Completely Regular Fuzzifying Topological Spaces

A. K. Katsaras
Department of Mathematics
University of Ioannina
45110 Ioannina, Greece

Abstract

Some of the properties of the completely regular fuzzifying topological spaces are investigated. It is shown that a fuzzifying topology τ is completely regular iff it is induced by some fuzzy uniformity or equivalently by some fuzzifying proximity. Also, τ is completely regular iff it is generated by a family of probabilistic pseudometrics.

Key words and phrases: Fuzzifying topology, Fuzzifying proximity, fuzzy uniformity, probabilistic pseudometric.

1991 Mathematics Subject Classification: 54 A40

Introduction

The fuzzifying topologies were introduced by M. Ying in [15]. A classical topology is a special case of a fuzzifying topology. In a fuzzifying topology τ on a set X, every subset A of X has a degree $\tau(A)$ of belonging to τ , $0 \le \tau(A) \le 1$. In [1] we defined the degrees of compactness, of local compactness, Hausdorffnes e.t.c. in a fuzzifying topological space (X,τ) . We also gave the notion of convergence of nets and filters and introduced the fuzzifying proximities. Every fuzzifying proximity δ induces a fuzzifying topology τ_{δ} . In [4] we studied the level classical topologies τ^{θ} , $0 \le \theta < 1$, corresponding to a fuzzifying topology τ . In the same paper we studied connectedness and local connectedness in fuzzifying topological spaces as well as the so called sequential fuzzifying topologies. In [3] we introduced the fuzzifying syntopogenous structures. We also proved that every fuzzy uniformity \mathcal{U} , as it is defined by Lowen in [8], induces a fuzzifying proximity $\delta_{\mathcal{U}}$ and that , for every fuzzifying proximity δ , there exists at least one fuzzy uniformity \mathcal{U} with $\delta = \delta_{\mathcal{U}}$.

In this paper, we continue with the investigation of fuzzifying topologies. In particular we study the completely regular fuzzifying topologies, i.e those fuzzifying topologies τ for which each level topology τ^{θ} is completely regular. As in the classical case, we prove that, for a fuzzifying topology τ on X, the following properties are equivalent: (1) τ is completely regular; (2) τ is uniformizable, i.e. it is induced

by some fuzzy uniformity; (3) τ is proximizable, i.e. it is induced by some fuzzifying proximity; (4) τ is generated by a family of so called probabilistic pseudometrics on X. We also give a characterization of completely regular fuzzifying spaces in terms of continuous functions. Many Theorems on classical topologies follow as special cases of results obtained in the paper.

1 **Preliminaries**

A fuzzifying topology on a set X (see [15]) is a map $\tau: 2^X \to [0,1]$, (where 2^X is the power set of X) satisfying the following conditions:

(FT1)
$$\tau(X) = \tau(\emptyset) = 1$$
.

$$(FT2) \ \tau(A_1 \cap A_2) \ge \tau(A_1) \wedge \tau(A_2).$$

(FT3)
$$\tau(\bigcup A_i) \ge \inf_i \tau(A_i)$$
.

If τ is a fuzzifying topology on X and $x \in X$, then the τ -neighborhood system of x is the function

$$N_x = N_x^{\tau} : 2^X \to [0, 1], N_x(A) = \sup\{\tau(B) : x \in B \subset A\}.$$

By ([15], Lemma 3.2) we have that $\tau(A) = \inf_{x \in A} N_x(A)$.

Theorem 1.1 ([15], I, Theorem 3.2). If τ is a fuzzifying topology on a set X, then the map $x \to N_x = N_x^{\tau}$, from X to the fuzzy power set $\mathcal{F}(2^X)$ of 2^X , has the following properties:

(FN1)
$$N_x(X) = 1$$
 and $N_x(A) = 0$ if $x \notin A$.

$$(FN2) N_x(A_1 \cap A_2) = N_x(A_1) \wedge N_x(A_2).$$

$$(FN3) N_x(A) \leq \sup_{x \in D \subset A} \inf_{y \in D} N_y(D).$$

(FN3) $N_x(A) \leq \sup_{x \in D \subset A} \inf_{y \in D} N_y(D)$. Conversely, if a map $x \to N_x$, from X to $\mathcal{F}(2^X)$, satisfies (FN1) – (FN3), then the map

$$\tau: 2^X \to [0,1], \tau(A) = \inf_{x \in A} N_x(A),$$

is a fuzzifying topology and $N_x = N_x^{\tau}$ for every $x \in X$.

Let now (X,τ) be a fuzzifying topological space. To every subset A of X corrersponds a fuzzy subset $\bar{A} = \bar{A}^{\tau}$ of X defined by $\bar{A}(x) = 1 - N_x(A^c)$. A function f, from a fuzzifying topological space (X, τ_1) to another one (Y, τ_2) , is said to be continuous at some $x \in X$ (see [2]) if $N_x(f^{-1}(A)) \geq N_{f(x)}(A)$ for every subset A of Y. If f is continuous at every point of X, then it is said (τ_1, τ_2) —continuous. As it is shown in [2], f is continuous iff $\tau_2(A) \leq \tau_1(f^{-1}(A))$ for every subset A of Y. For $f: X \to Y$ a function and τ a fuzzifying topology on $Y, f^{-1}(\tau)$ is defined to be the weakest fuzzifying topology on X for which f is continuous. By [2], $f^{-1}(\tau)$ is given by the neighborhood structure $N_x(A) = N_{f(x)}(Y \setminus f(A^c))$. If $(\tau_i)_{i \in I}$ is a family of fuzzifying topologies on X, we will denote by $\bigvee_{i \in I} \tau_i$, or by $\sup \tau_i$, the weakest of all fuzzifying topologies on X which are finer than each τ_i . As it is proved in [2], $\bigvee_{i\in I} \tau_i$ is given by the neighborhood structure

$$N_x(A) = \sup \{ \inf_{i \in J} N_x^{\tau_i}(A_i) : x \in \bigcap_{i \in J} A_i \subset A \},$$

where the infimum is taken over the family of all finite subsets J of I and all $A_i \subset X, i \in J$. For Y a subset of a fuzzifying topological space $(X,\tau),\tau|_Y$ will be the fuzzifying topology induced on Y by τ , i.e. the fuzzifying topology $f^{-1}(\tau)$ where $f:Y\to X$ is the inclusion map. For a family $(X_i,\tau_i)_{i\in I}$ of fuzzifying topological spaces, the product fuzzifying topology $\tau=\prod \tau_i$ on $X=\prod X_i$ is the weakest fuzzifying topology on X for which each projection $\pi_i:X\to X_i$ is continuous. Thus $\tau=\bigvee_i\pi_i^{-1}(\tau_i)$ and it is given by the neighborhood structure

$$N_x(A) = \sup \{ \inf_{i \in J} N_{x_i}(A_i) : x \in \bigcap_{i \in J} \pi_i^{-1}(A_i) \subset A \},$$

where the supremum is taken over the family of all finite subsets J of I and $A_i \subset X_i$, for $i \in J$ (see [2]).

The degree of convergence to an $x \in X$, of a net (x_{δ}) in a fuzzifying topological space (X, τ) , is the number $c(x_{\delta} \to x) = c^{\tau}(x_{\delta} \to x)$ defined by

$$c(x_{\delta} \to x) = \inf\{1 - N_x(A) : A \subset X, (x_{\delta}) \quad \text{frequently in } A^c\}.$$

As it is shown in [4], for $A \subset X$ and $x \in X$, we have

$$\bar{A}(x) = \max\{c(x_{\delta} \to x) : (x_{\delta}) \text{ net in } A\}.$$

The degree of Haudsdorffness of X (see [2]) is defined by

$$T_2(X) = 1 - \sup_{x \neq y} \sup \{ c(x_\delta \to x) \land c(x_\delta \to y : (x_\delta) \text{ net in } X \}.$$

Also, the degree of X being T_1 is defined by

$$T_1(X) = \inf_{x} \inf_{y \neq x} \sup \{ N_x(B) : y \notin B \}.$$

Let now (X,τ) be a fuzzifying topological space. For each $0 \le \theta < 1$, the family $B_{\theta}^{\tau} = \{A \subset X : \tau(A) > \theta\}$ is a base for a classical topology τ^{θ} on X (see [3]). It is easy to see that a subset B of X is a τ^{θ} -neighborhood of x iff $N_x(B) > \theta$. By [4], $T_2(X)$ (resp. $T_1(X)$) is the supremum of all $0 \le \theta < 1$ for which τ^{θ} is T_2 (resp. T_1). Also, for $\tau = \forall \tau_i$, we have that $\tau^{\theta} = \sup_i \tau_i^{\theta}$ (see [3], Theorem 3.5). If $\tau = \prod \tau_i$ is a product fuzzifying topology, then $\tau^{\theta} = \prod \tau_i^{\theta}$ (see [3], Theorem 3.5). If Y is a subspace of (X,τ) and $\tau_1 = \tau|Y$, then $\tau_1^{\theta} = \tau^{\theta}|Y$. By [3], Theorem 3.10, for a fuzzifying topological space (X,τ) , co(X) coincides with the supremum of all $0 < \theta < 1$ for which $\tau^{1-\theta}$ is compact.

Next we will recall the notion of a fuzzifying proximity given in [2]. A fuzzifying proximity on a set X is a map $\delta: 2^X \times 2^X \to [0,1]$ satisfying the following conditions: (FP1) $\delta(A,B) = 1$ if the A,B are not disjoint.

(FP2) $\delta(A,B) = \delta(B,A)$.

(FP3) $\delta(\emptyset, B) = 0$.

(FP4) $\delta(A_1 \cup A_2, B) = \delta(A_1, B) \vee \delta(A_2, B)$.

(FP5) $\delta(A, B) = \inf\{\delta(A, D) \lor \delta(D^c, B) : D \subset X\}.$

Every fuzzifying proximity δ induces a fuzzifying topology τ_{δ} given by the neighborhood structure $N_x(A) = 1 - \delta(x, A^c)$. A fuzzifying proximity δ_1 is said to be finer

than another one δ_2 if $\delta_1(A, B) \leq \delta_2(A, B)$ for all subsets A, B of X. For $f: X \to Y$ a function and δ a fuzzifying proximity on Y, the function

$$f^{-1}(\delta): 2^X \times 2^X \to [0,1], f^{-1}(\delta)(A,B) = \delta(f(A),f(B)),$$

is a fuzzifying proximity on X (see [2]) and it is the weakest of all fuzzifying proximities δ_1 on X for which f is (δ_1, δ) -proximally continuous, i.e. it satisfies $\delta_1(A, B) \leq \delta(f(A), f(B))$ for all subsets A, B of X. As it is shown in [2], $\tau_{f^{-1}(\delta)} = f^{-1}(\tau_{\delta})$.

Let now $(\delta_{\lambda})_{{\lambda} \in {\Lambda}}$ be a family of fuzzifying proximities on a set X. We will denote by $\delta = \bigvee_{\lambda} \delta_{\lambda}$, or by $\sup \delta_{\lambda}$, the weakest fuzzifying proximity on X which is finer than each δ_{λ} . By [2], Theorem 8.10, δ is given by

$$\delta(A,B) = \inf \{ \sup_{i,j} \inf_{\lambda \in \Lambda} \delta_{\lambda}(A_i, B_j) \},$$

where the infimum is taken over all finite collections (A_i) , (B_j) of subsets of X with $A = \bigcup A_i$, $B = \bigcup B_j$. Moreover, $\tau_{\delta} = \bigvee \tau_{\delta_{\lambda}}$ (see [2]).

Finally we will recall the definition of a fuzzy uniformity introduced by Lowen in [8]. For a set X, let Ω_X be the collection of all functions $\alpha: X \times X \to [0,1]$ such that $\alpha(x,x)=1$ for all $x \in X$. For α,β in Ω_X the $\alpha \wedge \beta,\alpha \circ \beta$ and α^{-1} are defined by $\alpha \wedge \beta(x,y)=\alpha(x,y)\wedge \beta(x,y),\alpha \circ \beta(x,y)=\sup_z \beta(x,z)\wedge \alpha(z,y),\alpha^{-1}(x,y)=\alpha(y,x)$. If $\alpha=\alpha^{-1}$, then α is called symmetric. A fuzzy uniformity on X is a non-empty subset $\mathcal U$ of Ω_X satisfying the following conditions:

(FU1) If $\alpha, \beta \in \mathcal{U}$, then $\alpha \wedge \beta \in \mathcal{U}$.

(FU2) If $\alpha \in \mathcal{U}$ is such that, for every $\epsilon > 0$, there exists a $\beta \in \mathcal{U}$ with $\beta \leq \alpha + \epsilon$, then $\alpha \in \mathcal{U}$.

(FU3) For each $\alpha \in \mathcal{U}$ and each $\epsilon > 0$, there exists a $\beta \in \mathcal{U}$ with $\beta \circ \beta \leq \alpha + \epsilon$. (FU4) If $\alpha \in \mathcal{U}$, then $\alpha^{-1} \in \mathcal{U}$.

A subset \mathcal{B} , of a fuzzy uniformity \mathcal{U} , is a base for \mathcal{U} if, for each $\alpha \in \mathcal{U}$ and each $\epsilon > 0$, there exists $\beta \in \mathcal{B}$ with $\beta \leq \alpha + \epsilon$. It is easy to see that, for a subset \mathcal{B} of Ω_X , the following are equivalent:

- (1) \mathcal{B} is a base for a fuzzy uniformity on X.
- (2) (a) If $\alpha, \beta \in \mathcal{B}$ and $\epsilon > 0$, then there exists $\gamma \in \mathcal{B}$ with $\gamma \leq \alpha \wedge \beta + \epsilon$.
 - (b) For each $\alpha \in \mathcal{B}$ and each $\epsilon > 0$, there exists $\beta \in \mathcal{B}$ with $\beta \circ \beta \leq \alpha + \epsilon$.
- (c) For each $\alpha \in \mathcal{B}$ and each $\epsilon > 0$, there exists $\beta \in \mathcal{B}$ with $\beta \leq \alpha^{-1} + \epsilon$. In case (2) is satisfied, the fuzzy uniformity \mathcal{U} for which \mathcal{B} is a base consists of all $\alpha \in \Omega_X$ such that, for each $\epsilon > 0$, there exists a $\beta \in \mathcal{B}$ with $\beta \leq \alpha + \epsilon$. By [3], every fuzzy uniformity \mathcal{U} on X induces a fuzzifying proximity $\delta_{\mathcal{U}}$ defined by

$$\delta_{\mathcal{U}}(A, B) = \inf_{\alpha \in \mathcal{U}} \sup_{x \in A, y \in B} \alpha(x, y).$$

In case \mathcal{B} is a base for \mathcal{U} , then

$$\delta_{\mathcal{U}}(A, B) = \inf_{\alpha \in \mathcal{B}} \sup_{x \in A, y \in B} \alpha(x, y).$$

Every fuzzy uniformity \mathcal{U} induces a fuzzifying topology $\tau_{\mathcal{U}}$ given by the neighborhood structure

$$N_x(A) = 1 - \delta_{\mathcal{U}}(x, A^c) = 1 - \inf_{\alpha \in \mathcal{U}} \sup_{y \notin A} \alpha(x, y).$$

For every fuzzifying proximity δ there exists at least one compatible fuzzy uniformity, i.e. a fuzzy uniformity \mathcal{U} with $\delta_{\mathcal{U}} = \delta$ (see [3], Theorem 11.4).

2 Probabilistic Pseudometrics

A fuzzy real number is a fuzzy subset u of the real numbers \mathbf{R} which is increasing, left continuous, and such that $\lim_{t\to+\infty}u(t)=1, \lim_{t\to-\infty}u(t)=0$. A fuzzy real number u is said to be non-negative if u(t)=0 if $t\le 0$. We will denote by \mathbf{R}_{ϕ}^+ the collection of all non-negative fuzzy real numbers. To every real number r corresponds a fuzzy real number \bar{r} , where $\bar{r}(t)=0$ if $t\le r$ and $\bar{r}(t)=1$ if t>r. For $u,v\in\mathbf{R}_{\phi}^+$, we define $u\preceq v$ iff $v(t)\le u(t)$ for all $t\in\mathbf{R}$. If \mathcal{A} is a non-empty subset of \mathbf{R}_{ϕ}^+ and if $u_o\in\mathbf{R}_{\phi}^+$ is defined by $u_o(t)=\sup_{v\in\mathcal{A}}v(t)$, then u_o is the biggest of all $u\in\mathbf{R}_{\phi}^+$ with $u\preceq v$ for all $v\in\mathcal{A}$. We will denote u_o by $\inf \mathcal{A}$ or by $\inf \mathcal{A}$. For $u_1,u_2\in\mathbf{R}_{\phi}^+$, we define $u=u_1\oplus u_2\in\mathbf{R}_{\phi}^+$ by $u(t)=\sup\{u_1(t_1)\land u_2(t_2):t=t_1+t_2\}$. Also, for $u\in\mathbf{R}_{\phi}^+$ and $u\in\mathbf{R}_{\phi}^+$ and $u\in\mathbf{R}_{\phi}^+$ by u(t)=u(u). It is easy to see that, for $u\in\mathbf{R}_{\phi}^+$ and $u\in\mathbf{R}_{\phi}^+$ by $u(t)=u(t-\lambda)$.

Definition 2.1 A probabilistic pseudometric on a set X (see [1]) is a mapping $F: X \times X \to \mathbf{R}_{\phi}^+$ such that, for all x, y, z in X, we have

$$F(x,x) = \bar{0}, F(x,y) = F(y,x), F(x,z) \leq F(x,y) \oplus F(y,z).$$

If in addition F(x,y)(0+) = 0 when $x \neq y$, then F is called a probabilistic metric.

If r_1, r_2 are non-negative real numbers, then $\overline{r_1} \leq \overline{r_2}$ iff $r_1 \leq r_2$. Also, for $r = |r_1 - r_2|$, we have that

$$\overline{r} = \wedge \{u \in \mathbf{R}_{\phi}^+ : \bar{r_2} \preceq u \oplus \overline{r_1} \ \text{ and } \ \overline{r_1} \preceq u \oplus \bar{r_2}\}.$$

In fact, let $u_o = \wedge \{u \in \mathbf{R}_\phi^+ : \overline{r_2} \preceq u \oplus \overline{r_1} \text{ and } \overline{r_1} \preceq u \oplus \overline{r_2}\}$ and assume (say) $r_1 \geq r_2$. Let $u \in \mathcal{R}_\phi^+$ be such that $\overline{r_2} \preceq u \oplus \overline{r_1}, \overline{r_1} \preceq u \oplus \overline{r_2}$. Then $\overline{r_1}(t) \geq (u \oplus \overline{r_2}(t) = u(t-r_2))$ for all t. If $t = v_1$, then $t = v_2$ is $t = v_3$, then $t = v_4$ is $t = v_4$. Thus $t = v_4$ is $t = v_4$. On the other hand, we have $t = v_4$ is $t = v_4$. Motivated from the above we define the following distance function on $t = v_4$.

$$D: \mathcal{R}_{\phi}^{+} \times \mathcal{R}_{\phi}^{+} \longrightarrow \mathcal{R}_{\phi}^{+}, \quad D(u_{1}, u_{2}) = \wedge \{u \in \mathcal{R}_{\phi}^{+}: u_{1} \leq u_{2} \oplus u, u_{2} \leq u \oplus u_{1}\}.$$

Then D is a probabilistic pseudometric on \mathcal{R}_{ϕ}^+ . In fact, it is clear that $D(u_1, u_2) = D(u_2, u_1)$. Also, since $u = u \oplus \bar{0}$, when $u \in \mathcal{R}_{\phi}^+$, we have that $D(u, u) = \bar{0}$. Finally, let $D(u_1, u_2)(t_1) \wedge D(u_2, u_3)(t_2) > \theta > 0$. There are $v_1, v_2 \in \mathcal{R}_{\phi}^+$ with

 $u_1 \leq v_1 \oplus u_2, u_2 \leq v_1 \oplus u_1, u_3 \leq v_2 \oplus u_2, u_2 \leq v_2 \oplus u_3, v_1(t_1) > \theta, v_2(t_2) > \theta$. Now $u_1 \leq v_1 \oplus u_2 \leq v_1 \oplus (v_2 \oplus u_3) = (v_1 \oplus v_2) \oplus u_3$ and $u_3 \leq v_2 \oplus u_2 \leq v_2 \oplus (v_1 \oplus u_1) = (v_1 \oplus v_2) \oplus u_1$. Thus $D(u_1, u_3) \leq v_1 \oplus v_2$ and $D(u_1, u_3)(t_1 + t_2) \geq v_1(t_1) \wedge v_2(t_2) > \theta$. This proves that $D(u_1, u_3) \leq D(u_1, u_2) \oplus D(u_2, u_3)$ and the claim follows. We will refer to D as the usual probabilistic pseudometric on \mathcal{R}_{ϕ}^+ .

Let now F be a probabilistic psedometric on X. For t > 0, let $u_{F,t}$ be defined on X^2 by $u_{F,t}(x,y) = F(x,y)(t)$. The family $\mathcal{B}_F = \{u_{F,t} : t > 0\}$ is a base for a fuzzy uniformity \mathcal{U}_F on X. Let τ_F be the fuzzifying topology induced by \mathcal{U}_F .

In the rest of the paper, we will consider on \mathcal{R}_{ϕ}^{+} the fuzzifying topology induced by the usual probabilistic pseudometric D.

Theorem 2.2 A probabilistic pseudometric F, on a fuzzifying topological space (X, τ) , is $\tau \times \tau$ continuous iff $\tau_F \leq \tau$.

Proof: Assume that $\tau_F \leq \tau$ and let G be a subset of \mathbf{R}_{ϕ}^+ and $u = F(x_o, y_o)$ with $N_u(G) > \theta > 0$. There exists a t > 0 such that $1 - \sup_{v \notin G} D(v, u)(t) > \theta$. For x, y in X, we have

$$F(x,y) \leq F(x,x_o) \oplus F(x_o,y_o) \oplus F(y_o,y) = [F(x,x_o) \oplus F(y,y_o)] \oplus F(x_o,y_o).$$

Similarly $F(x_o, y_o) \leq [F(x, x_o) \oplus F(y, y_o)] \oplus F(x, y)$. Thus

$$D(F(x,y),F(x_o,y_o)) \leq F(x,x_o) \oplus F(y,y_o).$$

Let

 $A_1 = \{x \in X : F(x, x_o)(t/2) \ge 1 - \theta\}, \text{ and } A_2 = \{x \in X : F(y, y_o)(t/2) \ge 1 - \theta\}.$ If $x \in A_1, y \in A_2$, then

$$D(F(x,y), F(x_o, y_o))(t) \ge F(x, x_o)(t/2) \land F(y, y_o)(t/2) \ge 1 - \theta$$

and so $F(x,y) \in G$. Also, $N_{x_o}^{\tau}(A_1) \ge N_{x_o}^{\tau_F}(A_1) \ge 1 - \sup_{x \notin A_1} F(x,x_o)(t/2) \ge \theta$ and $N_{y_o}^{\tau}(A_2) \ge \theta$. Therefore,

$$N_{(x_o,y_o)}^{\tau \times \tau}(F^{-1}(G)) \ge N_{x_o}^{\tau}(A_1) \wedge N_{y_o}^{\tau}(A_1) \ge \theta,$$

which proves that $N_{(x_o,y_o)}^{\tau \times \tau}(F^{-1}(G)) \geq N_{f(x_o,y_o)}(G)$ and so F is $\tau \times \tau$ continuous. Conversely, assume that F is $\tau \times \tau$ continuous and let $N_{x_o}^{\tau_F}(A) > \theta > 0$. Choose $\epsilon > 0$ such that $N_{x_o}^{\tau_F}(A) > \theta + \epsilon$. There exists a t > 0 such that $1 - \sup_{x \notin A} F(x, x_o)(t) > \theta + \epsilon$. If

$$Z=\{u\in\mathbf{R}_\phi^+:D(u,\bar{0})(t)=u(t)>1-\theta-\epsilon\},$$

then

$$N_{\bar{0}}(Z) \ge 1 - \sup_{u \notin Z} D(u, \bar{0})(t) \ge \theta + \epsilon > \theta.$$

Since F is $\tau \times \tau$ continuous and $F(x_o, x_o) = \bar{0}$, there exists a subset A_1 of X containing x_o such that $A_1 \times A_1 \subset F^{-1}(Z)$ and $N_{x_o}(A_1) > \theta$. If $x \in A_1$, then $F(x, x_o) \in Z$ and so $F(x, x_o)(t) > 1 - \theta - \epsilon$, which implies that $x \in A$. Thus $A_1 \subset A$ and so $N_{x_o}(A) \geq N_{x_o}^{\tau_F}(A)$ for every subset A of X and every $x_o \in X$. Hence $\tau_F \leq \tau$ and the result follows.

Theorem 2.3 Let F be a probabilistic pseudometric on a set X, $\tau = \tau_F$, $(x_\delta)_{\delta \in \Delta}$ a net in X and $x \in X$. Then

$$c(x_{\delta} \to x) = \inf_{t>0} \liminf_{\delta} F(x_{\delta}, x)(t).$$

Proof: Let $d=\inf_{t>0}\liminf_{\delta}F(x_{\delta},x)(t)$ and assume that $d<\theta<1$. There exists a t>0 such that $\liminf_{\delta}F(x_{\delta},x)(t)<\theta$. Let $A=\{y:F(y,x)(t)>\theta\}$. Then (x_{δ}) is not eventually in A and so $c(x_{\delta}\to x)\leq 1-N_x(A)\leq \sup_{y\notin A}F(y,x)(t)\leq \theta$, which proves that $c(x_{\delta}\to x)\leq d$. On the other hand, let $c(x_{\delta}\to x)< r<1$. There exists a subset B of X such that (x_{δ}) is not eventually in B and $1-N_x(B)< r$. Let s>0 be such that $1-\sup_{y\notin B}F(y,x)(s)>1-r$. For each $\delta\in\Delta$, there exists $\delta'\geq\delta$ with $x_{\delta'}\notin B$ and so $F(x_{\delta'},x)(s)\leq \sup_{y\notin B}F(y,x)(s)$. Thus $d\leq \liminf_{\delta}F(x_{\delta},x)(s)< r$, which proves that $d\leq c(x_{\delta}\to x)$ and the result follows.

Theorem 2.4 Let F_1, F_2, \ldots, F_n be probabilistic pseudometrics on X and define F by

$$F(x,y)(t) = \min_{1 \le k \le n} F_k(x,y)(t).$$

Then F is a probabilistic pseudometric and $\tau_F = \bigvee_{k=1}^n \tau_{F_k}$.

Proof: Using induction on n, it suffices to prove the result in the case of n=2. It follows easily that F is a probabilistic pseudometric. Since $F_1, F_2 \leq F$, it follows that $\tau_{F_1}, \tau_{F_2} \leq \tau_F$ and so $\tau_o = \tau_{F_1} \vee \tau_{F_2} \leq \tau_F$. On the other hand, let $N_x^{\tau_F}(A) > \theta > 0$. There exists a t>0 such that $1-\sup_{y\notin A}F(y,x)(t)>\theta$. Let $B_i=\{y\in A^c:F_i(y,x)(t)<1-\theta\}, i=1,2$. Then $A^c=B_1\cup B_2$ and so $A=A_1\cap A_2, A_i=B_i^c$. Moreover $N_x^{\tau_{F_i}}(A_i)\geq 1-\sup_{y\in B_i}F_i(y,x)(t)\geq \theta$ and thus

$$N_x^{\tau_o}(A) \ge N_x^{\tau_o}(A_1) \bigwedge N_x^{\tau_o}(A_2) \ge N_x^{\tau_{F_1}}(A_1) \bigwedge N_x^{\tau_{F_2}}(A_2) \ge \theta$$

This proves that $N_x^{\tau_o}(A) \geq N_x^{\tau_F}(A)$ and the result follows.

For \mathcal{F} a family of probabilistic pseudometrics on a set X, we will denote by $\tau_{\mathcal{F}}$ the supremum of the fuzzifying topologies $\tau_F, F \in \mathcal{F}$, i.e. $\tau_{\mathcal{F}} = \bigvee_{F \in \mathcal{F}} \tau_F$.

Theorem 2.5 If $\tau = \tau_{\mathcal{F}}$, where \mathcal{F} is a family of probabilistic pseudometrics on a set X, then $T_2(X) = T_1(X) = 1 - \sup_{y \neq x} \inf_{F \in \mathcal{F}} F(x, y)(0+)$.

Proof: Let $d=1-\sup_{y\neq x}\inf_{F\in\mathcal{F}}F(x,y)(0+)$. It is always true that $T_2(X)\leq T_1(X)$. Suppose that $T_1(X)>r>0$ and let $x\neq y$. Since τ^r is T_1 , there exists a τ^r -neighborhood A of x not containing y. Now $N_x(A)>r$ and hence, there are subsets A_1,\ldots,A_n of X and F_1,\ldots,F_n in \mathcal{F} such that $\bigcap A_k\subset A, N_x^{\tau_{F_k}}(A_k>r)$. Since y is not in A, there exists a k with $y\notin A_k$. Let t>0 be such that

$$1 - \sup_{z \notin A_k} F_k(z,x)(t) > r \quad \text{and so} \quad \inf_{F \in \mathcal{F}} F(x,y)(t)(0+) \le F_k(x,y)(t) < 1 - r,$$

which proves that $d \geq r$. Thus $d \geq T_1(X)$. On the other hand, assume that $d > \theta > 0$ and let $x \neq y$. Choose $\epsilon > 0$ such that $d > \theta + \epsilon$. There exists $F \in \mathcal{F}$ with $F(x,y)(0+) < 1 - \theta - \epsilon$ and hence $F(x,y)(t) < 1 - \theta - \epsilon$ for some t > 0. Let

$$A = \{z : F(z,x)(t/2) > 1 - \theta - \epsilon\}, \quad B = \{z : F(z,y)(t/2) > 1 - \theta - \epsilon\}.$$

Clearly $x \in A, y \in B$. If $z \in A \cap B$, then

$$F(x,y)(t) \geq F(x,z)(t/2) \wedge F(z,y)(t/2) > 1 - \theta - \epsilon,$$

a contradiction. Thus $A \cap B = \emptyset$. Moreover

$$N_x(A) \geq N_x^{ au_F}(A) \geq 1 - \sup_{z \notin A} F(x,z)(t/2) \geq \theta + \epsilon > \theta$$
 and $N_y(A) > \theta$.

It follows that $T_2(X) \geq d$ and the proof is complete.

Let us say that a fuzzifying topology τ on a set X is pseudometrizable if there exists a probabilistic pseudometric F on X with $\tau = \tau_F$.

Theorem 2.6 A fuzzifying topology τ on X is pseudometrizable iff each level topology $\tau^{\theta}, 0 \leq \theta < 1$, is pseudometrizable.

Proof: Assume that $\tau = \tau_F$ for some probabilistic pseudometric F and let $0 \le \theta < 1$. For each positive integer, with $n > 1/(1-\theta)$, let

$$A_n = \{(x,y) \in X^2 : F(x,y)(1/n) > 1 - \theta - 1/n\}.$$

Then $A_{n+1} \subset A_n$ and the family $\mathcal{D} = \{A_n : n \in \mathbb{N}, n > 1/(1-\theta)\}$ is a base for a uniformity \mathcal{U} on X. The topology σ_{θ} induced by \mathcal{U} is pseudometrizable since \mathcal{D} is countable. Moreover $\sigma_{\theta} = \tau^{\theta}$. Indeed, let A be a σ_{θ} -neighborhood of x. There exists $n \in \mathbb{N}, n > 1/(1-\theta)$, such that $B = \{y : F(x,y)(1/n) > 1-\theta-1/n\} \subset A$. Now

$$N_x^\tau(A) \geq N_x^\tau(B) \geq 1 - \sup_{y \notin B} F(x, y)(1/n) \geq \theta + 1/n > \theta$$

and so A is a τ^{θ} -neighborhood of x. Conversely, assume that A is a τ^{θ} -neighborhood of x. There exists $\epsilon > 0$ with $N_x(A) > \theta + \epsilon$. Now there exists a positive integer $n > 1/\epsilon$ such that $1 - \sup_{y \notin A} F(x,y)(1/n) > \theta + 1/n$. Hence

$${y: F(x,y)(1/n) > 1 - \theta - 1/n} \subset A,$$

which implies that A is a σ_{θ} -neighborhood of x. Thus $\tau^{\theta} = \sigma_{\theta}$ and therefore each τ^{θ} is pseudometrizable. Conversely, suppose that each τ^{θ} is pseudometrizable. By an argument analogous to the one used in the proof of Theorem 3.3 in [4], we show that there exists a family $\{d_{\theta}: 0 \leq \theta < 1\}$ of pseudometrics on X such that $d_{\theta} = \sup_{\theta_1>\theta} d_{\theta_1}$, for each $0 \leq \theta < 1$, and τ^{θ} coincides with the topology induced by the pseudometric d_{θ} . Now, for x,y in X, define $F(x,y): \mathbf{R} \to [0,1]$ by F(x,y)(t) = 0 if $t \leq 0$ and $F(x,y)(t) = \sup\{\theta: 0 < \theta \leq 1, d_{1-\theta}(x,y) < t\}$ if t > 0. It is clear F(x,y) is increasing and left continuous. For 0 < r < 1 and $t > d_{1-r}(x,y)$, we have that $F(x,y)(t) \geq r$ and so $\lim_{t\to\infty} F(x,y)(t) = 1$. Also F(x,x)(t) = 1 for every x and every t > 0. To show that F is a probabilistic pseudometric on X, we must prove that it satisfies the triangle inequality. So, let $F(x,y)(t_1) \wedge F(y,z)(t_2) > \theta > 0$. Then $d_{1-\theta}(x,y) < t_1, d_{1-\theta}(y,z) < t_2$ and so $d_{1-\theta}(x,z) < t_1 + t_2$, which implies that $F(x,z)(t_1+t_2) \geq \theta$. Thus the triangle inequality is satisfied and F is a probabilistic pseudometric. We will finish the proof by showing that $\tau_F = \tau$. So let $N_x^{\tau_F} > \theta > 0$

and choose t>0 such that $1-\sup_{y\notin A}F(y,x)(t)>\theta$. If now $d_{\theta}(x,y)< t$, then $F(x,y)(t)\geq 1-\theta$ and thus $y\in A$, which proves that A is a $\sigma_{\theta}=\tau^{\theta}$ neighborhood of x. Hence $\tau\geq\tau_{F}$. On the other hand, let B be a τ^{θ} -neighborhood of x. There exists $\theta_{1}>\theta$ such that $N_{x}(B)>\theta_{1}$. Now B is a $\tau_{\theta_{1}}$ -neighborhood of x and so there exists t>0 such that $\{y:d_{\theta_{1}}(x,y)< t\}\subset B$. If $F(x,y)(t)>1-\theta_{1}$, then there exists $\alpha>1-\theta_{1}$ such that $d_{1-\alpha}(x,y)< t$ and so $d_{\theta_{1}}(x,y)< t$. Thus $\{y:F(x,y)(t)>1-\theta_{1}\}\subset B$ and therefore

$$N_x^{\tau_F}(B) \ge 1 - \sup_{y \notin B} F(x, y)(t) \ge \theta_1 > \theta.$$

Thus $\tau_F \geq \tau$ and the result follows.

Theorem 2.7 Let (X,F) be a probabilistic pseudometric space, $A \subset X$ and $x \in X$. Let

 $\begin{array}{ll} \alpha &= \sup \{\inf_{t>0} \liminf_n F(x_n,x)(t) : (x_n) \ \ sequence \ in \ A\} \\ \beta &= \sup \{\lim \inf_n F(x_n,x)(t_n) : t_n \to 0+, (x_n) \ \ sequence \ in \ A\} \\ \gamma &= \sup \{\lim \inf_n F(x_n,x)(1/n) : (x_n) \ \ sequence \ in \ A\} \end{array}$

Then $\alpha = \beta = \gamma = \bar{A}(x)$.

Proof: If $(x_n) \subset A$, then

$$\bar{A}(x) \ge c(x_n \to x) = \inf_{t>0} \liminf_n F(x_n, x)(t)$$

and so $\bar{A}(x) \geq \alpha$. Assume that $\beta > \theta > 0$. There exist a sequence (x_n) in A and a sequence (t_n) of positive real numbers, with $t_n \to 0+$, such that $\liminf_n F(x_n,x)(t_n) > \theta$. Let t>0 and choose k such that $t_n < t$ when $n \geq k$. For $m \geq k$ we have $\inf_{n \geq m} F(x_n,x)(t) \geq \inf_{n \geq m} F(x_n,x)(t_n) > \theta$. Thus $\liminf_n F(x_n,x)(t) > \theta$ for each t>0 and so $\alpha \geq \theta$, which proves that $\alpha \geq \beta$. Clearly $\beta \geq \gamma$. Finally, $N_x(A^c) \geq 1 - \sup_{y \in A} F(y,x)(1/n)$ and so $\sup_{y \in A} F(y,x)(1/n) \geq 1 - N_x(A^c) = \bar{A}(x) > \bar{A}(x) - 1/n$. Hence, for each $n \in \mathbb{N}$, there exists $x_n \in A$ with $F(x_n,x)(1/n) > \bar{A}(x) - 1/n$. Consequently,

$$\gamma \ge \liminf_n F(x_n, x)(1/n) \ge \liminf_n (\bar{A}(x) - 1/n) = \bar{A}(x)$$

and so $\gamma \geq \bar{A}(x) \geq \alpha \geq \beta \geq \gamma$, which completes the proof.

In view of [4], Theorem 4.14, we have the following

Corollary 2.8 Every pseudometrizable fuzzifying topological space is N-sequential and hence sequential.

Theorem 2.9 If (F_n) is a sequence of probabilistic pseudometrics on a set X, then there exists a probabilistic pseudometric F such that $\tau_F = \bigvee_n \tau_{F_n}$.

Proof: If F is a probabilistic pseudometric on X and if \overline{F} is defined by $\overline{F}(x,y)(t) = F(x,y)(t)$ if $t \leq 1$ and $\overline{F}(x,y)(t) = 1$ if t > 1, then \overline{F} is a probabilistic pseudometric on X and $\tau_{\overline{F}} = \tau_F$. Hence, we may assume that $F_n(x,y)(t) = 1$, for all n, if t > 1.

For x, y in X, define F(x, y) on \mathbb{R} by F(x, y)(t) = 0 if $t \leq 0$ and $F(x, y)(t) = \inf_n [\frac{1}{n} F_n(x, y)](t)$ if t > 0. Clearly F(x, y) is increasing and F(x, y)(t) = 1 if t > 1. Also F(x, y) is left continuous. In fact, let $F(x, y)(t) > \theta > 0$ and choose n such that (n+1)t > 1. There exists $0 < s_1 < t$ such that $F_k(x, y)(ks_1) > \theta$ for $k = 1, \ldots, n$. Choose $s_1 < s < t$ such that (n+1)s > 1. Now $F_m(x, y)(ms) = 1$ if m > n. Thus

$$F(x,y)(s) = \min_{1 \le k \le n} \left[\frac{1}{k} F_k(x,y) \right](s) > \theta,$$

which proves that F(x,y) is in \mathbf{R}_{ϕ}^+ . It is clear that $F(x,x) = \bar{0}$. We need to prove that F satisfies the triangle inequality. So assume that $F(x,y)(t_1) \wedge F(y,z)(t_2) > \theta > 0$. If m is such that $(m+1)(t_1+t_2) > 1$, then

$$F(x,z)(t_1+t_2) = \min_{1 \le k \le m} F_k(x,z)(k(t_1+t_2)).$$

Since

$$F_k(x,z)(k(t_1+t_2)) \ge F_k(x,y)(kt_1) \wedge F_k(y,z)(kt_2) > \theta,$$

it follows that $F(x,z)(t_1+t_2)>\theta$ and so F satisfies the triangle inequality. We will finish the proof by showing that $\tau_F=\bigvee \tau_{F_n}$. To see this, we first observe that $\frac{1}{n}F_n \leq F$ which implies that $\tau_{F_n}=\tau_{\frac{1}{n}F_n}\leq \tau_F$ and so $\tau_o=\bigvee_n\tau_{\frac{1}{n}F_n}\leq \tau_F$. On the other hand, let $N_x^{\tau_F}(A)>\theta$ and choose $\epsilon>0$ such that $N_x^{\tau_F}(A)>\theta+\epsilon$. Let t>0 be such that $1-\sup_{y\notin A}F(y,x)(t)>\theta+\epsilon$. If (m+1)t>1, then

$$F(y,z)(t) = \min_{1 \le k \le m} F_k(y,z)(kt).$$

Let $A_k = \{y : F_k(y, x)(kt) \ge 1 - \theta - \epsilon\}$. Then

$$N_x^{\tau_o}(A_k) \geq N_x^{\tau_{F_k}}(A_k) \geq 1 - \sup_{z \notin A_k} F_k(z,x)(kt) \geq \theta + \epsilon > \theta$$

and $\bigcap_{k=1}^m A_k \subset A$. Hence $N_x^{\tau_o}(A) \geq \min_{1 \leq k \leq m} N_x^{\tau_o}(A_k) > \theta$. This proves that $\tau_F \leq \tau_o$ and the result follows.

Theorem 2.10 Let $f: X \to Y$ be a function and let F be a probabilistic pseudometric on Y. Then the function

$$f^{-1}(F):X^2\to \mathbf{R}_\phi^{+1}, f^{-1}(F)(x,y)=F(f(x),f(y))$$

is a probabilistic pseudometric on X and $\tau_{f^{-1}(F)} = f^{-1}(\tau_F)$.

Proof: It follows easily that $f^1(F)$ is a probabilistic pseudometric on X. Let $x \in X$ and $B \subset X$. If $D = Y \setminus f(B^c)$, then

$$\begin{array}{ll} N_x^{\tau_{f^{-1}(F)}}(B) &= \inf_{t>0}[1-\sup_{y\notin B}F(f(y),f(x))(t)] \\ &= \inf_{t>0}[1-\sup_{z\in D^c}F(z,f(x))(t)] \\ &= N_{f(x)}^{\tau_F}(D) = N_x^{f^{-1}(\tau_F)}(B), \end{array}$$

which clearly completes the proof.

Corollary 2.11 If F is a probabilistic pseudometric on a set X and $Y \subset X$, then $\tau_F|_Y$ is induced by the probabilistic pseudometric $G = F|_{Y \times Y}$, G(x, y) = F(x, y).

Corollary 2.12 If (X_n, τ_n) is a sequence of pseudometrizable fuzzifying topological spaces, then the cartesian product $(X, \tau) = (\prod X_n, \prod \tau_n)$ is pseudometrizable.

Proof: Let F_n be be a probabilistic pseudometric pseudometric on X_n inducing τ_n . If $G_n = \pi_n^{-1}(F_n)$, then $\tau_{G_n} = \pi_n^{-1}(\tau_n)$ and so $\tau = \bigvee_n \pi_n^{-1}(\tau_n)$ is pseudometrizable.

3 Level Proximities

Let δ be a fuzzifying proximity on a set X. For each $0 < d \le 1$, let δ^d be the binary relation on 2^X defined by : $A\delta^d B$ iff $\delta(A,B) \ge d$. It is easy to see that δ^d is a classical proximity on X. We will show that the classical topology σ_d induced by δ^d coincides with τ^{1-d} . In fact, let $x \in A \in \sigma_d$. Then, x is not in the σ_d -closure of A^c , which implies that x $\delta^d A^c$, i.e. $\delta(x,A^c) < d$, and so $N_x^\tau(A) = 1 - \delta(x,A^c) > 1 - d$. This proves that $A \in \tau^{1-d}$. Conversely, if $x \in B \in \tau^{1-d}$, then $N_x^\tau(A) > 1 - d$ and thus $\delta(x,A^c) < d$, which implies that x is not in the σ_d -closure of B^c . Hence B^c is σ_d -closed and so B is σ_d -open.

Theorem 3.1 If δ is a fuzzifying proximity on a set X and $0 < d \le 1$, then

$$\delta^d = \bigvee_{0 < \theta < d} \delta^\theta.$$

Proof: If $0 < \theta < d$, then δ^{θ} is coarser than δ^{d} and so $\delta_{o} = \bigvee_{0 < \theta < d} \delta^{\theta}$ is coarser than δ^{d} . On the other hand, let $A\delta_{o}B$. Since δ_{o} is finer than δ^{θ} (for $0 < \theta < d$), we have that $A\delta^{\theta}B$ and so $\delta(A,B) \geq \theta$, for each $0 < \theta < d$, which implies that $\delta(A,B) \geq d$, i.e. $A\delta^{d}B$. So δ_{o} is finer than δ^{d} and the result follows.

Theorem 3.2 For a family $\{\gamma_d : 0 < d \le 1\}$ of classical proximities on a set X the following are equivalent:

- (1) There exists a fuzzifying proximity δ on X such that $\delta^d = \gamma_d$ for all d.
- (2) $\gamma_d = \bigvee_{0 < \theta < d} \gamma_\theta$ for each $0 < d \le 1$.

Proof: In view of the preceding Theorem, (1) implies (2). Assume now that (2) is satisfied and define δ on $2^X \times 2^X$ by $\delta(A,B) = \sup\{d: A\gamma_d B\}$ (the supremum over the empty family is taken to be zero). It is clear that $\delta(A,B) = 1$ if the A,B are not disjoint. Also $\delta(A,B) = \delta(A,B)$ and $\delta(A,B) \geq \delta(A_1,B_1)$ if $A_1 \subset A, B_1 \subset B$. Let now $\delta(A,B) < d < 1$. Then $A \not \gamma_d B$ and so there exists a subset D of X such that $A \not \gamma_d D$ and $D^c \not \gamma_d B$. Since $A \not \gamma_d D$, we have that $\delta(A,D) \leq d$. Similarly $\delta(D^c,B) \leq d$ and so $\inf\{\delta(A,D) \wedge \delta(D^c,B)\} \leq \delta(A,B)$. On the other hand, if $\delta(A,D) \wedge \delta(D^c,B) < \theta < 1$, then $A \subset D^c$ and so $\delta(A,B) \leq \delta(D^c,B) < \theta$. This proves that δ is a fuzzifying proximity on X. We will finish the proof by showing that $\delta^d = \gamma_d$ for all d. Indeed, if $A\gamma_d B$, then $\delta(A,B) \geq d$, i.e. $A\delta^d B$. On the other hand,

let $A\delta^d B$ and let $(A_i), (B_j)$ be finite families of subsets of X with $A = \cup_i, B = \cup B_j$. Since $\delta(A,B) = \bigvee_{i,j} \delta(A_i,B_j) \ge d$, there exists a pair (i,j) such that $\delta(A_i,B_j) \ge d$. If now $0 < \theta < d$, then there exists $r > \theta$ with $A_i \gamma_r B_j$ and so $A_i \gamma_\theta B_j$. This proves that $A\gamma_d B$ since $\gamma_d = \bigvee_{0 < \theta < d} \gamma_\theta$. This completes the proof.

Theorem 3.3 Let $(X, \delta_1), (Y \delta_2)$ be fuzzifying proximity spaces and let $f: X \to Y$ be a function. Then f is proximally continuous iff $f: (X, \delta_1^d) \to (Y, \delta_2^d)$ is proximally continuous for each $0 < d \le 1$.

Proof: It follows immediately from the definitions.

Theorem 3.4 Let $(X_{\lambda}, \delta_{\lambda})_{{\lambda} \in \Lambda}$ be a family of fuzzifying proximity spaces and let $(X, \delta) = (\prod X_{\lambda}, \prod \delta_{\lambda})$ be the product fuzzifying proximity space. Then $\delta^d = \prod \delta^d_{\lambda}$ for all $0 < d \le 1$.

Proof: Since each projection $\pi_{\lambda}: (X, \delta^d) \to (X_{\lambda}, \delta^d_{\lambda})$ is proximally continuous, it follows that δ^d is finer than $\sigma = \prod \delta^d_{\lambda}$. On the other hand, let $A\sigma B$. We need to show that $\delta(A,B) \geq d$. In fact, let $(A_i),(B_j)$ be finite families of subsets of X such that $A = \cup A_i, B = \cup B_j$. Since $A\sigma B$ and $\sigma = \bigvee_{\lambda} \pi_{\lambda}^{-1}(\delta^d_{\lambda})$, there exists a pair (i,j) such that $A_i\pi_{\lambda}^{-1}(\delta^d)B_j$, i.e. $\delta_{\lambda}(\pi_{\lambda}(A_i),\pi_{\lambda}(B_j)) \geq d$. In view of Theorem 8.9 in [2], we conclude that $\delta(A,B) \geq d$. Hence $\sigma = \delta^d$ and the proof is complete.

We have the following easily established

Theorem 3.5 Let (Y, δ) be a fuzzifying proximity space and let $f: X \to Y$. Then $f^{-1}(\delta)^d = f^{-1}(\delta^d)$ for each $0 < d \le 1$.

Theorem 3.6 Let $(\delta_{\lambda})_{{\lambda} \in {\Lambda}}$ be a family of fuzzifying proximities on a set X and $\delta = \bigvee_{\lambda} \delta_{\lambda}$. Then $\delta^d = \bigvee_{\lambda} \delta^d_{\lambda}$ for each $0 < d \le 1$.

Proof: Let $\sigma = \bigvee_{\lambda} \delta_{\lambda}^{d}$. Since δ is finer than each δ_{λ} , it follows that δ^{d} is finer than each δ_{λ}^{d} and so δ^{d} is finer than σ . On the other hand, let $A\sigma B$ and let $(A_{i}), (B_{j})$ be finite families of subsets of X such that $A = \cup A_{i}, B = \cup B_{j}$. There exists a pair (i, j) such that $A_{i}\sigma B_{j}$. Since σ is finer than each δ_{λ}^{d} , we have that $A_{i}\delta_{\lambda}^{d}B_{j}$, i.e. $\delta_{\lambda}(A_{i}, B_{j}) \geq d$. In view of Theorem 8.10 in [2], we get that $\delta(A, B) \geq d$, i.e. $A\delta^{d}B$. So σ is finer than δ^{d} and the proof is complete.

4 Completely Regular Fuzzifying Spaces

Definition 4.1 A fuzzifying topological space (X, τ) is called completely regular if each of the classical level topologies τ^d , $0 \le d < 1$ is completely regular.

Definition 4.2 A fuzzifying proximity δ on a set X is said to be compatible with a fuzzifying topology τ if τ coincides with the fuzzifying topology τ_{δ} induced by δ .

We have the following easily established

Theorem 4.3 Subspaces and cartesian products of completely regular fuzzifying spaces are completely regular.

Theorem 4.4 Let (X, τ) be a completely regular fuzzifying topological space and define $\delta = \delta(\tau): 2^X \times 2^X \to [0, 1]$ by

 $\delta(A,B)=1-\sup\{d:0\leq d<1,\exists f:(X,\tau^d)\to[0,1]\ \ continuous\ \ f(A)=0,f(B)=1\}.$ Then: (1) δ is a fuzzifying proximity on X compatible with τ .

(2) If δ_1 is any fuzzifying proximity on X compatible with τ , then δ is finer than δ_1 .

Proof: It is easy to see that δ satisfies (FP1), (FP2), (FP3) and (FP5). We will prove that δ satisfies (FP4). Let

$$\alpha = \inf\{\delta A, D) \vee \delta(D^c, B) : D \subset X\}.$$

If $\delta(A,D)\vee\delta(D^c,B)<\theta$, then $A\subset D^c$ and so $\delta(A,B)\leq\delta(D^c,B)<\theta$, which proves that $\delta(A,B)\leq\alpha$. On the other hand, assume that $\delta(A,B)< r<1$. There exist a d,1-r< d<1, and $f:X\to [0,1]$ τ^d -continuous such that f(A)=0,f(B)=1. Let $D=\{x\in X: 1/2\leq f(x)\leq 1\}$ and define $h_1,h_2:[0,1]\to [0,1],h_1(t)=2t,h_2(t)=0$ if $0\leq t\leq 1/2$ and $h_1(t)=1,h_2(t)=2t-1$ if $1/2< t\leq 1$. If $g_i=h_i\circ f,i=1,2$, then $g_1(A)=0,g_1(D)=1,g_2(D^c)=0,g_2(B)=1$. Thus $\delta(A,D)\leq 1-d< r,\delta(D^c,B)< r$, which proves that $\alpha\leq\delta(A,B)$. Hence δ is a fuzzifying proximity on X. We need to show that $\tau=\tau_\delta$. So, let $\tau(A)>\theta>0$. Since τ^θ is completely regular, given $x\in A$, there exists $f_x:X\to [0,1],\tau^\theta$ -continuous, $f_x(x)=0,f_x(A^c)=1$. Thus $\delta(x,A^c)\leq 1-\theta$ and so $N_x^{\tau_\delta}(A)=1-\delta(x,A^c)\geq\theta$. It follows that $\tau_\delta(A)=\inf_{x\in A}N_x^{\tau_\delta}(A)\geq\theta$, which proves that $\tau_\delta\geq\tau$. On the other hand, assume that $\tau_\delta(A)>r>0$. If $x\in A$, then $\delta(x,A^c)=1-N_x^{\tau_\delta}(A)<1-r$, and therefore there exists a d,0<1-d<1-r and $f:X\to [0,1]$ τ^d -continuous such that $f(x)=0,f(A^c)=1$. The set $G=\{y:f(y)<1/2\}$ is in τ^d and $x\in G\subset A$. Thus

$$N_x^{\tau}(A) \ge N_x^{\tau}(G) \ge d > r$$
.

This proves that $\tau(A) \geq r$ and so $\tau \geq \tau_{\delta}$, which completes the proof of (1). Let δ_1 be a fuzzifying proximity on X compatible with τ and let A, B be subsets of X with $\delta_1(A, B) < \theta < 1$. If $d = 1 - \theta$, then δ_1^{θ} is compatible with τ^d . Since A $\delta_1^{\theta}B$, there exists (by [11], Remarks 3.15) an $f: X \to [0,1]$ τ_d -continuous, with f(A) = 0, f(B) = 1, and so $\delta(A, B) \leq 1 - d = \theta$, which proves that $\delta(A, B) \leq \delta_1(A, B)$ and therefore δ is finer than δ_1 . This completes the proof.

Theorem 4.5 For a fuzzifying topological space (X, τ) , the following are equivalent: (1) (X, τ) is completely regular.

- (2) There exists a fuzzifying proximity δ on X compatible with τ .
- (3) (X,τ) is fuzzy uniformizable, i.e. there exists a fuzzy uniformity $\mathcal U$ on X such that τ coincides with the fuzzifying topology $\tau_{\mathcal U}$ induced by $\mathcal U$.

Proof: By [3], (2) is equivalent (3). Also (1) implies (2) in view of the preceding Theorem. Assume now that $\tau = \tau_{\delta}$ for some fuzzifying proximity δ . For each $0 < d \le 1, \delta^d$ is a classical proximity compatible with τ^{1-d} and so τ^{1-d} is completely regular. This completes the proof.

Theorem 4.6 Every pseudometrizable fuzzy topological space (X, τ) is completely regular.

Proof: If τ is pseudometrizable, then each $\tau^d, 0 \leq d < 1$, is pseudometrizable and hence τ^d is completely regular.

Theorem 4.7 For a fuzzifying topological space (X, τ) , the following are equivalent: (1) (X,τ) is completely regular.

- (2) If $\mathcal{F} = \mathcal{F}_{\tau} = cp(X)$ is the family of all probabilistic pseudometrics on X which are $\tau \times \tau$ continuous as functions from X^2 to \mathbf{R}_{ϕ}^+ , then $\tau = \tau_{\mathcal{F}_{\tau}}$.

 (3) There exists a family \mathcal{F} of probabilistic pseudometrics on X such that $\tau = \tau_{\mathcal{F}}$.

Proof: (1) \Rightarrow (2). For each $F \in \mathcal{F}_{\tau}$, we have that $\tau_F \leq \tau$ (by Theorem 2.2) and so $\tau_{\mathcal{F}_{\tau}} \leq \tau$. Let now $A \subset X$ and $x_o \in X$ with $N_{x_o}^{\tau}(A) > \theta > 0$. Since τ^{θ} is completely regular, there exists a τ^{θ} -continuous function f from X to [0,1] such that $f(x_0) = 0, f(A^c) = 1$. For $x, y \in X$, define F(x, y) on \mathbf{R} by

$$F(x,y)(t) = \begin{cases} 0 & \text{if } t \le 0\\ 1 - \theta & \text{if } |f(x) - f(y)| \ge t > 0\\ 1 & \text{if } |f(x) - f(y)| < t \end{cases}$$

Clearly $F(x,y) = F(y,x) \in \mathbf{R}_{\phi}^+$ and $F(x,x) = \bar{0}$. We will prove that F satisfies the triangle inequality. So, assume that $F(x,y)(t_1) \wedge F(y,z)(t_2) > F(x,z)(t_1+t_2)$. Then, $t_1, t_2 > 0, F(x, z)(t_1 + t_2) = 1 - \theta, F(x, y)(t_1) = F(y, z)(t_2) = 1$. Thus $t_1 > |f(x) - f(y)|, t_2 > |f(y) - f(z)|$ and hence $|f(x) - f(z)| < t_1 + t_2$, which implies that $F(x,z)(t_1+t_2)=1$, a contradiction. So F is a probabilistic pseudometric on X. Next we show that F is $\tau \times \tau$ continuous, or equivalently that $\tau_F \leq \tau$. So assume that $N_x^{\tau_F}(B) > r > 0$. Let $\theta_1 > r$ be such that $N_x^{\tau_F}(B) > \theta_1$. Choose t > 0 such that $1 - \sup_{y \notin B} F(x,y)(t) > \theta_1$ and so $F(x,y)(t) = 1 - \theta$ and $|f(x) - f(y)| \ge t$ if $y \notin B$. Thus $\{y: |f(x)-f(y)| < t\} \subset B$. This shows that B is a τ^{θ} -neighborhood of x. As $r < \theta$, B is a τ^r -neighborhood of x, i.e. $N_x^{\tau}(B) > r$ and so $\tau_F \le \tau$. Finally if $y \notin A$, then $|f(y) - f(x_o)| = 1$ and so $F(y, x_o)(1/2) = 1 - \theta$, which implies that

$$N_{x_o}^{\tau_{\mathcal{F}}}(A) \geq N_{x_o}^{\tau_{\mathcal{F}}}(A) \geq 1 - \sup_{y \notin A} F(y, x_o)(1/2) \geq \theta.$$

This shows that $N_{x_o}^{\tau_{\mathcal{F}}} \geq N_{x_o}^{\tau}$ and so $\tau \leq \tau_{\mathcal{F}}$, which completes the proof of the implication $(1) \Rightarrow (2)$.

 $(3) \Rightarrow (1)$ Assume that $\tau = \tau_{\mathcal{F}}$ for some family \mathcal{F} of probabilistic pseudometrics on X. For each $F \in \mathcal{F}, \tau_F$ is completely regular and so $\tau_{\mathcal{F}}$ is completely regular since $\tau_{\mathcal{F}}^d = \bigvee_{F \in \mathcal{F}} \tau_F^d$ for each $0 \le d < 1$. Hence the result follows.

We will denote by $[0,1]_{\phi}$ the subspace of \mathbf{R}_{ϕ}^+ consisting of all $u \in \mathbf{R}_{\phi}^+$ with u(t) = 1 if t > 1.

Theorem 4.8 A fuzzifying topological space (X, τ) is completely regular iff the following condition is satisfied: If $N_{x_o}(A) > \theta > 0$, then there exists $f: X \to [0,1]_{\phi}$ continuous such that $f(x_0) = \bar{0}$ and $f(y)(t) = 1 - \theta$ if $y \notin A$ and 0 < t < 1.

Proof: Assume that (X, τ) is completely regular and let $N_{x_o}(A) > \theta > 0$. Since τ^{θ} is completely regular, there exists $h: (X, \tau^{\theta}) \to [0, 1]$ continuous, $h(x_o) = 0, h(y) = 1$ if $y \notin A$. For x, y in X, define F(x, y) on \mathbb{R} by

$$F(x,y)(t) = \begin{cases} 0 & \text{if } t \le 0\\ 1 - \theta & \text{if } |h(x) - h(x_o)| \ge t > 0\\ 1 & \text{if } |h(x) - h(x_o)| < t \end{cases}$$

Clearly $F(x,y) \in [0,1]_{\phi}$. Also $F(x,z) \preceq F(x,y) \oplus F(y,z)$. In fact, assume that $F(x,y)(t_1) \wedge F(y,z)(t_2) > r > F(x,z)(t_1+t_2)$. Then $t_1,t_2>0$, $F(x,y)(t_1)=F(y,z)(t_2)=1$. Now $|h(x)-h(y)|< t_1, |h(y)-h(z)|< t_2$ and so $|h(x)-h(z)|< t_1+t_2$ which implies that $F(x,z)(t_1+t_2)=1$, a contradiction. So F is a probabilistic pseudometric. Moreover F is $\tau\times\tau$ continuous, or equivalently $\tau_F\leq\tau$. In fact, let $N_x^{\tau_F}(B)>r>0$. There exists a t>0 such that $1-\sup_{z\notin B}F(z,x)(t)>r$. If $z\notin B$, then F(z,x)(t)<1-r<1 and so $F(z,x)(t)=1-\theta<1-r$, i.e. $r<\theta$, and $|h(z)-h(x)|\geq t$. Hence

$$M = \{z : |h(z) - h(x)| < t\} \subset B.$$

The set M is a τ^{θ} -neighborhood of x and hence a τ^{τ} -neighborhood, i.e. $N_{x}^{\tau}(B) > \tau$. Thus $\tau \geq \tau_{F}$. Finally, define $f: X \to [0,1]_{\phi}$, $f(y) = F(y,x_{o})$. Then f is τ -continuous, $f(x_{o}) = \bar{0}$. For $y \notin A$ and 0 < t < 1, we have that $f(y)(t) = F(y,x_{o})(t) = 1 - \theta$ (since $|h(x) - h(x_{o})| = 1 \geq t$). Conversely, assume that the condition is satisfied and let \mathcal{F} be the family of all $\tau \times \tau$ continuous pseudometrics on X. Then $\tau_{\mathcal{F}} \leq \tau$. Let $N_{x_{o}}^{\tau}(A) > \theta$. There exists a $\theta_{1} > \theta$ such that $N_{x_{o}}^{\tau}(A) > \theta_{1}$. By our hypothesis, there exists $f: X \to [0,1]_{\phi}$ continuous such that $f(x_{o}) = \bar{0}$ and $f(y)(t) = 1 - \theta_{1}$ if $y \notin A$ and 0 < t < 1. Define F(x,y) = D(f(x),f(y)). Then F is $\tau \times \tau$ continuous and

$$\begin{array}{ll} N^{\tau_{\mathcal{F}}}_{x_o}(A) & \geq N^{\tau_{\mathcal{F}}}_{x_o}(A) \geq 1 - \sup_{y \notin A} F(x_o, y)(1) \\ & = 1 - \sup_{y \notin A} D(\bar{0}, f(y))(1) \\ & = 1 - \sup_{y \notin A} f(y)(1) \geq \theta_1 > \theta. \end{array}$$

Thus $N_{x_o}^{\tau_{\mathcal{F}}}(A) \geq N_{x_o}^{\tau}(A)$, for every subset A of X and so $\tau \leq \tau_{\mathcal{F}}$. Therefore, $\tau = \tau_{\mathcal{F}}$ and so τ is completely regular.

For a fuzzifying topological space X, we will denote by $C(X,[0,1]_{\phi})$ the family of all continuous functions from X to $[0,1]_{\phi}$.

Theorem 4.9 A fuzzifying topological space (X, τ) is completely regular iff τ coincides with the weakest of all fuzzifying topologies τ_1 on X for which each $f \in C(X, [0, 1]_{\phi})$ is continuous.

Proof: Assume that (X,τ) is completely regular and let τ_1 be the weakest of all fuzzifying topologies on X for which each $f \in C(X,[0,1]_{\phi})$ is continuous. Clearly $\tau_1 \leq \tau$. On the other hand, let τ_2 be a fuzzifying topology on X for which each $f \in C(X,[0,1]_{\phi})$ is continuous. Let $N_x^{\tau}(A) > \theta > 0$. In view of the preceding Theorem, there exists an $f \in C(X,[0,1]_{\phi})$ such that $f(x) = \bar{0}, f(y)(t) = 1 - \theta$ if $y \notin A$ and 0 < t < 1. Let

$$G = \{ u \in \mathbf{R}_{\phi}^+ : D(f(x), u)(1/2) = u(1/2) > 1 - \theta \}.$$

Then

$$N_{\bar{0}}(G) \ge 1 - \sup_{u \notin G} D(f(x), u)(1/2) \ge \theta.$$

Since f is τ_2 -continuous, we have that $N_x^{\tau_2}(f^{-1}(G)) \geq \theta$. But $f^{-1}(G) \subset A$ since, for $y \notin A$, we have that $f(y)(1/2) = 1 - \theta$. Thus $N_x^{\tau_2}(A) \geq \theta$. This proves that $N_x^{\tau_2}(A) \geq N_x^{\tau}(A)$, for every subset A of X and so $\tau_2 \geq \tau$. This clearly proves that $\tau_1 = \tau$. Conversely, assume that $\tau_1 = \tau$. If σ is the usual fuzzifying topology of \mathbf{R}_{ϕ}^+ , then

$$\tau = \tau_1 = \bigvee_{f \in C(X, [0,1]_{\phi})} f^{-1}(\sigma).$$

Since σ is completely regular, each $f^{-1}(\sigma)$ is completely regular and so τ is completely regular. This completes the proof.

References

- [1] U. Höhle, Probabilistic metrization of fuzzy uniformities, Fuzzy Sets and Systems 8(1982), 63-69.
- [2] A. K. Katsaras and C. G. Petalas, Fuzzifying topologies and fuzzifying proximities, The Journal of Fuzzy Mathematics 11 (2003), no. 2, 411-436.
- [3] A. K. Katsaras and C. G. Petalas, *Fuzzifying syntopogenous structures*, The Journal Of Fuzzy Mathematics **12** (2004), no. 1, 77-108.
- [4] A. K. Katsaras and C. G. Petalas, On fuzzifying topological spaces (preprint).
- [5] A. K. Katsaras and C. G. Petalas, *Totally bounded fuzzy syntopogenous structures*, The Journal of Fuzzy Mathematics, Vol. I No 1(1993), 137-172.
- [6] F. H. Khedr, F. M. Zeyada and O. R. Sayed, Fuzzy semi-continuity in fuzzifying topology, The Journal of Fuzzy Mathematics, Vol. 7(1999), 105-124.
- [7] F. H. Khedr, F. M. Zeyada and O. R. Sayed, On separation axioms in fuzzifying topology Fuzzy Sets and Systems 119(2001), 439-458.
- [8] R. Lowen, Convergence in fuzzy topological spaces, General Topology Appl. 10(1979), 147-160.
- [9] R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl. 82(1981), 370-385.
- [10] R. Lowen, The relation between filter and net convergence in fuzzy topological spaces, Fuzzy Math. 3(4)(1993), 41-52.
- [11] S. M. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge University Press (1970).
- [12] D. W. Qiu, Fuzzifying compactification, The Journal of Fuzzy Mathematics 5(1997), 251-262.

Completely Regular Fuzzifying Topological Spaces

- [13] Jizhong Shen, On local compactness in fuzzifying topology, The Journal of Fuzzy Mathematics 2, No 4(1994), 695-711.
- [14] J. Z. Shen, Separation axioms in fuzzifying topology, Fuzzy Sets and Systems 57(1993), 111-123.
- [15] M. S. Ying, A new approach for fuzzy topology I, II, III, Fuzzy Sets and Systems **39**(1991),303-321; **47**(1992), 221-231; **55**(1993), 193-207.
- [16] M. S. Ying, Compactness in fuzzifying topology, Fuzzy Sets and Systems 55(1993), 79-92.