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Abstract. In this work we consider boundary value problems of the form
flt,z,z,2") =0, 0 <t < 1; z(0) =0, z'(1) =b, b >0,

where the the scalar function f(t, z, p, ¢) may be singular at z = 0. As far as we know, the solvability
of the singular boundary value problems of this form has not been treated yet. Here we try to fill in
this gap. Examples, illustrating our main result, are included.
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1.INTRODUCTION

In this paper we are dealing with the existence of positive solutions to the bound_a.ry value problem
e, 2 ) =0 0<i<l, (1.1)

z(0)=0, Z(1)=8, b>0, {1:2)

where the scalar function f(¢, z, p, g) may be singular at z = 0, i.e. f may tend to infinity when z
tends to zero on the left and/or on the right hand side. In fact, we need f to be defined at least for

(t733,p,Q) € [07 1] X {Dm\{o}} X Dp x DQ’
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where the sets D;, Dp, D; C R may be bounded. We need also D., D, and D, to be such that
0€ D, 0 € D, and the sets D = D, N (0,+cc), D; = (—oc,0)ND, and {y € D, : y > 0} to be
. not empty as well as the first derivatives of f to be continuous on a suitable subset of the domain
of f.
Results on the solvability of various singular BVPs for ordinary differential equations, whose main
nonlinearity does not depend on the highest derivative, can be found, for example, in [1-17] and
references therein. The papers [3,15] deal with higher order differential equations. In [3,14,15] the
main nonlinearity satisfies Caratheodory conditions, while in [14] a differential equation with impulse
effects is considered. The results in [2-4,7,9,13,17] guarantee the existence of positive solutions.
The solvability of various nonsingular BVPs for second-order differential equations, whose main’
nonlinearity depends on z”, has been investigated in [18-27]. The case where the main nonlinearity
of the equations is continuous on the set [0, 1] x R is considered in [18-26], while the case where the
main nonlinearity is continuous on the set [0,1] x R* x R* x Y, where ¥ C R", is considered in [27].
The results in these works guarantee the existence of solutions which may change their own sign.
As far as we know, the solvability of singular BVPs for equations of the form (1.1) has not been
studied yet. In this paper we want to fill in this gap. In order to establish the existence of positive
solutions to the BVP (1.1), (1.2) we proceed as follows. For A € [0,1] and n = 1,2, 3, ... we construct
a family, say (®),, of regular BVPs. For example, two-parameter families of BVPs have been used
also in [4,5,16]. As in [10,25] suitable ”barrier strips” yield a priori bounds independent of A and
n for z, z' and z",where z € C?[0,1] is an eventual solution to the family (®). These bounds
alow us to apply the topological transversality theorem [28, Chapter I, Theorem 2.6] to prove the
solvability of the family (®), for each n = 1,2, 3... Finally, we establish a bound for z/” independent
of n in appropriate domain so that the Arzela-Askoli theorem yields a solution to the problem (1.1),
(1.2) as the limit of a sequence of solutions to the problems (®),, n=1,2,3, ...

2. BASIC HYPOTHESES
In order to obtain our results we make the following three basic hypotheses.

H1. There are positive constants K, @, P;, i =1,2,3,4 and a sufficiently small £ > 0 such that
P3+ESP1$bSPQSP4_€1 P1<P27(07P2+5}QDI1 [P3:P4]§DP:

[hg — &, Hy+ <] C Dy, where hy=—Q+ P —band H,=Q + P> — b,

and the following ”barrier strips” conditions are satisfied
ft,z,p.q) + Kg >0 for (¢,2,p,9) €[0,1] x D x [P, P4} x Dy, (2.1)
ftz.p,q) + Kq<0 for (t,2,p,9) €[0,1] x Dy x [P, ] x D}, (2.2)
q(f(t,a:,p, q) + Kq) <0 for (t,z,p,¢9) €[0,1] x (0, P, +¢] x [P, P2] X {DouD5}, (2.3)
where D) = D \{0},D; ={2€D,:2<—-Q} and Dy ={2€ D,: 2> Q}.

REMARK. Since [-Q, Q] C [hy — &, Hy +¢] C Dy, the sets Dg; and D} are not empty.
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H2. The functions f(t, z, p, g) and fy(¢,z,p,q) are continuous on the set [0,1] % (0, P, +¢] x [P —
€, Py +¢] X [hg — e, Hy + €] and there is a constant K, > K such that

fo(t,2,p,9) < =K, for (t,z,p, q) €[0,1] x (0, +¢] x [P, —¢, Py +¢e] x [hg— €, H, +¢],
where K, Q, P, P,, hq, Hy, and ¢ are as in H1.

H3. The functions f,(t, z, p, q), fz(t,z,p,q) and f,(t,z,p,q) are continuous for (¢,z,p, g) €[0,1] x
(0‘, P2 -+ E] X [Pg_, Pz]“"x [hq, Hq] ‘

3. AN AUXILIARY RESULT

For A €[0,1] and n € N we construct the family of BVPs
K(;c” = {1 = X' — b)) o (K(:.: w (1= Ryt = b)) + f(t, 2,2, 2" — (1 - \)(z' — b}))

2(0) = % ) = b

?

(3.1)x
which for A = 1 includes the BVP (1.1), (1.2) and where the constant K > 0 is as in H1, when it

Is satisfied. Relatively the following proposition is fulfilled.

LEMMA 3.1. Let H1 be satisfied and let z(t) € C?[0,1] be a solution to the family (3.1),. Then

o
A
3|
A
8

(6) < P+ % P<2(t)< P, hy<z'"(t) < H, for tec 0,1, neN, n>1/e

Proof. Let the number n € N, n > 1 /¢ be fixed and suppose that the set
§= {t S [O, H P < .’.C!(t) < P4}

is not empty. The continuity of 7'(t) and the boundary condition at ¢ = 1 imply that there is an
interval [a, 5] C S such that

z'(a) > 2'(8). (3.2)
Then there is a v € [q, 8] such that
z"(y) < 0.

Without loss of generality, assume that z(7y) # 0. Since z(t) is a solution to (3.1),, we have
(720,202 (0) = (1 = )(&'(2) = 5)) € [0,1] x DY x D, x D
But /() € (P, Py and z(v) — (1=A)(z'(v) — b) < 0. So,

(720, 2/(0,2"(0) - (1 = V() - 1)) € [0,1] x DY x (By, B x D;

and by H1 we obtain
0> K(2"(2) = (1= (') - )=
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=A(K(f%ﬂ—(1—xxfmo—bﬂ+f@nﬂvxdtnnﬂw>—(1—Axfha—bﬂ)zo,

which is impossible. Therefore,
Z'(t) < P for t€]0,1].

Similarly, the assumption that the set
So={te0,1]: B <2 () < P}
is not empty leads to a contradiction, and therefrom we conclude that
0< P, <Z(t) for t€]0,1].

But the fact that z'() > 0 on [0, 1] means that z(¢) > 1/n for ¢ € [0, 1] and for fixed n € N. On the
other hand, by the mean value theorem, for each ¢ € (0, 1] there is a ¢ € (0,t) such that

z(t) — z(0) = z'(§)1,
from where it follows that
z(t) <P +1/n<P+e for t€0,1].
Suppose now that there is (tg, Ag) € [0,1] x [0, 1] such that
2"(t0) — (1= A0) (' (t0) — b) < —Q.

Then, using the fact that (to, z(to), x'(to), :):”(to)—(l—Ao)(z’(to)—b)) € [0,1]x(0, Po+e]x [P, Po]x Dy,
and having in mind (2.3), we find that

0> K(a"(th) ~ (1= )&/ (o) ~ ) =

e (K(z"(to) — (1= X0)(2'(to) — b)) + f(to,z(to),x'(zo), 2"(to) — (1 — Xo)(Z' (o) — b))) >0.

The obtained contradiction shows that

—-Q <z"(t) — (1 - X)(z'(t) — b) foreach (¢,)) €[0,1] x [0,1].
In a similar way, assuming that there exists (¢1,;) € [0,1] x [0,1] such that

() — (1= M)(@'(t1) = 0) > Q

and using (2.1), we again lead to a contradiction. So, we see that

-Q<z"(t) - (1 -N)(2'(t) —b) <Q for (¢,)) €[0,1] x [0,1]
which yields

hy=—Q+P-b<z"(t) <Q+P—-b=H, for t€[0,1]. O
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4. AN APPROPRIATE EXTENSION OF THE MAIN NONLINEARITY

In order to prove our main result, it is necessary to extend the function f on the set [0,1] x R® -
in a suitable way. With that end in view, we proceed as follows.
For a fixed n € N we construct the functions

£, (20)7,p,q), (t,2,p,9) € [0,1] x (=00, (2n)™Y) x [P, — ¢, P + &) X [hg— &, Hy + ¢
p= 1 flt:z.p,q), (t,2,p,9) €[0,1] x [(2n)"L, P, + &) x [Pi—e,Po+e] x [hy—e, Hy +¢]
f&. Po+e,p.0), (t,2,p,9) €[0,1] x (Po+e,00) x [P, —¢, Py + &] X [hg — €, Hy + €],

where h,, Hp, e and P,,i = 1,2, are the constants of H1.

REMARK 2. Observe that any other function considered below, which involves the function ¢,
depends on this fixed value of n € N. But, for the sake of simplicity, in the sequel we will omit all
n-indexes.

Some properties of the function ¢ are described by the following two lemmas.

LEMMA 4.1. Let H2 be satisfied. Then o(t,z,p,q) and its derivative q(t,z,p,q) are continuous on
=01 xRx[P—¢,P+¢] x [hg — &, Hy + €] and @, (t,z,p,q) < -K, for (t,z,p,q) € Q,.
Proof. Clearly, o(t, z, p, q) and

ftzp,9),  (t2,0,9) €[0,1 X [(2n) 7, ot &) x [P — &, Py + &] x [, — &, Hy+¢]
fq(tsp2+5$p1Q)1 (t,-’L‘,P,Q) S [071:[ X (P2+E,OO) X [PI—E:P2+€] X [hq_sz-Hq"f_E}

{ Jalt (2n) . p.q), (t,2,p,q) € [0,1] x (=00, (20)™1) X [Py ¢, Py + €] X [hy — &, H, + ¢]
$g =
are continuous on €,. Besides, in view of H2,
fo(t,z.p.q) < =K, for (t,z,p,q) € [0,1] x [(2n)™Y, P +¢] x [P, — ¢, P, +ée] X [hg — e, Hy +¢].
In particular, for (¢,p,q) € 0,1] x [P, ~2, P, +¢] x [hq — &, H, + £] we have
folt.(2)7,p.0) S ~K; and fi(t, P +e,p.q) < K,
Consequently

Pq(t,z,p,q) < —K, for every (¢,%,p,¢) €[0,1] X Rx [P —¢, Py + g] X [hg — &, Hy + £].0

LEMMA 4.2 . Let H1 be satisfied. Then the function ¢ (¢, z, p, q) has the following ”barrier strips”
properties

¢t z,p,q) + Kqg >0 for (t,z,p,q) € [0,1] x R x {P} x [hy —¢,0), (4.1)
©(t,z,p,q) + Kqg >0 for (t,z,p,q) €[0,1] x R x [P, Po] % [hg — &, —@Q)] (4.2)
¢(t,z,p,q) + Kg <0 for (t,z,p, 9) €0,1]x Rx {P} x [0, H, +¢]. (4.3)
and
o(t,z,p,q9) + Kg <0 for (¢,z,p, 9) €[0,1] x Rx [P, R] x [Q, H, + ¢]. (4.4)
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Proof. In particular, by the definition of ¢, we see that
o(t.z,p,q) = f(t,z,p,q) for (t,z,p,q) €[0,1] x [(2n)™, P, + £ x [P2, Py + €] X [hy — €,0).
Now, since [(2n)™%, P, +¢] C D2, [Py, P> + €] C [P, Py] and [hg —£,0) C Dy, in view of H1, we get
f@t.z,p,q)+Kg >0 for (t,z,p,q) € [0,1] x [(2n)7%, P, +¢] X [P, Py + €] X [hy —€,0).
Therefore,
o(t,z,p.q) + Kq >0 for (t,z,p,9) €[0,1] x [(2n)"Y, Py +¢] x [Py, Po+ €] x [hg—€,0). (4.5)

Next, having in mind H1 and the fact that (2n)~! € DY, [P, Py+¢] C [Py, P;] and [h,—¢,0) C D,
we see that

f(&(2n)" ,p,q) + Kq >0 for (t,p,q) € [0,1] X [Py, Py + g] X [hy —€,0).
But, since the definition of « implies
e(t,z,p,9) = f(t,(2n)™,p,q) for (¢,z,p, ) € [0,1] x (o0, (2n)™*) X [Po, Py + €] X [hy — €,0),
we conclude that
©(t,z,p,q) + Kg >0 for (t,z,p,q) € [0,1] x (—o0, (2n)™) X [Py, Py + €] X [hg —,0). (4.6)
In a similar way, we obtain
o(t,z,p,q) + Kg>0 for (t,z,p,q) € [0,1] x (P +¢,00) X (P2, P2 + €] x [hy — €,0),
which together with (4.5) and (4.6) gives (4.1). Remark that the sé.me reasoning as above yields
(4.3"_)[:0 prove (4.2), observe first that, by the definition of ¢,
o(t.z,p,9) = f(t.z,p,q) for (t.z,p,q) €[0,1] x [(2n)™, Py + €] x [P1, Py) X [y — £, —Q),
and then, using (2.1), we obtain
©(t,z,p,q) + Kg >0 for (t,z,p,q) € [0,1] x [(2n) ™, P+ €] x [P, P3] x [hg — &, —Q).
Besides, (2.1) implies that
f(t,(2n)7",p,q) + K¢ >0 and f(t,Py+¢,p,q) +Kg>0
for (t,p,q) € [0,1] x [P, P2] % [hy; — &, —Q) and, by the definition of 0, we derive
olt,2.2,9)+Kq2 0 for (t,2,p,9) € [0,1]x {(~o0,(2n) ) U(Po+e,00) } x [Py, By] x [hg —&,~Q).
Thus, we see that
(t,z,p,q) + K¢ 2 0 for (t,z,p,9) €[0,1] x Rx [P, Py x [hg — £, —Q).

Finally, by the same arguments, we conclude that

¢(t,z,p,q) + Kq <0 for (t,2,p,9) €[0,1] x R x [P, P x (Q,Hy+¢].0
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Now, using the function ¢ we introduce the function

o(t.2,P1,q), (t,z,p,9) €[0,1] X RX (—00, P}) x [k — &, H, + ],
ot 2,p9) =1¢ ¢(t2.2.9), (t2.p,q) €[0,1]x Rx [P, By x [hy — ¢, H, +¢],
ip(t: Z, P21 Q)) (t: mapr Q) = [0’ 1] X R X (PQ, OO) x [hq —-& Hq + EL

whose properties are describing by the following proposition.

LEMMA 4.3. Let H2 be satisfied. Then ®(t,z,p,q) and its derivative ®,(t,z,p,q) are continuous on
2 =[0,1]] x Rx Rx [hy —¢, H, +¢] and &,(t,2,p,q9) < —K, for (t,z,p,q) € Q.
Proof. Clearly, ®(t,z,p, g) and

(,Cg(t,I,Pz, Q): (ta z,p, Q) € [07 1] x R x (P2: OO) X [h'q — &, Hq + E]:
@o(t:2,0.0) = { ¢o(t,7,0,9), (t:2,p,0) €[0,1] x Rx [Py, Py] x [hy — &, H, + €],
@q(tzl': PIJQJ: (t: z,p, Q) = [O= 1] X R X (_OO:Pl) X hq - E:Hq +5]

are continuous on €,. Besides, by Lemma 4.1,
wq(t,z,p,q) < —K, for (t,z,p, q) €[0,1] x Rx [P, P5] x [hg— e, H, + ¢,
and hence it follows that

(I)q(ta j:7p:| Q) S _Kq fOI' (t: .T.,p, Q) E QP‘EJ

In order to extend appropriately the main nonlinearity, we suppose that the condition H2 is
satisfied. We assume also that ¢ is a function with the properties '

U(t,z,p,q) and ¥ (t,z,p,q) are continuous on [0,1] x R? x [Hy + €, 00),

U(t,z,p, Hy+e) = (¢, z, p, Hy+e) and U, (t,z,p, Hyte) = &,(t, z, p, Hg+e) for (t,z,p) € [0,1]x R?

and
Yo(t.z.p.q) < =K, for (t,z,p,q) €[0,1] x R® x [H, + ¢, 00),

which is possible because, by Lemma 4.3, ®o(t,z,p, Hy+¢) < —K, for (t,z,p) €[0,1] x B2
Finally, suppose that ¥ is a function with the properties :

¥(t,z,p,q) and y(t.z,p.q) are continuous on [0,1] x R? x (—ox, he — €],

U(t, z,p, hg—c) = ®(t, 2, p, hg—z) and ¥,(t,2,p, hg—e) = ®,(¢, z, p, hg—e) for (t,z,p) € [0,1] x R®

and
Yq(t, 2,p.9) < —K, for (t,2,p,q) € [0, 1] x R? x (=00, hy — €],

which is possible since, by Lemma 4.3, Dy(t.z,p. hp —€) < —K, for (t,z,p) € 0, 1] % R=.
Now we are ready to extend the function f to the function defined in [0,1] x R? by
3 { U(t,z.p.9), (t,2.p.9) €[0,1] x B? x (—00,hy —¢),

fltapg) =% St2, g9), (t,z,p,q) €[0,1] x R? x [hg — e, Hy + £,
U(t,z,p,q). (t,z,p,q) €[0,1] x R? x (H, + £, ).
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The next two lemmas establish some useful properties of the functions f,, and its derivative

{ ¢q(t:I:p7 Q)t (trxspa Q) € [01 1] X Bx R x (-—-OO,hg - E)

(Tn)q(tu"r:pa Q) = Qq(t7 $7p3 Q), (tax:pa Q) 6 [0: ] X R X R X [hq - 67 Hq + E]

1
Y,(t.z,p.9), (t,z,p,q) €[0,1]x Rx R x (H,+¢,00)

LEMMA 4.4. Let H2 be satisfied. Then

Fa(t.z,p,q) and (f,)4(t, 7, p, q) are continuous on [0,1] x R®

. and N
(fn.)q(t! z, D, Q) < _Kq for (f,x,P,q) S [0, 1] X R3

Proof. Since the conclusion of this lemma, follows by the properties of the functions ¢ and ¥ and by
Lemma 4.3, the details of the proof are omitted.O

LEMMA 4.5. Let H1 and H2 be satisfied. Then the function f. has the following "barrier strip”
properties:

falt,z.p,q) + Kq >0 for (t,z,p, q) €[0,1] X Rx [Py, P+ 2] x (—00,0),

Falt,2.0.9) + Kq <0 for (t,7,p,q) €[0,1] x Rx [P — &, By] x (0, %) (4.7)

and
o Fult2.p,0) + Kq)< 0 for (t,2,p,0) € [0,1] x Rx [P, Py] x {r\[-e.ql}.

Proof. The definitions of the functions & and [, imply that
Falt.z,p,9) = o(t,z,p,q) for (t,z,p,9) €[0,1] x R x [P, P3] x [hy— ¢, Hy +¢]. (4,8)‘
On the other hand, by Lemma 4.2,

o(t.z, P, q)+ Kq >0 for (t,z,q) €0, 1] X Rx [hy —¢,0).

So, from the fact that

falt.z.p,q) = @(t, 2,p,9) = ¢(t. 2, P2,q), p> Py, g € [hy—¢,0)
it follows that
Falt,z.p,¢) + Kg >0 for (t,z,p,q) €[0,1] x R x [Py, Py + €] x [hg —¢,0). (4.9)
Observe that, by Lemma 4.4, for each (¢, z, p, q) € [0,1] x R x [Py, Py + ] x {—o00,0) we have
(ﬁ(tap, g) + KG)Q = (fadat,2,2,0) + K < (Fo)olt, .0, ¢) + K, <0,
which together with (4.9) yields
Falt.z,0,9) + Kg >0 for (t.2,p,9) € [0,1] x R x [Py, P + &] x (—0o0,0).

Now, note that the same reasoning as above yields (4.7).

38



Note also that, in particular, from (4.8) it follows that

falt:z.p,q) = 0(t. 2.p,q) for (t,z,p,q) €[0,1] x R x [Py, B)] x (Q, H, + ],
from where, according to (4.3), we get .
Falt2,0,9) + Kq <0 for (t,2,p,9) €[0,1) x Rx [P, Py] x (Q,Hy +¢]. (4.10)
In view of Lemma, 4.4, for each (t,z,p,0) €[0,1] x R x [P, Ps] x (0, c0) it follows that
( Falt,z,p,9) +Kq)q = (Fadt.z.0.0) +K < (Fo)olt,zp,0) + K, <O0.
So, by (4.10), we conclude that
fultiz,p,9) + Kg<0 for (t.z,p.9) €[0,1] x R x [Py, P)] x (Q, ). (4.11)
Finally, observe that the inequality
Fultsz,p,0) + Kg >0 for (t.2,p,9) € [0,1] x R x [P, Py] x (—o0, —Q)

can be obtained in a similar manner.O

Now, for A€[0,1] and neN, n>1 /€ consider the family of regular problems

K(:r”— (1= (z' - b)) = A(K(sc” —(1=X)(z —b) +3‘hn(t,x,3:’,$” —(1=X)(z' —b)))

20) ==, 2(1)=b,
(4.12),

The following two lemmas establish some useful properties of solutions to the family (4.12),.

LEMMA 4.6. Let H1 and H2 be satisfied and let z(t) € C*0, 1] be a solution to the family (4.12),.

Then
—?1; Sz(t)<P+e PL<Z(t) < P, hy < 2"(t) < H, for t €0, 1},

Proof. Since the conclusions of Lemma 4.5 hold, the proof of this lemma is similar to that of Lemma,
3.0

The next result is a direct consequence of Lemma 4.6 and the definition of the function f,,.

LEMMA 4.7. Let H1 and H2 be satisfied. Then each C?[0, 1]-solution to the family (4.12), is also
a solution to the family (3.1),, A € [0, 1].

Proof. Observe that, in view of Lemma 4.6, for each solution z(t) € C?[0,1] to (4.12), we have
(t,x(t),z’(i),m”(t)) €[0,1] x v, P+ €] X [Py, By] x [y, H,].

On the other hand, the definition of f,, implies that

Falt.2,p,0) = f(t,2,p,q) for (t,2,p,0) €[0,1] x [n~%, Py + ] x [P, Py] x [hy, Hy]
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from where the assertion of the lemma follows immediately.0
We conclude this section by proving the following important

LEMMA 4.8. Let H1 and H2 be satisfied. Then for each n € N, n > 1/e the problem (3.1); has at
least one solution in C2[0, 1].

Proof. Let n be fixed. Then, using Lemma 4.4, we conclude that the functions
F(\t,2,p,q) =X folt,2,0,q) + (A= 1)Kq and Fy(\,t,2,p,q) = A (F.)e(t,2,p) + (A — DK
are continuous for (A,¢,z,p,q) € [0,1]? x R® and that
Fo(Atz,p,q) <0 for (A t,2,p) € [0,1) x R3.
On the other hand, according to Lemma 4.5, we have
Falt,z,p, Hy) + KH, <0 for (t,z,p) €[0,1] x R?
and
Falt.z,p,hg) + KRy > 0 for (¢,z,p) € [0,1] x R2.

So, we see that F < 0 for ¢ = H, and F > 0 for ¢ = h,.Thus, there is a unique function
V(A t,z,p) € (hy, H,), which is continuous on the set [0,1]> x R? and such that the equations

g=V(A\tz,p), (At z,p)e€ 0,1 x R?

and '
F(\t,z,p,q) =0, (\t,z,p,q) €[0,1]2 x B

are equivalent. This means that for any A € [0,1] the family (4.12), is equivalent to the family of
BVPs

2~ (1= N -b) =V(\tz,2), te0,]]

; (4.13),
==, (1) =b
z(0) = T (1):=5
Note that F(0,t,z,p,0) = 0 yields
V(0,t,z,p) =0 for (t,z,p) €[0,1] x R (4.14)

Denote now C%[0,1] == {z(¢) € C?[0,1] : z(0) = 1/n, z'(1) = b} and define the maps
j:C30,1] — C0,1] by jz=z,
Ly:C3[0,1] = C[0,1] by Lyz=2"—(1-X)(' -b), A€o, 1],

and
Vi: CYo, 1]—C[0,1] by (Viz)(t)= V(AL z(t),2'(1), t€]0,1], A e [0, 1],

ki

Let introduce the set

1 r
U={$€C§[O,1]: Eﬁ<x<‘p2+€’ Pl-—s<x’<P2—:—e,hq—-s<3: <HQ+E}
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which is a relatively open set in the convex set C%[0,1] of the Banach space (2 [0,1]. Since Ly, A €
[0,1], is a continuous, linear and one-to-one map of C3[0,1] onto C[0,1], we conclude that Lt
exists for each A € [0, 1] and is also a continuous map. In addition, V, is a continuous map, while
the natural embedding j is a completely continuous map. Therefore, the homotopy

H:TU x[0,1] — C?[0,1] defined by H(z,A) = Hy(z) = LT7V3j(z)
Is a compact map. Moreover, the equations
Li'Vyj(z)=z and Lyz =Wz

are equivalent, i.e. the fixed points of H, () are solutions to the family (4.13),. Further, obverse
that the solutions to (4.13), are not elements of AU, which means that H,(z) is an admissible
map for all A € [0,1]. Besides, in view of (4.14), Ho(z) =n"!+bt. Since n~! + bt € U, we can
apply Theorem 2.2 [28, Chapter I] to conclude that H, is an essential map. By the topological
transversality Theorem 2.6 [28, Chapter I, Hy = L7'V4j is also an essential map. Consequently,
the problem (4.13); has C?2[0, 1]-solutions, which are also solutions to the problem (4.12);. Finally,
by Lemma 4.7, the solitions of the problem (4.12); are also solutions to the problem (3.1);. O

9. MAIN RESULT

Using the results of the previous sections, we are ready to prove our main result, which is the
following existence

THEOREM 5.1. Let H1, H2 and H3 be satisfied. Then the problem (1.1), (1.2) has at least one
solution z(t) € C[0,1] N C2(0, 1] with the property z(t) > 0 on (0,1].

Proof. Consider the sequence {z(t)} € C?[0,1], where z,(), n e N, n > 1 /€ is a solution to (3.1);.
Note that, by Lemma 4.8, the above sequence exists and, by Lemma 3.1, for n € N, n > 1/e the
elements of this sequence satisfy the bounds

% STlt) S Pr+e, P <2(t) < Pohy < 2(8) < H,, te 0.1 (5.1)

Therefore, in view of H2 and H3, from the differential equation (3.1)1 we conclude that for ¢ € (0,1)
and A small enough

[=Falt: 2n(t), 24 (2), @un(8)] [22(t + B) — 22 (2)]
=hfi(Tan) + fo(Ton) [2n(t + h) — 2,.(2))]
+fo(Ton)lan (t + k) - 2, (2)]
= fi(Tn) + fo(Tn)z, () + fo(Tn)2li(t), for h— 0,
where T = T, (¢, z(t), «/,(1), 1(t)) and the points Tin, Ton, Tss and (¢, on(2), 2/, (£), gus (£)) tend to

T,.. Because of (5.1), (5.2) and in view of H2 and H3, it follows that z//(t) exists for every ¢ < [0,1],
is given by the formula

20 (&) = {i(To) + £2(To)2n(8) + folTa)2(e)}/ [~ Fo(To)], (5.3)
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and is continuous on [0, 1].
Next, integrating the inequality P, < z/,(¢) < P, from 0 to ¢ witht € (0, 1], we obtain

1
= 4+ Pyt < 2a(f) < % 4Bt te01]. (5.4)

Let the constant o € (0, 1). Then, in view of (5.4)
zZp(t) 2 Pa>0, te€]al]
According to H3, using (5.1) and (5.3) we find that
|z O] < (Ifel + | fellan] + 1fllzn) /Ky < Co,  t € [a1],

where the constant C,, does not depend of n. Now the Arzela-Askoli theorem guarantees the existence
of a subsequence {z,,}{2, converging uniformly on C? [, 1] to some function z € C?{a, 1], which is a
solution of the differential equation (1.1) for ¢ € [, 1]. The boundary condition z'(1) = b is obviously
satisfied. Thus, for ¢ € (0,1] there exists a solution z(t) € C?(0, 1] of the differential equation (1.1),
which satisfies the boundary condition z’(1) = b. Moreover, according to (5.4), we see that

0< Pit < z(t) < Pst for te(0,1) (5.5)

and thus z € C[0,1] and z(0) = 0, which implies that z(¢) is a solution to the boundary value
problem (1.1), (1.2) for which, in view of (5.5), we have z(¢) > 0 for every ¢ € (0,1]. O

6. ILLUSTRATIVE EXAMPLES

We conclude our investigation with the following examples, illustrating our main result.

EXAMPLE 6.1. Consider the problem

:.CH

exp((t - 2)1”) + (' = 5)(z' — 10) — 22" — m =0, Gtz

z(0) =0, 2/(1) =8.

It is easy to check that for K =1, Q =15, P, =7, P, =11, P, =6, P, = 12 and for a
sufficiently small € > 0 the hypothesis H1 is satisfied. Hence, the hypothesis H2 is satisfied for
K, = 2. Moreover, D, = D? = (—o0,0) U (0,30) U (30,00), D, = D, = R, h, = —16 and H, = 18.
Obviously, the functions

g(60 — 4z)
(x(30 — :);))3

are continuous for (t,z,p,q) € [0,1] x (0,12] x [7,11] x [—16, 18]. Therefore, the hypothesis H3 is
fulfilled and, by Theorem 5.1, the considered problem admits a C[0, 1] N C?(0, 1]-solution.

ft(th;p;Q) =qexp(Q(t_2))J fz(t,.'l?,p,Q): and fp(tax!pa Q) =2p—'_15
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EXAMPLE 6.2. Consider the problem

V225 — (z')2sing’ — -

—(")*—052"=0, 0<t< 1;
V400 — (2)2/z(625 — 72) @)

Ir

2(0) =0, /(1) =5.

Here D, = [~15,15] and D, = (—20, 20). Since (0) = 0, we will investigate this problem only
for D2 = (0,25). Clearly, the function

. g 3
t,z,p,q) = /225 — p2sinp — —qg° — 0.5
f( P:q) pisinp \/400 - qz\/x(ﬁ% — z2) g i

Is singular at z = 0 and satisfies the hypothesis H1 for K = 0.5, Q = 10, A=4, P=7 P =
3.5, P,=75and a sufficiently small £ > 0. The functions

1 400 _
V(625 — 22) | /(400 — )2

are continuous on 2 = [0, 1]x (0, 8+¢]x [4—e, T+&] x[~11—e¢, 12+¢]. Besides, £,(t,z,p,q) < —0.5— 5=
for (t,z,p,q) € Q. Thus, H2 is satisfied for Ky = 0.5 + 1z55. Now observe that the functions

ft,z,p.q) and f,(tz,p,q) = 3¢ -05

625 — 3z2
Ft,2,0,0) =0, fu(t,z,p,q) = —=2

s \/ (::(625 - z’*’))s

and

fot,z,p,q) = cospy/225 —p?cosp — % sinp
—p

are continuous on the set [0,1] x (0,8] x [4,7] x [-11, 12]. This means that H3 also is satisfied.
Consequently, by Theorem 5.1, the considered problem has a C[0,1] N C?(0, 1]-solution.

EXAMPLE 6.3. Consider the boundary value problem
[tz 2"} =0, 0<t<],
{ 2(0) =0, (1) =35,
where

+e—q_ (2+t)g—6 for (f,ﬂ:,p: q)
_q(r_:g + 1) for (t; z.p, q)

[0,1] x [0, 00) x R2,

f(t,:':,p, Q) = { & [0, ]_} b € (—OO1 0) X Rz-

€
S
It is easy to check that for K = L, @=10, Po=4, B, =T, P,=3 P, =8anda sufficiently
small £ > 0 the hypothesis H1 is satisfied. Note also that the functions
ft.z.p,9) =p+e?—(2+t)g—6 and f,(t z,p,q) = e~ — 2Z+1)

are continuous on the set 2 = [0, 1]x (0, 8+¢e|x[4—e, T+e] x[-11—¢, 12+¢] and that f,(t,z,p,q) < —2
for (¢,,p,q) € Q. So, the hypothesis H2 is fulfilled for K; = 2. Observe now that

ft(t7 I:p: Q) = -'Q1 fz(t; xupa Q) = 0 and fp(f: 3:: p: Q) = 1
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to conclude that H3 is satisfied. So, by Theorem 5.1, the above problem has a C[0,1] N C%(0,1] -
solution.

ExaMPLE 6.4. Consider the problem
Fltgal 2t )=10, OxiL]l,
z(0} =0; a/(1)=35,

where

. ¢ /30 —z
1/225 — p?sinp 0= = 0.5¢
for (t,2,p,q) € [0,1] x (0,30] x [~15, 15] x (=20, 20),
ft,z,p,q) = J
q 1
1/400 — ¢2 \/z(z? — 900) e
for (t,z,p,q) € [0,1] x [-30,0) x [—15,15] x (—20, 20).

/225 — p?sinp —

\

The function f(t,z,p, q) satisfies the hypothesis H1 for K = 0.4, Q = 10, Po=4, P,=T7, P, =
3.5, P; = 8 and some sufficiently small ¢ > 0. Note that the functions

3 30—
f(t,z,p,q) = /225 — p? sinp — J % 0.5
400 — g2 V. T

and f(t,z,p, q) are continuous on the set 2 = [0,1] x (0,8 +&] X [4—&,7T+¢] x [-11 —¢,12 + g
and fo(t,z,p,q) < —0.5 for (¢,z,p,q) € Q. So, the hypothesis H2 is fulfilled for K, = 0.5. Further,
observe that the functions

filt.z,p.q), fo(t,z,p,q) and fo(t,z,p,9)

are continuous on the set [0, 1] x (0,8] x [4,7] x [-11, 12]. Hence, the hypothesis H3 is also satisfied.
Therefore, in view of Theorem 5.1, we see that the above problem has a C [0, 1] N C?(0, 1]-solution.
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