> 6.
uéZ

Since F is 7 x 7 continuous and F(z,,z,) = 0, there exists a subset A; of X
containing z, such that 4; x A; C F~1(Z) and N,,(4;1) > 6. If z € Ay, then
F(z,z,) € Z and so F(z,z,)(t) > 1 — @ — ¢, which implies that z € A. Thus 4; C A
and so0 Nz, (A) > N;F(A) for every subset A of X and every z, € X. Hence 7p < 7
and the result follows.
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Theorem 2.3 Let F be a probabilistic pseudometric on a set X » T=7r, (T5)seca @
net in X and z € X. Then

c(zs = ) = E:glirr:sian(a;g,z)(t).

Proof: Let d = infys lim infs F(zs,z)(t) and assume that d < @ < 1. There exists a
¢ > 0 such that liminfs F(z5,2)(¢) < 6. Let A = {y : F(y,z)(t) > 6}. Then (z5) is
not eventually in A and so ¢(z; = z) <1 — N (4) < supyg 4 F(y,z)(t) < 6, which
proves that c¢(zs — z) < d. On the other hand, let ¢(zs — z) < r < 1. There exists
a subset B of X such that (z;) is not eventually in B and 1 — N,(B) < r. Let s > 0
be such that 1 — supy¢p F(y,z)(s) > 1 —r. For each 6 € A, there exists §’ > § with
Ty & B and so F(zy,z)(s) < supy¢p F'(y,z)(s). Thus d < liminfs F(zs,2)(s) < r,
which proves that d < c(xs — ) and the result follows.

Theorem 2.4 Let Fy, Fs,...,F, be probabilistic pseudometrics on X and define F
by
= i t).
F(.‘I:,y)(t) 122}:1%1an($’ y)( )

Then F 1is a probabilistic pseudometric and 1p = \/}, | 75,

Proof: Using induction on n, it suffices to prove the result in the case of 7 = 2. It
follows easily that F is a probabilistic pseudometric. Since F,Fy < F, it follows that
TR TR, < TF and 80 7, = Tp, V Tm, < 7p. On the other hand, let NZF(A) > 0> 0.
There exists a ¢ > 0 such that 1 — supye 4 F(y,z)(t) > 6. Let B; = {y € A°:
Fi(y,z)(t) < 1—6},5 =1,2. Then A° = By UB, and so A = A1 N'Ay, A; = B
Moreover N, (4;)>1— Supyep, Fi(y,z)(t) > 0 and thus

Nz (A) 2 N7 (A1) \ Njo(A2) > N7™ (A1) \ V272 (42) > 6
This proves that N7°(A) > N7¥(A) and the result follows.

For F a family of probabilistic pseudometrics on a set X , we will denote by 7£
the supremum of the fuzzifying topologies 77, F € F, i.e. 77 = VperTF.

Theorem 2.5 If 7 = 77, where F is a family of probabilistic pseudometrics on a
set X, then To(X)=Ty(X)=1— SUpy, infrer F(z,y)(0+).

Proof: Let d = 1—sup,., infrer F(z,y)(0+). It is always true that 75(X) < Ty (X).
Suppose that T3(X) > r > 0 and let = # y. Since 77 is Ty, there exists a 7'-
neighborhood A of z not containing y. Now N(A4) > r and hence, there are subsets
Aty-., An of X and F,..., F, in F such that (1 4z C A, N;"*(A), > r. Since y is
not in A, there exists a k with y ¢ A;. Let £ > 0 be such that

1= sup Fi(z,z)(t) >r andso inf F(z,y)(t)(0+) < Fi(z,y)(t) <1—r,
zg Ay FeF

which proves that d > r. Thus d > T1(X). On the other hand, assume that
d>6>0and let z # y. Choose € > 0 such that d > 6 + ¢. There exists F € F
with F(z,y)(0+) <1 — 60 — ¢ and hence F(z,y)(t) <1 — 6 — ¢ for some ¢ > 0. Let

A={z:F(2,2)(t/2) >1—0—¢}, B={z: F(z,9)(¢/2) > 1 — 6 —¢€}.
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Clearly z € A,y € B.If z € AN B, then
F(z,y)(t) > F(z,2)(t/2) A F(z,y)(t/2) > 1 —6 —,
a contradiction. Thus A N B = @. Moreover

Nz(A) > NJF(A) >1—supF(z,z)(t/2) 20+ €>0 and N,(A) > 6.
Z¢A

It follows that T5(X) > d and the proof is complete.

Let us say that a fuzzifying topology 7 on a set X is pseudometrizable if there
exists a probabilistic pseudometric F' on X with 7 = 7F.

Theorem 2.6 A fuzzifying topology 7 on X is pseudometrizable iff each level topol-
ogy 7°,0 < 6 < 1, is pseudometrizable.

Proof: Assume that 7 = 7 for some probabilistic pseudometric F and let 0 < 6 < 1.
For each positive integern, with n > 1/(1 — 6), let

Ap = {(z,y) € X2: F(z,y)(1/n) >1—60 —1/n}.

Then A, C A, and the family D = {4, : n € N,n > 1/(1 — 6)} is a base for
a uniformity &/ on X. The topology oy induced by ¢/ is pseudometrizable since D
is countable. Moreover oy = 7%. Indeed, let A be a og-neighborhood of x. There
exists n € N,n > 1/(1 — ), such that B = {y : F(z,y)(1/n) > 1—-6—I/n} C A.
Now
NI(4) > NI(B) > 1—sup F(z,y)(1/n) > 0+ 1/n >0
y¢B

and so A is a 7%-neighborhood of . Conversely, assume that A is a 7%-neighborhood
of z. There exists € > 0 with N;(A4) > 0 + e. Now there exists a positive integer
n > 1/e such that 1 —sup,¢4 F(z,y)(1/n) > 6 + 1/n. Hence

{y: F(z,y)(1/n) >1—-0—-1/n} C A,

which implies that A is a og-neighborhood of z. Thus ¢ = o4 and therefore each
79 is pseudometrizable. Conversely, suppose that each 77 is pseudometrizable. By
an argument analogous to the one used in the proof of Theorem 3.3 in [4], we
show that there exists a family {dp : 0 < 8 < 1} of pseudometrics on X such that
dg = supg,~pdp,, for each 0 < 6 < 1, and 7% coincides with the topology induced by
the pseudometric dy. Now, for z,y in X, define F(z,y) : R — [0,1] by F(z,y)(f) =0
ift <0 and F(z,y)(t) = sup{f : 0 < 8 < 1,d1¢(z,y) <t} ift > 0. It is clear
F(z,y) is increasing and left continuous. For 0 <r < 1 and t > d;_,(z,y), we have
that F(z,y)(t) > r and so limseo F(z,y)(t) = 1. Also F(z,z)(t) = 1 for every z
and every ¢t > 0. To show that F' is a probabilistic pseudometric on X, we must
prove that it satisfies the triangle inequality. So, let F'(z,y)(t1)AF(y, 2)(t2) > 6 > 0.
Then dy_¢(z,y) < t1,d1-¢(y,z) < t2 and so di—g(z, z) < t1 + t2, which implies that
F(z,2)(t1 +1t2) > 6. Thus the triangle inequality is satisfied and F is a probabilistic
pseudometric. We will finish the proof by showing that 77 = 7. Solet NJF >80 >0
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and choose ¢ > 0 such that 1 — supyg4 F(y,2)(¢) > 0. If now dg(z,y) < t, then
F(z,y)(¢) > 1 — 6 and thus y € A, which proves that A is a oy = 7 neighborhood
of z. Hence 7 > 7p. On the other hand, let B be a Te-neighborhood of z. There
exists 61 > 6 such that N;(B) > 6,. Now B is a 74,-neighborhood of z and so
there exists ¢ > 0 such that {y : dp,(z,y) < t} ¢ B. If Flz,y)(t) > 1 - 64,
then there exists o > 1 — 6; such that dy_o(z,y) < t and so dp, (z,y) < t..Thus
{v: F(z,y)(t) > 1 —6:} C B and therefore

NzF(B) > 1 —sup F(z,y)(t) > 8; > 6.
y¢B

Thus 7¢ > 7 and the result follows.

Theorem 2.7 Let (X, F) be a probabilistic pseudometric space, AC X andz € X.
Let

a = sup{infiyq liminf, F(z,,z)(t) : (z,) sequence in A}

B = sup{liminf, F(zn,z)(t,) : tn = O+, (z,) sequence in A}

v = sup{liminf, F(z,,z)(1/n) : (zn) sequence in A}

Then a = 8 =v = A(z).
Proof: If (z,) C A, then

A(z) > c(zn — z) = 1%E:glj_tr:TLIinfF(..'v;n,x)(if)

and so A(z) > a. Assume that 8> 6 > 0. There exist a sequence (z,) in A and a se-
quence (t,) of positive real numbers, with t, — 0+, such that lim inf,, F (Zn, T)(Er) >
6. Let ¢ > 0 and choose k such that ¢, < ¢t when n > k. For m > k we have
infrsm F(2n,2)(t) > infoom F(2n,z)(tn) > 0. Thus liminf, F(z,,z)(t) > 6 for
each ¢ > 0 and so o > 6, which proves that o > f. Clearly 8 > «v. Finally,
No(4°) > 1 - supyeaF(y,2)(1/n) and so sup,es F(y,z)(1/n) > 1 - Ny(A°) =
A(z) > A(z)—1/n. Hence, for each n € N, there exists z,, € A with F(z,,z)(1/n) >
A(z) — 1/n. Consequently,

v 2 limiof F(z5, 2)(1/n) > lim inf(A(z) — 1/n) = A(z)

and 50 vy > A(z) > a > > v, which completes the proof.

In view of [4], Theorem 4.14, we have the following

Corollary 2.8 Every pseudometrizable fuzzifying topological space is N-sequential
and hence sequential.

Theorem 2.9 If (Fy,) is a sequence of probabilistic pseudometrics on a set X , then
there erists a probabilistic pseudometric F such that 1¢ = V,.7E,-

Proof: If F is a probabilistic pseudometric on X and if F is defined by F(z, y)(t) =
F(z,y)(t) ift <1and F(z,y)(t) = 1ift > 1, then F is a probabilistic pseudometric
on X and 7z = 7r. Hence, we may assume that Fy(z,y)(t) = 1, for all n, if ¢ > 1.
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For z,y in X, define F(z,y) on R by F(z,y)(t) = 0if ¢t < 0 and F(=z,y)(f) =
inf,[2F,(z,9)](¢) if ¢ > 0. Clearly F(z,y) is increasing and F(z,y)(¢) = 1ift > 1.
Also F(z,y) is left continuous. In fact, let F(z,y)(t) > € > 0 and choose n such that
(n+ 1)t > 1. There exists 0 < s; < t such that Fi(z,y)(ks1) >0 for k=1,...,n.
Choose s; < s < t such that (n + 1)s > 1. Now Fp,(z,y)(ms) =1 if m > n. Thus

Flz,y)(s) = min [2Fi(z,1)](s) >,

which proves that F(z,y) is in R;‘. It is clear that F(z,z) = 0. We need to prove
that F satisfies the triangle inequality. So assume that F(z,y)(t1) A F(y, z)(t2) >
@ > 0. If m is such that (m + 1)(¢; + t2) > 1, then

F(z,2)(t1 +1;) = min Fi(z, z)(k(t1 + t2)).
Since
Fi(z,z)(k(t1 + t2)) > Fr(z,y)(kt1) A Fr(y, 2)(kt2) > 6,

it follows that F(z,z)(t; + t2) > 6 and so F satisfies the triangle inequality. We
will finish the proof by showing that 77 = \/ 7F,. To see this, we first observe that
%Fn = F which implies that 75, = TLip, <7tpandso7, =YV, TiF, < 7¢. On the
other hand, let NZF(A) > 6 and choose € > 0 such that NJF(A) > 6 +e. Lett >0
be such that 1 —supyg 4 F(y,z)() > 6 +e. If (m+ 1)t > 1, then

Fly,2)(t) = | gciéﬂm Fy(y, z)(kt).

Let Ay = {y: Fr(y,z)(kt) > 1 — 6 — €}. Then
NI (Ay) > No* (Ag) > 1 — sup,ga, Fi(z,3)(kt) > 0+€> 6

and (i, Ar C A. Hence NJ°(A) > mincr<m Nj°(Ar) > 6. This proves that
Trp < T, and the result follows.

Theorem 2.10 Let f : X — Y be a function and let F' be a probabilistic pseudo-
metric on Y. Then the function

FHE) X2 = REL fTUF)(zy) = F(f(2), f()

is a probabilistic pseudometric on X and Ts-1(p) = 71 (7F)-

Proof: Tt follows easily that f!(F) is a probabilistic pseudometric on X. Let z € X
and BC X. If D=Y\ f(B°), then

N/ (B) = infiso[l ~ supygp F(F(y), £(2)) (2]
= infyo[l — SUP, ¢ pe I (2, f(2))(2)]
= N7, (D) =N (),

which clearly completes the proof.
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Corollary 2.11 If F is a probabilistic pseudometric on a set X and Y C X , then
7rly is induced by the probabilistic pseudometric G = Flyxy,G(z,y) = F(z,y).

Corollary 2.12 If (X,,,) is a sequence of pseudometrizable Jfuzzifying topological
spaces, then the cartesian product (X,7) = ([] Xn,[] %) is pseudometrizable.

Proof: Let Fy, be be a probabilistic pseudometric pseudometric on X, inducing 7.
If Gn = n;1(Fy), then 7, = 7, (73) and so 7 = \/, 77} (75) is pseudometrizable.

3 Level Proximities

Let 6 be a fuzzifying proximity on a set X. For each 0 < d < 1, let 6% be the binary
relation on 2% defined by : A%B iff 6(4,B) > d. It is easy to see that 6¢ is a
classical proximity on X. We will show that the classical topology o4 induced by §¢
coincides with 71~%. In fact, let z € A € 64. Then, z is not in the o-closure of A¢,
which implies that z $%4°, i.e. 6(z, A°) < d, and so NJ(A) =1 — §(z, A°) > 1 — d.
This proves that A € 7'7%. Conversely, if z € B € 1%, then N7(4) > 1 — d and
thus 6(z, A°) < d, which implies that z is not in the o4-closure of B¢. Hence BC is
og-closed and so B is oz-open.

Theorem 3.1 If § is a fuzzifying prozimity on a set X and 0 < d <1, then

=\ &.

0<8<d

Proof: If 0 < 6 < d, then 6? is coarser than §¢ and so 6, = \/, <0< 0 is coarser than
6%. On the other hand, let A6,B. Since 8, is finer than 6% (for 0 < 6 < d), we have
that A6°B and so §(A4, B) > 4, for each 0 < 6 < d, which implies that §(A,B) > d,
ie. A¢®B. So 4, is finer than 62 and the result follows.

Theorem 3.2 For a family {y;:0<d < 1} of classical prozimities on a set X the
following are equivalent:

(1) There ezists a fuzzifying prozimity & on X such that 6% = g for all d.

(2) va = V0<g<d Yo for each 0 < d < 1.

Proof: In view of the preceding Theorem, (1) implies (2). Assume now that (2) is
satisfied and define § on 2% x 2% by §(4, B) = sup{d : Av4B} ( the supremum over
the empty family is taken to be zero). It is clear that §(A4,B) = 1 if the A, B are
not disjoint. Also §(4,B) = é6(A4,B) and §(4,B > §(41,B1) if A; C A, B; C B.
Let now 6(A,B) < d < 1. Then A /4B and so there exists a subset D of X such
that A /4D and D¢ AuB. Since A AyD, we have that 0(A,D) < d. Similarly
§(D% B) < d and so inf{6(4,D) A §(D°,B)} < 6(4,B). On the other hand, if
0(A,D) AS(D°,B) < 6 < 1, then A C D° and so §(4,B) < d(D¢, B) < 6. This
proves that § is a fuzzifying proximity on X. We will finish the proof by showing that
% = 74 for all d. Indeed, if Ay4B, then §(A4, B) > d, i.e. A6%B. On the other hand,
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let A6“B and let (4;), (B;) be finite families of subsets of X with A = U;, B = UB;.
Since §(A, B) = Vi,j 0(A;, Bj) > d, there exists a pair (1,7) such that 6(4;, B;) > d.
If now 0 < @ < d, then there exists r > 6 with A;,B; and so A;ypB;. This proves
that Av,4B since 74 = Vgcg<qve- This completes the proof.

Theorem 3.3 Let (X,61),(Yd2) be fuzzifying prozimity spaces and let f : X = Y
be a function. Then f is prozimally continuous iff f : (X, 0%) — (Y, 62) is prozimally
continuous for each 0 <d < 1.

Proof: It follows immediately from the definitions.

Theorem 3.4 Let (X»,05)rca be a family of fuzzifying prozimity spaces and let
(X,6) = (II1 X, T16x) be the product fuzzifying prozimity space. Then &% = B
forall0<d<1.

Proof: Since each projection 7 : (X,6%) — (X),6%) is proximally continuous, it
follows that ¢¢ is finer than o = []&¢. On the other hand, let Ao B. We need to
show that d(A, B) > d. In fact, let (4;), (B;) be finite families of subsets of X such
that A = UA;, B = UB;. Since AoB and ¢ = \/, 7} (6¢), there exists a pair (4, 5)
such that A;w;1(69)By, i.e. 8(ma(4;),mA(B;)) > d. In view of Theorem 8.9 in 2],
we conclude that 6(4, B) > d. Hence o = §% and the proof is complete.

We have the following easily established

Theorem 3.5 Let (Y, 0) be a fuzzifying prozimity space and let f : X —Y. Then
F7Y8)e = f~1(6%) for each 0 < d < 1.

Theorem 3.6 Let (6))xen be a family of fuzzifying prozimities on a set X and
8 = Vy0y. Then 6% = Vi 53{ for each 0 <d < 1.

Proof: Let o = \/, 6. Since § is finer than each dy, it follows that §¢ is finer than
each 6% and so ¢ is finer than . On the other hand, let AgB and let (4;), (B;)
be finite families of subsets of X such that A = UA;, B = UB;. There exists a
pair (4, j) such that A;0B;. Since o is finer than each 5§, we have that A,—JﬁBj, ie.
0x(A;, Bj) > d. In view of Theorem 8.10 in [2], we get that 6(4, B) > d, i.e. A§%B.
So o is finer than §% and the proof is complete.

4 Completely Regular Fuzzifying Spaces

Definition 4.1 A fuzzifying topological space (X, 7) is called completely reqular if
each of the classical level topologies 72,0 < d < 1 is completely regular.

Definition 4.2 A fuzzifying prozimity § on a set X is said to be compatible with a
fuzzifying topology T if T coincides with the fuzzifying topology 75 induced by §.

We have the following easily established

Theorem 4.3 Subspaces and cortesian products of completely regular fuzzifying
spaces are completely regular.
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Theorem 4.4 Let (X,7) be a completely regular fuzzifying topological space and
define 6 = &(7) : 2% x 2X = [0,1] by

0(4,B) =1-sup{d:0<d <1,3f : (X,7%) = [0,1] continuous F(A) =0, f(B) = 1}.

Then: (1) ¢ is a fuzzifying prozimity on X compatible with T.

(2) If &1 is any fuzzifying prozimity on X compatible with T, then § is finer than
b1.

Proof: 1t is easy to see that § satisfies (FP1), (FP2),(FP3) and (FP5). We will
prove that § satisfies (FP4). Let

o =inf{dA,D) V(D% B): D C X}.

If 6(A, D)vé(De, B) < 6, then A C D°and so §(4, B) < §(D°, B) < 6, which proves
that §(A4, B) < . On the other hand, assume that §(4, B) < r < 1. There exist a
d,1-r <d<1,and f:X — [0,1] 7%continuous such that f(4) = 0, f(B) = 1.
Let D = {z € X : 1/2 < f(z) < 1} and define hy,hy : [0,1] — [0, 1L Ai(t) =
26,ha(t) = 010 <t < 1/2 and hy(t) = Lho(t) = 26 —1if1/2 < t < 1. If
9i = hjo f,i = 1,2, then gl(A) = O,QI(D) = ng(Dc) = O:QQ(BJ = 1. Thus
0(4,D) £1-d < r,6(D°%B) < r, which proves that o < 6(A,B). Hence 6 is a
fuzzifying proximity on X. We need to show that 7 = 5. So, let 7(A) > 8 > 0. Since
79 is completely regular, given z € A, there exists f, : X — [0, 1],Tg—continuous,
fz(z) = 0, fz(A°) = 1. Thus §(z,A°) < 1—6 and so NF(4) = 1 —o(z, A%) > 0.
It follows that 75(A) = infzec4 N7 (A) > 6, which proves that 75 > 7. On the other
hand, assume that 75(A4) > r > 0. If z € A, then §(z, A°) = 1 —NJ(A) <1-r,and
therefore there exists a d,0 <1—-d < 1—r and f: X — [0,1] 7%continuous such
that f(z) = 0,7(A°) = 1. Theset G = {y: f(y) <1/2}isin 7% and z € G C A.
Thus
Nz (A) =2 N7 (G) zd>r.

This proves that 7(4) > r and so 7 > 75, which completes the proof of (1).

Let 6 be a fuzzifying proximity on X compatible with 7 and let A, B be subsets of
X with 01(4,B) <0 < 1.Ifd=1-9, then &/ is compatible with 7%. Since A 5B,
there exists (by [11], Remarks 3.15) an f : X — [0,1] 74-continuous, with f (A) =
0,f(B) =1, and so §(4, B) < 1 — d = 0, which proves that 0(A,B) < 6;(A, B) and
therefore ¢ is finer than ;. This completes the proof.

Theorem 4.5 For a fuzzifying topological space (X, T), the following are equivalent:
(1) (X, 1) is completely regular.

(2) There exists a fuzzifying prozimity § on X compatible with T.

(8) (X,7) is fuzzy uniformizable, i.e. there ezists a fuzzy uniformity U on X such
that 7 coincides with the fuzzifying topology 1 induced by U.

Proof: By [3], (2) is equivalent (3). Also (1) implies (2) in view of the preceding
Theorem. Assume now that 7 = 75 for some fuzzifying proximity J. For each
0 <d<1,48%is a classical proximity compatible with 71~% and so 1= ¢ is completely
regular. This completes the proof.
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Theorem 4.6 Every pseudometrizable fuzzy topological space (X,T) is completely
regular.

Proof: If T is pseudometrizable, then each 7¢,0 < d < 1, is pseudometrizable and
hence 7¢ is completely regular.

Theorem 4.7 For a fuzzifying topological space (X, T), the following are equivalent:
(1) (X,7) is completely regular.

(2) If F = F; = cp(X) is the family of all probabilistic pseudometrics on X which
are T X T continuous as functions from X2 to R'*' then T = T£..

(3) There exzists a family F of probabilistic pseudometrzcs on X such that 7 = 7.

Proof: (1) = (2). For each F € F;, we have that 7 < 7 (by Theorem 2.2) and
so 77, < 7. Let now A C Xandmﬂ € X with N (4) > 6 > 0. Since 7¢ is

completely regular, there exists a 7%-continuous function f from X to [0,1] such
that f(z,) = 0, f(A°) = 1. For z,y € X, define F(z,y) on R by

0 if $<0
F(z,y)(f)={ 1-6 i |f(z)-Fflw)|>t>0
1 if |f(z)-Ffy)l <t

Clearly F(z,y) = F(y,z) € R} and F(z,z) = 0. We will prove that F satisfies
the triangle inequality. So, assume that F(z,y)(t1) A F(y,2)(t2) > F(z, 2)(t; + t2).

Then, t1,20 > 0, F(z, z)(t1 + tg) = 1-6,F(z,y)(t1) = F(y,2)(t2) =.1. Thus
t1 > |f(z) — f ()], 12 > |f(y) — f(2)| and hence |f(z) — f(2)| < i1+ %2, which implies
that F(z,z)(t; +t2) = 1, a contradiction. So F is a probabilistic pseudometric on
X. Next we show that F is 7 x 7 continuous, or equivalently that 77 < 7. So assume
that NJ7(B) > r > 0. Let 6; > r be such that NJ*(B) > 6;. Choose ¢ > 0 such
that 1 — sup,gp F(z,y)(¢) > 6; and so F(z,y)(t) = 1 — @ and |f(z) — F(y)| > t if
y ¢ B. Thus {y: |f(z) — f(y)| < t} C B. This shows that B is a 7%-neighborhood
of z. Asr < 0, B is a 7"-neighborhood of z, i.e. NJ(B) > r and so 75 < 7. Finally
ify ¢ A, then |f(y) — f(z,)| =1 and so F(y,z,)(1/2) = 1 — 6, which implies that

N;7(A) 2 N;T(A) 2 1—sup F(y,z,)(1/2) > 6
YEA
This shows that N7 > N; and so 7 < 77, which completes the proof of the
implication (1) = (2).
(3) = (1) Assume that 7 = 7 for some family F of probabilistic pseudometrics on
X For each F € F,7F is completely regular and so 75 is completely regular since
s = Vper 72 for each 0 < d < 1. Hence the result follows.

We will denote by [0,1]4 the subspace of R consisting of all u € R with
W) =1 1.

Theorem 4.8 A fuzzifying topological space (X, T) is completely reqular iff the fol-
lowing condition is satisfied: If N, (A) > 8 > 0, then there ezists f : X — [0,1],4
continuous such that f(z,) =0 and f(y)(t) =1—-0ify¢ A and 0 <t < 1.
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Proof: Assume that (X, 7) is completely regular and let N;,(A) > 6> 0. Since 79 is
completely regular, there exists & : (X, 7%) — [0,1] continuous, h(z,) = 0, h(y) =1
ify & A. For z,y in X, define F(z,y) on R by

0 if £<0
F(z,y)(t) = { 1-6 if |h(z) —hA(z,)|2t>0

1 if |h(z) — h(z,)| <t
Clearly F(z,y) € [0,1]. Also F(z,z) < F(z,y) & F(y, z). In fact, assume that
F(‘r-:y)(tl) A F(yvz)(t?) >r > F(.’B,Z)(tl =+ t2)‘ Then t1,t2 > O:F(‘T,y)(tl) =
F(y,z)(t2) = 1. Now |h(z)—h(y)| < 1, |h(y)—h(z)| < t» and so |h(z)—R(2)] < t1+t2
which implies that F(z,z2)(t; + t3) = 1, a contradiction. So F is a probabilistic
pseudometric. Moreover Fis 7 X 7 continuous, or equivalently 77 < 7. In fact, let
NZF(B) > r > 0. There exists a ¢ > 0 such that 1 — sup,¢p F(z,z)(t) >r. If 2 ¢ B,
then F(z,2)(f) < 1—r < landso F(z,z)(t) = 1—-60 < 1 —r, ie. r < 6, and
|h(z) — h(z)| > t. Hence

M = {z:|h(z) — h(z)| < t} C B.

The set M is a 79-neighborhood of z and hence a 7"-neighborhood, i.e. NI(B) >
r. Thus 7 > 7p. Finally, define f : X — [0,1]4,7(v) = F(y,z,). Then fis
7-continuous, f(z,) = 0. For y ¢ A and 0 < t < 1, we have that f(y)(t) =
F(y,z,)(t) = 1 — @ (since |h(z) — h(z,| = 1 > t). Conversely, assume that the
condition is satisfied and let F be the family of all 7 x T continuous pseudometrics
on X. Then 7= < 7. Let N (A) > 6. There exists a 6; > 0 such that N7 (A) > 6.
By our hypothesis, there exists f : X — [0, 1]4 continuous such that f(z,) = 0 and
fly)t)=1-6,ify ¢ Aand 0 <t < 1. Define F(z,y) = D(f(z), f(y)). Then F is
T X 7 continuous and

NzZ(A) 2 N7F(A) 21— supyg 4 F(zo,9)(1)
=1—sup,g4 D0, f(y))(1)
=1—sup,g, f(y)(1) > 61 > 6.
Thus N77(A) > Nj (A), for every subset A of X and so 7 < 7+ Therefore,
7T = T and so 7 is completely regular.

For a fuzzifying topological space X, we will denote by C(X, [0,1]) the family
of all continuous functions from X to [0,1].

Theorem 4.9 A fuzzifying topological space (X,7) is completely regular iff T co-
incides with the weakest of all fuzzifying topologies 7 on X for which each f €
C(X,[0,1]4) is continuous.

Proof: Assume that (X,7) is completely regular and let 7, be the weakest of all
fuzzifying topologies on X for which each f € C(X, [0,1]g) is continuous. Clearly
71 < 7. On the other hand, let 7, be a fuzzifying topology on X for which each
f € C(X,[0,1]) is continuous. Let NZ(4A) > 6 > 0. In view of the preceding
Theorem, there exists an f € C(X,[0,1]y) such that f(z) = 0, f(y)(t) = 1 — 6 if
y¢ Aand 0 <t<1. Let

G={ue R;f' : D(f(z),u)(1/2) = u(1/2) > 1 - 6}.

61



Katsaras

Then
Np(G) >1- S}elpD(f(m),u)(lﬂ) > 0.
uéG

Since f is Tp-continuous, we have that N72(f~1(G)) > 8. But f~%(G) C A since,
for y ¢ A, we have that f(y)(1/2) = 1 — 6. Thus N72(4) > 6. This proves that
NI (A) > NZ(A), for every subset A of X and so 72 > 7. This clearly proves that
71 = 7. Conversely, assume that 71 = 7. If ¢ is the usual fuzzifying topology of R,
then

T=r= v o).

feC(X,[0.1]y)

Since o is completely regular, each f~!(o) is completely regular and so T is com-
pletely regular. This completes the proof.
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