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Abstract

In this paper, the multivariate linear regression model is studied under the assumptions
that the error term of this model is described by the elliptically contoured distribution and
the observations on the response variables are of a monotone missing pattern. It is primarily
concerned with estimation of the model parameters’, as well as, with the development of the
likelihood ratio test in order to examine the existence of linear comstraints on the regression
coefficients. In this context, the multivariate linear regression model with the constant term
as a sole explanatory variable is also studied and leads to estimators of the location and scale
of elliptically contoured distributions with monotone missing data. A numerical example is
presented for the explanation of the results.
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1 Imtroduction

Multivariate linear regression analysis is a well known statistical technique which helps
to predict values of responses, dependent variables, from a set of explanatory, indepen-
dent, variables. It is a popular statistical tool used in almost every branch of science and
engineering. The classic linear multivariate regression model is analyzed assuming the
error matrix has a multivariate normal distribution with zero mean matrix and a positive
definite dispersion matrix. The role of the multivariate normal distribution is seminal in
probability theory and statistics. However, many statistical papers and empirical stud-
ies show that the normal distribution is not capable of exhibiting important properties
encountered in finance and economics, among other research areas. A well known insuffi-
ciency of the normal distributions are their light tails which fail to formulate for instance,
observations of rates of return on common stock, according to Fama (1965) and Blat-
tberg and Gonedes (1974). In this respect, there has been intense research in the use of

! Corresponding author.
E-mail address: kzograf@cc.uoi.gr



nonnormal distributions in financial area. The papers by Zellner (1976) and Sutradhar
and Ali (1986), include an extensive overview of relevant literature where the error term
of the multivariate regression model can have nonnormal distributions and in particu-
lar t-distribution in practice. To tackle insufficiencies of normal distributions researchers
focus on the broader class of elliptic distributions the last three decades. They provide
useful alternatives to the multivariate normal distribution and many of the nice prop-
erties of the multivariate normal model holds for elliptic distributions. This generalized
family of multivariate distributions, includes as representatives, the multivariate normal,
multivariate ¢-distribution, Pearson type II and VII, multivariate symmetric Kotz type
distribution. For a comprehensive monograph on elliptically contoured distributions see
for example Fang and Zhang (1990), Fang et al. (1990) and Gupta and Varga (1993).
Elliptic distributions and in particular the multivariate ¢-distribution have been consid-
ered by several authors to formulate the errors in the multivariate regression model. We
refer, among others, to Zellner (1976), Sutradhar and Ali (1986), Galea et al. (1997), Liu
(2002), Diaz-Garcia et al. (2003) and references therein.

In these and other treatments the multivariate linear regression model with nonnormal
errors is studied under the assumption that complete data are available for the response
and the explanatory variables. The investigation of this model in the case of incomplete
data is particularly appealing from a theoretical as well as a practical viewpoint and
it has occupied the literature of the subject. In this direction, Little (1992) and Rao
and Toutenburg (1999) review the literature of regression analysis with missing values in
the independent variables, while Robins and Rotnitzky (1995) discuss the semiparamet-
ric efficiency in multivariate regression models with missing data and in particular with
monotene missing data for the response variable. Liu (1996) considers Bayesian estima-
tion of multivariate linear regression models using fully observed explanatory variables
and possible missing values from response variables. Tang et al. (2003) consider the
same model with missing data in the response variables, when the nonresponse mecha-
nism depends on the underlined values of the responses and hence is nonignorable. In a
recent paper Raats et al. (2002) consider the problem of multivariate linear regression
analysis, in the context of normally distributed error terms, for the specific case where the
observations of the dependent variables appear a monotone missing pattern. Monotone
missing data is a particular type of missing data which is common in practice (cf. Hao
and Krishnamoorthy (2001)) and on the other hand, a non-monotone data set can be
made monotone or nearly so by reordering the variables according to their missingness
rates (cf. Schafer (1997), p. 218). There is an increasing interest in the development of
statistical methods for handling monotone missing data from normal or elliptical popula-
tions (cf., for instance, Kanda and Fujikoshi (1998), Krishnamoorthy and Pannala (1998),
Hao and Krishnamoorthy (2001), Chung and Han (2000), Batsidis and Zografos (2005)
and references therein).

In this paper we extend the classic multivariate linear regression model in two aspects:
on the one hand adopting elliptically contoured distributed errors and on the other hand
considering monotone missing data for the response variables. More specifically, we con-
sider a p—dimensional vector of response variables on a g—dimensional vector of explana-



tory variables when the explanatory are completely observed while the responses have
missing values of a monotone pattern. These data are assumed to be missing completely
at random (MCAR), that is the missing data mechanism can be ignored for inference
(cf. Rubin (1976)). Practical examples of such data patterns, according to Raats et al.
(2002), are experimental designs where new dependent variables are added during the
experiment, panel surveys with drop outs or new members.

In the frame described previously, in the next section some preliminary concepts will
be presented related. to.the elliptic. family of distributions, monotone missing data and
multivariate linear regression model. The necessary notation is also stated. In Section
3, the explicit form of the maximum likelihood estimators (MLE) will be derived for the
parameters of the model. In Section 4, we will obtain the likelihood ratio test statistic
in order to examine the existence of linear constraints on the regression parameters. In
the final Section 5, we illustrate the results of this paper to a numerical example. In the
Appendix, we deal with the special case of the constant term as sole explanatory variable.
This case has been treated previously in the literature in the context of multivariate
normal distribution by many authors (cf., for instance, Anderson (1957), Jinadasa and
Tracy (1992), Fujisawa (1995)) and in the framework of elliptically contoured distribution
by Batsidis and Zografos (2005). It will be shown that in this particular case of a constant
term as sole explanatory variable, the main results of this paper lead to the similar ones
mentioned above.

2 The model and Preliminaries

Let us suppose that the N x p random matrix Y = (y1, s, ..;Yn)t has an elliptical
distribution with an N x p location matrix u and an Np x Np scale matrix £ @ Iy,
withy; € RP, i =1,..., N, T a positive definite matrix of order P, In the identity matrix
of order N and ® denotes the Kronecker product of the respective matrices. Then, its
density function is given by

BT f [t {=7 (Y ~ ) (Y - )], (1)

where f is a one-dimensional real valued function such that (cf. Gupta and Varga (1993,
p- 31))

0< [uNP/271f (4) du < 0.
0

We use in this case the notation ¥ ~ ECpy,(1, £ ® Iy), and we call f(-) the probability
density function generator (p.d.f. generator).

Hence, we note (cf. Anderson et al. (1986)) that this distribution is written as a
univariate elliptic distribution and then all the properties of univariate elliptic models,
are still valid. Moreover, y1,%s,...,yn can be considered as N uncorrelated realizations
from a p-dimensional elliptic population (cf. Diaz-Garcia et al. (2003), Gupta and Varga
(1993)) and relation (1) is in fact the likelihood function of them. We will present in the
sequel some properties related to the univariate elliptic models.



Consider a N x p random matrix Y from an elliptically contoured distribution, as
mentioned above, with unknown location matrix y and unknown scale matrix ¥ ® Iy,
with ¥ a positive definite matrix of order p. Let Y be partitioned as (Y1, Y, ..., Yz ), where
Y. is a N x p; random matrix, i = 1,...,k, and p; +p2 + ... + p = p.

Following the notation of Kanda and Fujikoshi (1998), let the partitions of the location
parameter y and the scale matrix ¥, according to the ones of Y, be

Y B - - Bu
Yo oy - - Xy _
nu’[z] = (”17 Moy --ey PL,) and E(l,...,i}(l,...,i) = - o . = ’ 2 = 17 “eey k:
Ta D - - Xy
where p;, is N x p;—dimensional and X, are p; X p, matrices, with X;; positive definite
for j,£ = 1,...,i. Then, it is well known (cf. Fang and Zhang (1990), Gupta and Varga
(1993)), that each Y;, is distributed as an elliptically contoured ECxyxp. (1, Zs ® In),
=1 K

Let now the transformation of the initial parameters y and ¥ to 7 and A = (4y),
defined respectively by

T = p 0= M~ Ry, =2,k

A =2y, Ap =AY =25, Ajj = X5 — E::i(l-«j—I)E(_1.1..;;-1)(1...3-'—1)E(l---j—ll:r'a

2
» @
Aq.j-n; = s = A;‘(l...j-l) = 2(_1%..3'—1)(1...3'—1)2(1---3'-1)3' ]

AVIRY

for j =2,...,k. Under this notation we can easily seen that the conditional distribution
of Y;|Yji—y, Yjiey = (Y3,...,¥i1), is an elliptically contoured with a p.d.f. generator g;,
location parameter n; + Yi-1A1..i-1i> ¢ = 2,...,k, and conditional covariance matrix
Cov (Y:;ly[i—u), 1 =2, ..., k, respectively

Cov (Y2|Y1) = Aphy [tr {AT (Y1 — 7)(Y1 — 1) }] ® In, and for i = 3,....k,

Cov (Yi|Yiyy) = (A ® In) x h; {tr [(Yi—ny.Yia =y — Vi A i—2yi-1) X (3)
diag (A1_11: A'i——l]'i—l) ( YVi=my s Hid =M~ Vi A i2)i1 )t} 3

where h;, i = 2,...,k, is a scalar function. This is a well known result appeared, for
instance, in Fang et ol (1990, p. 45, 67) and Gupta and Varga (1993, p. 63). The
expression for hy of specific elliptic models, like Pearson type VII etc., has been derived
in Batsidis and Zografos (2005), for the case of univariate elliptic models.



Consider now the multivariate linear regression model with p dependent variables, ¢
explanatory variables and V; items. This means that we consider the model

Y =XB+E, (4)

where Y is a N1 x p observation matrix of responses, X is a known N; x ¢ model matrix
of full column rank ¢, B is a ¢ x p matrix of regression parameters with unknown values
and F is a N; x p random matrix with £ = (€1, €2, ...,eNl)t, where¢; € RP, i =1,..., Ny.
The matrix F is known as error matrix. Further, we assume that the error matrix F has -
an elliptical distribution ECh, x,(0, £ ® Iy,) and hence the density of ¥ is given by (1)
with p = X B. This is typically called the elliptical multivariate linear regression model
(cf. among others Diaz-Garcia et al. (2003)) and extends the respective classic linear
model by using elliptic distribution for the error matrix F instead of multivariate normal
distribution.

Motivated by the work of Raats et al (2002), let us modify the classical elliptical
multivariate linear regression model mentioned above. We assume that the observations
of the dependent variables are incomplete and can be divided into k, k > 2, ordered groups
according to the pattern of increasing missing rate. Group r contains p, variables for which
exactly the first N, observations are available, 7 =1, ..., k, with N; > No > ... > N; and
P1+p2+ ...+ pr=p. Thus Y has the following form

[ ¥ Y - Yia
Yie Y - Yk
i 4 75
¥ = |EEER )

i 3
Yin. Yon,

yiN] )

1.1 1
nr Yi

where each y,; is p, —dimensional vector, j = 1,..., N,, r = 1,..,k, withpi+po+.. 40 =p
and we denote by Y; = (y1,Yre, .-, %n.) the N,x p, matrix which contains all the
available observations of group r, with r = 1,...,k. Such a pattern is called k-step
monotone missing pattern (cf. for example, Kanda and Fujikoshi (1998)).

We will present in the sequel the notation of this paper. The error matrix E is given
by

b 4 z
€11 ‘5%1 T €
€y €y - €ho
E=| ™ 2k ; (6)
t 1 t
&N, fany €&y

where each ¢,; is p, —dimensional vector, r = 1, ..., k,7=1,..., Ny, with p;+po+...4+pp = p.
Similar to Y;, we denote by E, the N, x pr matrix given by E, = (&r,60,..., erN,)t,



r=1,..., k. We will denote by Y{,_1) and E¢_1y the N, X p(—1) matrices, where p_1) =
P1+ ... + pr—1. These matrices contain the first IV, observations of the foregoings groups
for r = 2,..., k, while Y{g) = E(g) = 0. This means that

1 t t t
Y1 - Y1 €11 " &1
i .t t Lt
Y12 Yr—12 €12 €12
1f('r—-l) = . N . aE(r—l) = . . . » T=2,.., k. (7)
t t t t
Yin. " YUrain, EIN, 77 &-1N,

Further let X;; denotes the observed value of the [ explanatory variable, [ = 1, ..., ¢, for
the j item, j =1, ..., V;. We assume that complete data are available for the explanatory
variables and X is of the following form

X11 X21 T qu
X1 Xoo - - qu

X = . S (8)
XIN)_ X2N1 = XqN;_

Following the notation of Raats et al. (2002) let us denote by X, the N, x ¢ matrix which
contains the first /N, observations of all explanatory variables, r = 1,...,k. According to
this we have that '

Xu Xo1 - - qu
X1z Xoz - - Xpo
X, = . . S . ,r=1,..k (9)
Xin, Xon, - - Xgn,
Moreover, we will assume that the matrix B of the regression parameters has the form
ﬁ 11 1612 T 51::
B Baz - - Ba
B=| - - .. | =(Bi,Bs.. By, (10)
qul Bq2 o 'qu

where each §,,,is 1 xp,, Il =1,...,q, 7 =1, ..., k, with p; +ps+ ... + pr = p and B, denotes
the ¢ X p. submatrices of B. Denote also by B(,_1) , the ¢x pi—_1), pr—1) = P1+ ... +Pr-1,
submatrices of B, defined as follows

511 T 51,1——1
ﬁ21 Tt JB‘Z,'r——l

By = - : st B (11)
ﬁql e 18q,r—1



Using the notation introduced by relations (5)-(11) the multivariate linear regression
model (4) can be expressed in the following equivalent form

q
yf-j = ZXUBIT oF €:jar =1,.., k?.’] =1, »a%y NT‘:
=1

Y =X,B,+E, =p. +E, r=1,..k, (12)

and
1/(1'-—1) = XTB(T-I) + E(r—l) = K(r-1) o E(r—l): r= 27 =y k. (13)

3 - Estimation of the model

In this section we will present the maximum likelihood approach for the estimation of the
regression coefficients as well as the parameters of the elliptically contoured distribution
in the presence of monotone missing data in the response variables. In particular, in
the next subsection the maximum likelihood estimators (MLE) of B and T are derived.
Consistent estimators of the parameters B, as well as, of the covariance matrix of the
elliptically distributed error matrix E will be derived in Subsection 3.2 below.

3.1 Maximum likelihood estimators

Following the maximum likelihood approach we seek values of the unknown B and ¥ that
maximize the likelihood function. The likelihood function is the joint density of Y and it
is denoted by Ly (B, X).

Theorem 1 Consider the multivariate linear regression model given by (4), under the
assumption that the error matriz E is distributed according to an elliptic distribution
ECn,xp(0,Z ® Iy,). On the basis of monotone missing pattern observations for the re-
sponse variables of the form (5), the MLE of B and & are respectively

211 i12 i glk
B (BB By ot B ] " B2 T
im gkg R ikk

where

—

By = (XiX;) Xy,

o . t - t
. & = ( = e ) ( . )Y,-, forr=2,..k k>2,
Al o1 Eir—1)Ar  E(r_1)€(r—1) €(r-1)



with €r—1) = Y(r—1) — ﬁ(r-—l)r while

B = Aut = Ana(01)Q(B1),
Zr(tr=1) = Br(tr-) D(Lr-1)(.r-1)s

Y.= Ar‘r T AT‘(I...T—I)2(1...?-——1)(1...7‘—1)A{l...?‘—l)‘ru

forr=2,...k k > 2, where Q(B1) = (i - X,B1)!(Ys — X, B1), Q(B,, Aq._r-1)-) denotes
the quantity

—~ t -
B, B
Y. - Xr r— ~ 7 Y, — X: r— e "
( ( &=y ) ( A(1__.‘.l'—1)1r- )) ( ( fr-1) ) ( A(1...1"—1)1" ))

and h,, the function related to the conditional covariance matriz Cov (Ve Vieiy) 7 =
2,....k, k > 2, given by (3). Moreover, g, and g,, r =2, ..., k, are the nonincreasing, by as-
sumption, p.d.f. generators respectively, of the marginal density of Y1 and the conditional
density Y, [Y(,—1), while Anax(g1) denotes the point at which the function \~NP1/2g, (p1/X)
arrives at its mazimum and &, .,.(gr) the point at which the function £~NP/2g (p, /€)
arrwes at its mazimum, r =2,...,k, k> 2.

Proof. The proof follows the conditional likelihood approach introduced by Anderson
(1957). Writing the joint density as the product of the marginal and conditional densities
functions and taking into account relation (1) and the reparametrization (2), we can
express the likelihood function as follows

LY (1“’:- 2) = LY1 (771 ) AIE)LYﬂYu) (7727 A12') A??)---LYMYEk_U (7?.&: A(l...ic-—l)k: Akk) . (14)

In view of (2), there is a one-to-one correspondence (cf. Anderson (1957), Little and
Rubin (2002, p. 135)) between the initial (, X) and the natural parameters (7, A) in
the conditional approach. Therefore, it is enough to derive the MLE of (m,A). We will
obtain, at the beginning, the MLE of 7n; and A;; based on Ly,, and then, replacing in the
expression of Ly,iv,,y, 71 and Ay by their MLE, we will derive the MLE of 75, A and
Agy based on the conditional likelihood. We repeat this procedure until the last part of
the product given by the right-side of relation (14). Therefore, the MLE of 7 and Apq
will be obtained, at the beginning, by the maximization, with respect to 7, and A;;, of
the first part of the likelihood which, using relation (1), is given by

Ly, (m, Au) = [Au ™2 (tr {AF (Y — )" (Y = m0)}) (15)

where g1, is the nonincreasing, by assumption, p.d.f. generator function of the marginal
density of ¥3. By monotonicity of gy, for a given A1; > 0, we have to minimize according
to 7y, the quantity (Y —n,)*(¥1 —7,). Thus, based on the relations (2) and (12), we have
to minimize with respect to B, the quantity (Y1 — X1B,)}(Y; — X1B1). This quantity is
minimized by B; = (XX;)~XtY;.



Hence the concentrated likelihood is
Ly,(By, An) = | Ay /2, [tT(AﬁlQ(ﬁl))] ;

with R R R

Q(B1) = (V1 — X, B)' (Y1 — X1 By). (16)
Following now the steps of the proof of Theorem 4.1.1, of Fang and Zhang (1990), the
MLE of Ay, is given by " N
An = Anax(91)Q(B1). (17)
We will now concentrate on the MLE of the parameters T, A21 and Ags. The condi-

tional likelihood Ly, |v;,) = Ly, v, (2, D12, Age), in view of relations (1) and (3), is defined
by

Lyyvyy = |Aggho| ™™/
xga {tr [(hela2) ™" (Yo — my — Yy Ara)(Yz — 75 — YinyAga)] }
with hs related to the conditional covariance matrix Cov (Y3|Y;), defined by (3). If we
replace in the expression of Ly;1v,,,, 11 and Ay, by their MLE, then using monotonicity of

92, the maximum of Ly,|y,,, (7, A12, Ass) with respect to 7, and A;, arTives at the values
of 7, and Ay which minimize the quantity

(Y2 = ny — YiyAr2)t(Ys — 735 — Yi)Qg).

(18)

From relation (2), we have that 7, = p, — p1yAi2. Hence, if we replace gy by its MLE
we have to minimize with respect to u, and A;, the quantity

(Y2 — po = (Yiy = Byy)Da2)' (Yz — g — (Yay — Byy) D).

Using the fact that u, = X5B,, we have to minimize with respect to By and Ay the
quantity
(Y2 = XoBs — (Y1) — fiyy) A2) (Yo — XoBy — (Yypy — Hy)Aiz),

or equivalently the quantity

e w0 (2)) (-5 a0 (8)

where ey = Y3y — (- After some algebra we obtain that

B XiXs  Xieq )‘ ( X )
b - Ys. 19
( Ay ) ( enXz epen ey ) ? (19)

In order to derive the MLE of the parameter Ago, we have to maximize the quantity

f—Ng/?

" ~ o o N
Ly (s (T Do1, Agg) = Jh2(ﬁ1;4511) X Ago a2 {tT [(hz(”lh,ﬂu) X /—\22) Q(B21A12)J } ;



where

Q(é‘z,&z):(yz—(xz e(1>)(§;)) (Yz—(Xz em)(f;)). (20)

Following again the steps of the proof of Theorem 4.1.1, of Fang and Zhang (1990), we
obtain the MLE of A = 22.1, that is

Agp =55, = MQ(E}, An). (21)

ho(Th,, A1)

If we repeat the same procedure, the last term Ly, Ypeery = Lviliosy (e Ar. k=101 Dii),
of the likelihood function (14) becomes

LkaY(k—l) = IAkkh‘kl*Nk/z x

i [tr { (Brehe) ™ (Y — M — Y-y A e—ne ) (Ve — 1 — Ye-nAw.e-1) } »
where the scalar functions g; and h; are respectively the p.d.f. generator of Ye|Yik-1)s
and the function related to the conditional covariance matrix of Yi|Yix-1), k£ > 2, defined
in (3).
In a similar manner, as in the case of the maximization of Ly,|y,,y, we obtain the MLE

estimator of ( Be ) to be
A k-1

XEX Xieq_ - Xt
e @ e k)%, (23)
Ek—1)k  E(k—1)E(k-1) €(k-1)

(22)

where e_1) = ¥{x—1) — [(;—1)- Moreover, we have that
: ~ : L
Apr = %:XQ(B::, A k-1)k)s (24)

for k > 3, with &, .. being the point at which £~"**/2g, (p, /¢) arrives at its maximum
and Q(B, A(l...k—})k) is

i ? ~

Bk Bk
Yi—( X s -~ Ye—( X - -~ . (25
( k ( ko E(k—1) ) ( A(L._k—l)k )) ( k ( k E(k-1) ) (A(l...k—l)k )) ( )

Based on the previous discussion, the MLE 7i and & of the initial parameters p and
%, can be obtained by using relation (2). Hence, using the relations

%11 = éll:’\

§21 = 921211’:‘ . - e

Tgp = Xy +A22121_112’1\2 = Ago + Ay A1 Aga,

Zik(rk=1) = Dk k-0 EQ k-1 k-1, K23,

Tk = Apr + Dp(r. k-1 2@ k1) (1. k-1 D k-1k> £ =3,
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we obtain the desired results. B

Remark 1. a) An application of Theorem 1 for Ny = N, = ... = Ny, leads to the MLE
of B and X of the elliptic multivariate linear regression model, in the complete data case
(cf. Diaz-Garcia et al. (2003)).

b) Taking into account Theorem 1, we can obtain after some algebra, the following equiv-
alent expressions for the MLE of Aq..r-1)r and B;,

A.ryr = (efr-n)Uree—) ey UL Y, (26)

and N e
B,- = (X:Xr)_ X: [}/r - e(r—l)A(l...r—l)rjl (27)

forr=2,..,k, k>2, with U, = I — X, (XtX,)” X?. The above expressions will be used
later in the study of the consistency property of the MLE of Theorem 1.

A particular multivariate linear regression model is the constant term model obtained
from (4) when X = ly,, with 1y, the N, x 1 unity vector and B = (B1, B, ..., Bi),
where each B; is 1 X p; dimensional with p; + ps + ... + Pr =p. The N; X p error random
matrix E is supposed again elliptically distributed ECy, (0, ® I ~,)- In other words,
we assume the elliptical multivariate linear regression model with the constant term as
explanatory variable, under the extra assumption that there exist monotone missing data
for the response variables.

This model has received a lot of attention in literature under the assumption of mul-
tivariate distributed error terms. We refer among others to Anderson (1957), Jinadasa
and Tracy (1992), Fujisawa (1995) and references therein. These results have been also
obtained by Raats et al. (2002). Our aim is to prove that the MLE for the regression co-
efficients, as well as, for ¥ obtained previously reduce to the same expressions determined
recently by Batsidis and Zografos (2005) in the case of elliptically contoured distributions.

In the sequel we will denote

s Nig = o
Yr = R.l; Z_,;yf-y = ’i%li\-,y;' and Srr,r == (Y,;,. = 1NrYr)t(Y; - lNrYT')) r=1

pr— — t —
Y('r—l) = NLT]-?VT}QT—I) and S(l...r—l)r,'r = (lf(-r—l} - ]-N,-Y(r—l)) (Y; - le-Y'r) y >

— . g
S(l...r—l)(l...r—l),r = (}/(TLI) - ]-NTY{T—I)) (Yz'r—l) - lNrY(T—].)) 22
Sr-(l...r—l),r = Srr,r - Sr(1...:r—1).rS(_lfl__,._l)(1___,._1),,.5(1..:—1)?-,1-: r>2.

In the next proposition we obtain the estimators of the constant term model. The
proof of the proposition is outlined in the Appendix.

Proposition 2 Consider the multivariate linear regression model given by (4), with the
constant term as a sole explanatory variable, under the assumption that the error matriz E
13 distributed according to an elliptical distribution ECn,xp(0,2® Iy,). On the basis of a
monotone missing pattern observations for the response variables, the MLE of B and . are

1



gu §12 - - Dk
respectively B= (§1,§2, ...,§k) and T = 2_21 2_22 ok , where §1 =Y
S0 Sk - - S
and B, =Y, — (?('r—l) - B(r—l)) Aq..em1yrs with Ay_s1yr = 3(_1_1__,._1)(1__.,-_1),rs(l...r—l)r,,-,
forr =2,..,k, while 1, = Ay = Amax(91)S11,1 and S, is given by the relation e =

A+ Er(l...r—l)f:(l...r—l)(l...r-—l)3(1...7-—1)7'; for v = 2,...,k, where 31-1' =. 5,% re(1...r—1),rs
with g1, hr, Gr, Amax, & max 05 given in Theorem 1, forr =2,...,k.

3.2 The consistency property

Consistency refers to a limiting property of an estimator and it is usually considered a
basic requirement of an inference procedure. Qur object in this subsection is to derive the
consistent estimators of the parameters B of the model (4), as well as, of the covariance
matrix of the elliptically distributed error matrix E of this model. Similar work has been
made previously by Sutradhar and Ali (1986) for multivariate t—distributed errors in the
model (4) and complete data for the responses. Recently, Raats et al. (2004) derived
the respective consistent estimators under the assumption of normally distributed error
matrix and monotone missing observations for the responses Y of the model (4). In this
respect the results of this subsection generalize in both aspects the results of the above
mentioned papers.

It will be shown, in the sequel, that the MLE B derived in Theorem 1 is a consistent
estimator of the parameters B of the model (4). A similar conclusion it is not true in
general for the MLE £ of the scale matrix ¥ of the elliptically distributed error matrix E.
This point will be clarified later on in a remark at the end of this subsection. We will use
the symbol plim to denote converge in probability, as N; — oo, i = 1, ..., k. Convergence

N;—co
in probability of random matrices is considered in the element-wise sense.

Consider the multivariate linear regression model (4), that is, ¥ = XB + E and
suppose, as above, that E ~ ECy, xp(0, E®1In, ). The covariance matrix of E is Cov(E) =
2 ® Iy, , where € is a positive definite p x p matrix related with the scale matrix by the
equality £2 = cZ, where ¢ = —2¥’(0) is a constant which depends on the characteristic
function ¥ of E (cf., for instance, Gupta and Varga (1993, p. 33)). Let the following
partition for the covariance matrix Q:

Qi Q2 - - Qu
Q91 Q22 = 921‘

Qi) (1d) = - e =cXq,. )1 1=1,..,k,
Qil Qi? o Qii

12



similar to the partition defined previously for the matrix . Further, denote by

Ql’r
921'
Q(I...’r—l)r = Q:(I___,-_;[J = . = Cz(l...r—l)rr r= 2: ssy k.

Q'r—l,r

Under these circumstances the consistent estimators of B and ) are derived in the next
theorem. The keynote in the proof of the theorem is the convergence in probability of
submatrices of the error matrix E to suitable submatrices of . Although it is immediate
in the case of a multivariate normal distributed error matrix E, in view of the weak law
of large numbers, it is not so obvious in the case of an elliptic error matrix E considered
here. The next lemma establishes the convergence in probability of submatrices of E.
The results of the lemma are proved under the additional assumption that the elliptic
distribution ECy, (0, £ ® Iy,) of E possesses a consistency property as it is defined and
studied by Kano (1994). Consistency property of the elliptical density function of E is
equivalent, according to Theorem 1 of Kano (1994), to the fact that the characteristic
function of £ and hence the constant ¢, which appears in the Cov(E) = (¢Z) ® In;, does
not depend on the dimension of the distribution. This assumption permits to prove the
following lemma.

Lemma 3 Consider the multivariate linear regression model (4 ) and suppose that the den-
sity function of the error matriz E ~ ECn,xp(0,Z ® Iy,), obeys the consistency property
of Kano (1994). Then, under the assumption that A}Im (wl—:X:Xz) epists; 4 = 1y,
i) plim (B, X,) =0,
i) 2l (ﬁ;Efr_l)E(r—l)) = CX(1..r-1)(1..r—1);
i6) plim (;&:E’fr_l)E,) = S ro1yr-
Proof. We will prove part ii). The proof of parts i) and iii) are similar and they are
omitted. If (Efr_l)E(,._l))ij denotes the (7, j) submatrix of E?T_I)E(T_l), then

1 i Ll _
-A-T: (E{T_I)E(r—l})zj — E;Edejb ™= 27 ceey k.

We observe that eaeéz, ! = 1,..,N;, are uncorrelated p; xp; random matrices with
E (ez€})) = Cov (62',363-1) = Qy; = cZ;;, where ¢ does not depend on the sample size N,
taking into account the consistency, in Kano’s (1994) sense, of the density of the error
matrix E. If we apply the weak law of large numbers (cf. Rao (1973, p. 112)) to the
sequence of random matrices €; '5;17 €i2€50,0mm, €N, €; ., We have that

_[1 1 &
pim { & (BosBoon), | = plim {50} =0y = s,

Nr—eo Nr—oo

13



hence :
plim {F (Ef,__l)E(r_l))} = Q.r-1)(1.7—1) = CT(1_r-1)(1..r—1)>

Ny—oo

which proves the desired result. @

Lemma 4 Under the assumptions of Lemma 3,
thA(l r=Lr= th {( Efr—l)E(r-l)) (N%Efr—nEr)} .

Ny—oo Nr—oo

Proof. Using relation (26), we obtain after some algebra that
Aoty = (BloyUrEger))” By U By, forr=2,..,k,
where U, = I — X, (X!X,)"X? = I— H,. Hence,
1 B 1
PMA(I -1 = plim {(Rr“‘Efr—l)UrE(r—l)> } plim (ﬁE(tr—l)UrEf) 2 (28)

Nr—oo Npo—o0o Npr—oo

Using the fact that U, = I— H,, we obtain that

: 1 ) 1
E,.lﬂilo (-]V_TE?'J‘—I)UTE':-) = E}iﬂt (N Efr I)E ) - z{r)}_l}?o (_N:Ezr—l)HrEr)
1

= i 7 r § 5 29

pim (55 ) )
because of
; L 1yty )
g (52 = pim 55} i { )
. A _

gl % e} —o

in view of Lemma 3 i). Moreover, taking into account again Lemma 3 i)

. 1
plim (EEE__I)HTE(,._D) =0,

Nr—oo

and hence : )
plim (FEfr—I)UrE(r—l)) = plim {'N:Efr—l)E(r-l)}' (80)

Nr—oe Nr—oo

Therefore from (28), taking into consideration the intermediate results (29) and (30),
we obtain that

: 1 !
ﬁlfiA =)y = flffo{ (N_;EET—I)E(T—Q) (E:Efr—i)Er)}r

which is the desired result. l

We are now ready to derive the consistent estimators of B and 2 in the next theorem.

14



Theorem 5 Under the assumption that Nlim {(Klri—XfX,) “} exists we have that:

i=+00
a)m? hmf\(l___,_1)r = Aq.r-nyr forr=2, ..,k
b) plim B; = B;, fori=1,...k and
Ni—¥00 P -
C) ﬁhﬂlﬁu = Qn, while gHJIIArr = — Q'r(l...r-—l)Qa:_l__r_l)(}__",-._]_)Q’(l...f‘-—l)r:

with 511 = %;Q(gl) and E,.,. = N%Q(ﬁ,.,ﬁ(l,__r_l),.), forr = 2,... k. Moreover, B =
(§17§21 ---1§k) and 3(Ll...'i'—l)r'; as well as, Q(ﬁl) and Q(ET: 3(1...1'—1)1‘): = 21 gt k! are
defined in Theorem 1.

Proof. a) Based on Lemma 3 ii) and iii) it can be easily seen that

. 1 (1 o
ﬁ.hﬁ{(EEfr-z)E(r—l)) (FE?r-I)ET)} = E(li.r—l)(1...?-1)2(1---7"’1)7'

S A(L..‘r—l)r- (31)

Relation (31) and Lemma 4 complete the proof of part a).
b) Motivated by Raats et al. (2004), we will prove that plim B; = B;, for i=1,....%, by

N;—ec
using an induction argument. For i = 1, we have that

By = (X{X))"Xiv
and taking into consideration (12) we obtain
By = (X!X1)" X! (X1By + B) = B, + (X! X))~ X E.

Hence

= 1 1
im (B, - B;) = plm{(—=X'X;) —Xx*
ghim (P B) ﬁf_ﬁi{ (wxi%) & E}

. 1 4 T { - .
— N];lf.loo (FIXIXI) £11_lglo (EXIEI) = 0,
in view of Lemma 3 i).

Afterwards, using the induction assumption that plimB; = B;, fors = 1,....k—1,

Ni—oo

which implies that plimﬁ(kﬁl) = B(x-1), We are going to prove that p im B = B;.. Based
Np—oo Ni—o0
on relation (27) and taking into account (12), we have that

B.=B.+ (XiXe)™ Xi [Ek - e(k—l)a(l...k—l)k} .

15



or equivalently
Bk . Bk = (X};Xk)— X]i [Ek - e(k—l)'A(l...k—l)ﬁc] =

Hence,
: Do = e ¢ -yt _ A
g (5.~ ) = pim {0600 34 -]}
Using the fact that phmB(k_g) = B(x-1), phmA(l k=1t = A(1._k-1)k, We have that
Np—o0o Nyp—oo
plim (Lﬁk—Bk) = lim (—I—thk) plim ( XkEk>
Ni—oo Ny—ee Nk Ni—oo Nk
. 1 -
— lim (———thk) plim (—X E(k 1)) A(l A1)k =0,
Nyp—co Nk Nk—»cc

in view of Lemma 3 i). Therefore, the proof of part b) of the theorem is now completed.
¢) In order to prove this part of the theorem we note that

Q(By) = (i — XaB)(Yi - XiB)) = EiE;,

and so in view of Lemma 3 ii) we have that

plimAy; = plim {f\,l—@(ﬁl)} = plim (; EfE) nBy
1 1

Ny—00 Ni—ce Ny—co

Afterwards, based on relation (27), we obtain that
K’ . Xrﬁr - e(r—l}g(l...'r—l)r Hodt U‘r (Y;‘ = e(r—l}a(}....r—-l)'r) (32)
= Ur (E‘r == e(r—l)a(l...r—l}r) 3

with U, = I - X, (X!X,)” X!. Taking into account that U, is symmetric and idempotent,
we have that

t %
Q(BT: A(l 'r'-l)‘r) = ( —€ r—l)A(l T—l)‘)‘) U'r (Er - e(r—l)A(l...r—l)'r') y T = 2; iy k.
From this relation after some algebra we have

Q(gr: 5(l..:r'—l)-r) — E:UrEr - E:Ure(r—l)/-a(l...r—l)r
_Ail...r—l)re%r—l)U.?‘ET &3 Afl...r—l)re?{tr-—l)U"e("‘—l)A{l---T—l)"

and using that Ue(._1) = U.Y,_1) = U, E(r_1), We reach the relation

OB, N sy = EOE ~ BB sl oap
_A(l r1yr Blr—1yUrEr +/-\(1 1) By UrEtr—)A(1...r—1)r-
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Based on .7_\\.(1“,r_1)r — (Ef,,_l) U,,E'(,_l))_ E(‘ —1) U.E. , we obtain that

Q(§r1 3(1...1"—1)1') = E:-UTET - E:UrE(r—l) (E?r—l) UrE(r—l))_ Efq-_]_)UrE'r-
Therefore
Q(E'rs 3(3....1’—1)':") = E:UTET - 321...7—-1)1'EE1‘—1)UfE("'—l)3(1---7""1)‘-"

Afterwards, using that ph'ma(l_._r_l), = Aq..r—1)r, for r = 2,..., k, and applying Lemma

Nr—oo
3 i) and iii) to the matrices - Eo_1yEr, % ELE, and - Efr_1)B(r-1), we complete the

proof of the theorem. W

Remark 2. a) We derived in Theorem 5 above the consistent estimators of the parameters
B and Q of the model Y = XB+ E, E ~ ECnyx»(0, Z® Iy,), with Cov (EY=Q8Iy, =
(¢X) ® In,. Theorem 5 is only valid for members of ECl,,(0,E ® Iy,) which obey the
consistency property of Kano (1994), that is for scale mixtures of normal distributions,
which include the multivariate normal and multivariate ¢ distributions, as particular cases.
Even for these special members of the elliptic family of distributions, the MLE B of B is
also a consistent estimator of B. The same is not always true for the MLE ¥ in view of
Theorem 5 c). 2

It can be easily seen that the MLE T of T is a consistent estimator of the covariance
matrix 2, which means that A;; and ZS,,. are consistent estimators of €;; and Q. —
Q,(l_",.._l)ﬂ(‘l.l._r_l)(1__.1,_1)9(1._.,,_1),., respectively, for r = 2, ..., k, if the following conditions
are ed :

lim (AmaxN1) =1 and plim (%N,) =1, (33)
Ni—voo Nr—o0 h..

In the Appendix 1 in Batsidis and Zografos (2005) explicit expressions have been
obtained for the quantities Amax and &, ., of specific elliptic distributions. Taking into
account this appendix it can be easily seen that (33) are only satisfied for the multivariate
normal and ¢ distributions. Hence, in summary, the MLE ¥ is consistent estimator of the
covariance matrix 2 only for the multivariate normal and ¢ distributions. The same has
been proved by Sutradhar and Ali (1986) for the case of complete data in the responses.
b) If we apply Theorem 5 in the special case of the design matrix X =1 Np» With 1p, the
N x 1 unity vector, then we obtain the consistent estimators, in the light of the above
remark, for the location parameter, as well as, for the covariance matrix of elliptical
distributions studied in Batsidis and Zografos (2005).

4 Test of hypotheses

In the previous section, we obtained the MLEs of the regression parameters B , as well as,
of the scale matrix ¥ of the model (4), under the assumption that monotone missing data,
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of the form (5), are available in the response variables. In this section, we will obtain in
the context mentioned above, the likelihood ratio test statistic for testing the hypothesis

Hg i Cz'Bi = OMiXPi'JV 7= 1, asey k,

with C; a M; x ¢ known coefficient matrix, of rank M; < g and Opy, xp,, the M; x p; matrix
with zero elements. This null hypothesis expresses the existence of M; linear constraints
on the parameters B;.

In order to derive the likelihood ratio test statistic, we note that the null hypothesis
H(] : CiBz' — O,V 1= 1,..., k,
can be equivalently stated in the form

B;

HO ¥ CIBI = OMIXpl a-nd ( Ci OMpr{i_l) ) ( A(l __1).

) = Optinp, Vi =2,..,k, (34)
where pi_yy =p1+ ... +pic1and py + ... +pp=p, for i > 2.
4.1 Likelihood Ratio Test Statistic

The likelihood function is given by

LY (B’ E) = LY:L (771= A11 )LYQIY(}.) (7?27 Al?-) A22)"‘Lﬁ|yv(k_;) (nk: A(I...k—-l)ka Akk)a

where L‘y1 (7717 A11)'1 LYMY(;) (7?27 A12: A22) and LYk[Y(;‘-_D (nk? A(l...k—l)k: Akk) are defined by
(15), (18) and (22) respectively. Using the MLE, obtained in Theorem 1, it can be easily
seen that

_Mip ~|—F _Nom ~ -~ -
SpL(B,%) = raad 6 ( = )\Q(Bl)l " 52,m:xgz( - )lQ(Bz,Am)\
B, max 52,max
_ififﬁ ~ o~ _Nk/2
Kioss 36 B s Ok ( gkpk ) 'Q(Bk:A(l...k—l)k)l 5 (35)

where Q(ﬁl), Q(§2, 312) and Q(Ek,ﬁ(l___k_l)k) are defined by (16), (20) and (25) respec-
tively, while Amax and & pay: & > 2, are defined in Theorem 1.
In order to derive the supL(B,Z), under the null hypothesis Hy : C;B; = 0, V¢ =
BX

1,..., k, or the equivalent null hypothesis given by (34), following the procedure of Theorem
1, which is based on the conditional likelihood approach, we have, at the beginning, to
maximize the quantity Ly, (n;, A1) given by (15), subject to the constraint C1B; = 0.
After some algebra, the constraint MLE By of B; is given by the following relation

B =B - (xtx)) ¢t [cl (Xt%,)" cﬂ " C\B.. (36)
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Following again the procedure of Theorem 1 we easily verify that

Ani = daax(91)Q(B1)- (37)

After that, we concentrate our interest on the maximization of Lyvy (M2, A1z, Agz), which

is given by (18), subject to ( C2 Oagxp, ) ( fz ) = Opfyxp- After some algebra we
12

obtain that the MLE of ( B, ) is
Agp

B\ _ (XéXz Xé"{(n)-’xé)n_(xzxz Xte(l)) (C'é)
Ay enXz EyEw (5?1) enXz e 0°

(G 0)(XX2 X2€{1>) (%)]_(Cg 0)

XX, XZe X3
(B Y (2)
€2 €€ C)

with €1y = Y{1) — Zi(;) and 0 the M, x p; zero matrix.
Following again Theorem 1, we obtain that

522 — §2-1 - 52,max(g2)

,A
hz(m,Au)Q( 2, A12) ,

where

Q(Bo,Ap) = (Yg— (X2 &) (f; )) (Yz- (X2 &) (f; ))

In a similar manner, the maximization of the quantity Ly ¥geesy (Ties A1 k—1)k> Dii),
B,

=0 ;
AT ¥ el

defined by (22), subject to the constraints ( Cy Onfy xp0e_1y ) (
implies that

B; _ ( XiXe Xke(k—lJ >_( X )y _
A - X B e e k
(1..k=1)k €lk—1)*k  €(k—1)C(k~1) (k—1)
( XX XiEg-y )- ( Ct )
(k Xk ek: l)e(k_l) 0*
By e )‘( ct ) )
% C 0 k k (& k
[( ’ )(Et(k—nxk €lk-1)8(k-1) 0*

XX, Xienw_1 - Xt
x{C. 0 k k L ) k Y,
( k ) ( ’é?k—nXk éfk-l)e(k—l) & *
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with 0 the M X p(—1) zero matrix and

ék,max (gk)

Akk = hk

Q(éka 5(Zl....?c--l)k) b

for k£ > 3. Hence, we obtain that

_.N P
sup L(B,X) = Ama—.xzz—lgl (X&—) |Q Bl)\ fz,max g2 ( £
max

B,Z,Hq:C; B;=0

) (B B

_NePi 2
X X Ep 2 G ( ) ‘Q By, Aq. k—1)k)‘ (38)

The likelihood ratio test statistic for testing the hypothesis Hy : C;B; =0,Vi=1,...,k,
or its equivalent form (34) is

€k max

sup L(B,Y)
B,Z,Hp:C;B;=0

o supL(B,X)
BT

and taking into account (35) and (38), A becomes

No
]

L(B,S 5 o
= 2 et St = o 2
A o . (B,X) ’Q(Bl)l Q(Bs, Ag2) X ... X ‘Q(Bk, A(l...k—l)k)’

supL(B,T) |~ -2 . . -2 P I
5 |@B)| 7 |@Ba Bu)| T x . x |@(Be B senw)|

(39)
The investigation of the distribution of the test statistic A is now in order and it is the
subject of the next subsection.

4.2 Distribution of A

We observe that the likelihood ratio test statistic, obtained above, coincides with the
similar one for testing the same hypothesis Hy : C;B; = 0, V i = 1,...,k, under the
assumption of multivariate normal error (cf. Raats et al. (2002)). This point will help
us to derive the null distribution of the test statistic A. Indeed, by Theorems 8.1.2
and 8.1.3 of Gupta and Varga (1993), we can easily verify that the null distribution of
statistic A, given in (39), is invariant in the class of elliptical distributions. Hence the
null distribution of A is the same as the null distribution of A in the case of multivariate
normal distributed errors in the model (4). This last distribution of A has been studied
by Raats et al. (2002) and Raats (2004). Before we will proceed with the derivation of
the distribution of A and for the sake of completeness, we give the definition of the said
generalized Wilk’s distribution.

Definition 1 Let A; = m'—f_-]a- with A; ~ W, (s;) and C; ~ Wy, (t;) independent of A;,

and Wy, (s;), i = 1,..., k, denotes the Wishart distribution. Suppose that A; are indepen-
k

dent and follow Wilk’s A— distribution A(d;,t;,8;), i = 1,....,k. Then the product []A%,
=1
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witha; =1, a; € (0,1), fori el supls follows the generalized Wilk’s distribution Ay pr.s
with parameters A = [a, ... } =[d1, ., di] , T = [t1,...., %] and S = [s, ..., 8.

In order to produce the null distribution of the test statistic A, we can prove, taking
into account relation (39), that
k
AN = TTA%, (40)
i=1
with .
[Q(Bl)l |Q(B:, Rgimn)|
and A; = for

" ed)| Bl)} N

where q; = -—1 s Jor i=1, ...k
After some algebra, we can obtain that

ri=2, ..k, (41)

QB) = QBY+%X (xix)~ct{a (Xix) G} o (x3x) ™ xin

= Q(B)+Y{PuY,, (42)
with
Py =X (XiX:)” CH{C (x3%) ci} o (xix) " xt (43)
while for z = 2, ..., k, we have that '
Q(B;, 4&(1...2'—1)2') = Q(B, 3(1...5—1)5) + Y P,Y;, (44)

where Py;, 1 =2,..., k, is the N; x N; idempotent matrix given by the following relation

Xt A XX Xigey " Cct
GU X @y e 03
(i-1) (k -1)“*k Cp_1)C(k-1) iXP(i-1)
t( XiXe  XiEw-y )-( Ci )
b i
MXP(zfn Et{kml)Xk Eik—l)e(’c"l) OkaP(k—I)

( )( XX, Xiegn )( b ) )
OM XPi-1) -e%k—l)X’c ’é?k—l)e(k—l) 31(5_1)

Hence from (40) using relations (41), (42) and (44) we have that

ey . ( |@(Bx Ba.ccpd) ) ) "
’Q(§1) o YfPqu)’ =2 ’Q(En B(l...z‘—l}z‘) + YEPMYQ‘)[ '

AZ/Nl —

Moreover, from (16), we have that

Q(B1) = Y{PuYs, (47)
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with
Pm == IN1 -—X]_ (X;.Xl) Xf (48)
In this context, taking into account that the quantity Q(ﬁ,—, 3(1___,-_1),—) is equal to

~ t -~

B; B
Yi—(Xi eu- : Yi— (X ep : ;
( (X ean ) (Au . )) ( (Xi ee ) (Au - ))

for ¢ = 2, ..., k, we can obtain after some algebra that
Q(Bi, A1) = Y Py, fori=2,..,k, (49)

where Py, ¢ = 2,..., k, is the N; x N; idempotent matrix given by the following relation

_ XiX;  Xieen \ [ X -
Pﬂz' = IN ( X e(z 1) ) ( e(z_l)X- eEi_l)e(i__l) 6?2_1) 3 fOr 1= 2, weey k. (50)

Using these results, it is immediate to see, applying Theorem 7.8.3 of Gupta and Nagar
(2000), that under Hp the random quantity Q(Bz,A(l 4-1)i) is described by a Wishart
distribution, W, (rank(Py;), Ay), for ¢ =1, ..., k, while the quantity Y}P;Y; can be easily
proved that follows a Wishart distribution W . (rank(Py;), Ay). Moreover, , applying The-
orem 7.8.5 of Gupta and Nagar (2000), we can easily seen that the Q(Bz, A(l 4-1)) is in-
dependent of Y} Py;Y;, because of Py;Py; = On,xn;,, for i = 1, ..., k. Hence, the distribution
of A;, given by (41), is Wilk’s A(d; = p;, t; = rank (Py),s; = rank(PGi)), fori=1,...k
with rank(A) being the rank of the matrix A. Thus from Definition 1, we have that
under the null hypothesis, the likelihood ratio test statistic A of relation (39), follows the
generalized Wilk’s distribution, A4 pr,s With parameters A = [ay, ..., ax], D = [dy, ..., dx],
S = [s1,...,8¢) and T = [ty, ..., £, which are given by the following relations

N;

A ,d; = p;, s; = rank(Py;) and t; = rank (Py) . (51)
1

a; =
Since we do not have available an analytical expression for the quantiles of the generalized
Wilk’s distribution, the critical values for testing the hypothesis under examination, are
determined by simulation. In order to avoid this procedure, Raats (2004) proved that the
generalized Wilk’s distribution can be approximated by y?—distributions. In particular,
motivated from Theorem 3.1 of Raats (2004), we have that a second order approximation
of the distribution of .

V=-2log (HA:“) ,
i=1

is

P(V <v)=(1—w)P (x} <vq) + woP (xirs < vg) + O(N73), (52)
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where

k d;
F=22t
i=1j=1
1 Ee t; -
9=d52 2 e (25— 2+ 1), (53)
L — J=

k d;
w2=—£+4&%fzz%%{3(si+j+1)(si+j+ti+1)+(t,-—2)(tz-——1)}.

i=lj=
Also from Raats (2004) we have that a first order approximation is given by the relation
P(V <v)=P(x; <vg). (54)

The results of Subsections 4.1 and 4.2 are summarized in the next theorem.

Theorem 6 Under the assumptions of Theorem 1, the likelihood ratio criterion for testing
the hypothesis Hy : C;B; = Oatixps> Vi=1,...., k, with C; a M;xq known coefficient matriz,
of rank M; < g, is

) a;

with Q(El) and Q(R‘,Ea...i—ni), for i > 2, are given by (47) and (49), respectively,
while Py and Py, for i > 2, are given by (42) and (47), respectively. The test statis-
tic follows under the null hypothesis o generalized Wilks distribution Asprs with pa-
rameters A = [1,%,..,%],1) = [p1,- D], S = [rank(Py), ...,rank(Py)] and T =
[rank(Py1), ...,rank(Py)]. Moreover, a second order approzimation of the distribution of
—2log A2 is given by relations (. 52) and (53), while a first order approzimation is given

by (54).

A2/N1 —

=2

@By . ( |Q(B:, B.say)
’Q(El) + Y7 P, Y;) tQ(ﬁi: 3(1...5-1)2') +YIP;Y:)

Remark 3. If we apply the results of Theorem 6 in the special case of the constant
term model obtained from (4), when X = 1y, with 1y, the N; x 1 unity vector and
B = (Bi, By, ..., By) , where each B; is 1 x p; dimensional with +pe+ ..+ =p,
under the further assumption that C; = 1, we reach the results obtained previously in
Krishnamoorty and Pannala (1998).

5 Numerical Example
Sutradhar and Ali (1986) dealt with a multivariate linear regression model under the

assumption that the errors have a multivariate ¢-distribution. This model, which is a
direct multidimensional generalization of Zellner’s (1976) regression model is used in the
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area of the stock market analysis. Sutradhar and Ali (1986), in order to illustrate their
results, considered a stock market problem relating to four selected firms, having the
regression model

vi; =a;+Bmi+ei=1,...,4, j=1,..,20,

where y;; denotes the monthly return on $100 of capital invested on the ¢ stock during
the j month, while m; denotes the weighted average of these returns during the j month
for the aggregate of all stocks trading on the New York Stock Exchange and the error
variable was assumed to have a t-distribution. The available data are given in Table 1 of
Sutradhar and Ali (1986).

Therefore, if we use the notation of Section 2 we state the regression model

¥'=XB4+E,

where Y is a 20x4 observation matrix of responses, X is a known 20x2 model matrix of full

column rank, with the elements of the first column equal to 1, B = ( o )
By B2 Bs Bs

is a 2 x 4 matrix of regression parameters with unknown values, and the error matrix £
is a 20 X 4 random matrix, which has a matrix variate ¢ distribution Mt29x4(0,X ® Iag).
In the sequel and in order to illustrate the main results of this paper, we discard from
Table 1 of Sutradhar and Ali (1986) the last six observations on the fourth firm-response
variable. That means that we obtain a 2—step monotone missing sample for the response
variables with
p1=3, p2=1, N1=208..11dN2=14

Using the complete data set of Sutradhar and Ali (1986), the estimators B. of the para-
meters of the model and the estimator ¥, of ¥ are

B _ —0.2749 -—0.8904 0.2159 —2.0095
= 1.1815 1.0132 0.9513 1.1196
and
7.8015 6.0204 —4.0966 —0.8160
i . 6.0204 12.3543 -—-1.1775 —3.6845

°7 | —4.0966 —1.1775 13.6160 9.5150
—0.8160 —3.6845 9.5150 22.6846

Using the estimation procedure introduced in Section 3, the respective MLE'’s are

5. _ [ —0-2749 —0.8904 0.2159 —1.0708
M=\ 11815 1.0132 09513 1.1299

and
7.8015 6.0204 —4.0966 —2.9186

| 6.0204 12.3543 —1.1775 —T7.6747
M= 1 _40066 —1.1775 13.6160 6.1773
—29186 —7.6747 6.1773 16.7292

[N}

24



The MLE’s based on partially complete data (the complete data obtained by discarding
the additional data on the first p; = 3 components) are:

5, _ [ —0:3057 —0.8884 0.2673 -1.0616
PC=\ 1.0550 0.7955 0.7361 1.1234

and
0.4591 6.2461 —5.4823 —2.9323
S _ | 62461 .13.8200 —2.3845 —9.4512
PC™ | —5.4823 —2.3845 8.7979 3.7541 |°
—2.9323 —9.4512 3.7541 17.0437
respectively.

Using measures such as the scale ratio and the likelihood displacement, which was used
to measure the influence of dropping observations by Diaz-Garcia et al. (2003), we can
see that the estimators based on the whole monotone data are closer to the similar one
based on complete data than to the estimators based on partially complete data. Thus,
in this sense, using the whole monotone data we are able to recover the information lost
due to the deletion of the six observations.

In order to illustrate Theorem 6, let us consider in the sequel the following hypothesis
testing problem, related to the numerical example of this section. Suppose that we want
to test, for instance, according to the notation of Section 4, the null hypothesis

Hy:C;B; =0,Yi=1,2, against H, : 3i € {1,2} such that C;B; # 0,

where

= ay az das _ [27] . . _ .
Bl_(ﬁl B, ﬁs)’Bg_(B4)’MthQ_( 1 1),i=12

Following the results of Section 4, we obtain that the test statistic of Theorem 6 follows
under the null hypothesis a generalized Wilk’s distribution A A,pT,s With parameters A =
(1,0.7,D = [3,1], T = [1,1] and S = [18,9]. Moreover A = 0.0016, V = —2log A% =
1.2863, while from relation (53) we have that f = 4, ¢ = 7.7054 and ws = 0.0158, with
p—value = 0.0456.

According to the standard procedure for the same hypothesis (cf. for instance Diaz-
Garcia et al. (2003), Siotani et al. (1985, pp. 298-299), Muirhead (1982, pp. 458460)
and references therein) based on partially complete data with N = 14, the value of the
likelihood ratio test statistic is 0.0032 with p—value = 0.0883. We observe that the test
statistic based on the monotone data, provides more evidence against the null hypothesis
than the statistic based on partially complete data. If, in addition, we test the hypothesis
by using the whole sample, the value of the test statistic, based on the standard procedure,
15 0.0025 with p—value= 0.0487. This value is closer to the respective value of the test
proposed in this paper, than the similar one obtained by using partially complete data
method.
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Appendix.
Proof of Proposition 2. Using a mathematical induction argument, we will prove, at
the beginning, that the desired results are true for a k = 2 step monotone pattern. Then,
under the assumption that the conclusions of Proposition 2 holds for k£ — 1 step pattern,
we will prove that it is also true for £ step monotone pattern.

In the sequel, we will use the following relations, which can be easily obtained,

1

U,Y, = (I =

1y, 1% ) Y, =Y, - 1nY,, (55)

and
YUY, = (GY) UY, = (% - 1Y) (% = 15,Y7) = Sep (56)
with U, = I — +1n,1},, for 7 = 1,..., k. Moreover,
— t —
ee-nUree-1y = (Y1 = Y1) (Yo-n — InY-n)
= S1.r=1)(L.r=1);rs : (57)
and forr =2, ..., k,

= t _
€rUrYr = (Y(r—l) - 1NTB(1--1)) (Y —15,Y,)

= (Y- WYe-y) (% = 1nYs) = Sar-eer (58)
Relation (57) can be easily proved, combining that
o £ v
€r-n(r-1) = (Y(r—l) - 1N,.B(r-1)) (Y(r-1) = ]-N,-B(r—l))

= (Ye-1— Y1) (Y — .Y -)
+ (Pomy = §(r—1))t e n. (Fen) - Biy).,
and
-plnliver-n = (Ther-n) (Lhern)
= N (?(r—l} - E(r-l))t (?(r—l) — E(r—l)) ;

Now we are ready to present the proof of Proposition 2. For a k = 2 step monotone
pattern, using Theorem 1 and in view of X; = 1y,, we have that

N
-~ 1 _ —
Bl = (X;X]_)__Xl-y}_ = (13;1 ].Nl)-—llgvi})i = Fl E yiu = yi,l = Yl-

v=1
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Moreover from Theorem 1 we have that Zin = Amax(gl)Q(ﬁl), where Q(El) = (¥; -

X1B,){(Y: — X1B1). Because of X; = 1y, and B; = Y, we obtain that
Bux = Duse91) (Y3 — 1% Y1) (Y1 = 13 Y1) = Anax(91) 111
Following Remark 1b) we have that the MLE estimator of Ay, for this special case, is
312 = [efl)Uzeu)] - Bfl}Uzyéa

with ey = Yo — ﬁ(l} =Yu — 1N2§(1) =Yy - 1N2}_’1 and Up =T — Nilezlﬁ\rz.
Taking into account (57) and (58), we have that

Ap= S12512,2- (59)

Moreover, using Remark 1 b) we have that

—~

By

(Tha1r) " 1, (Y:z - 6(1)312)
1 -~
= miwYe- e

= Yy— (?(1) = ?1)312

because it holds that w-1},e) = 2l Yo —1mY1) =Yy - Y.
In order to obtain 322, we have to compute the quantity Q(Eg, 312), which is given,
using Theorem 1 and relation (32), by the following relation

o~ o~ e t e
Q(By,Ap) = (Yz — 6(1)A12) Us (Yz - 6(1)512)
= YiU,Y, — Z‘:21€3f1)U21"'2 = YgtUze(nau + 32lef1)U2e(1)512-
Using (56)-(59) we obtain that
Q(Bs,Ap) = Sag — 2\215'12,2 — Sn ol + 321511,2312

_1 _
= Sao— 52125755122 = S22

Assuming now that the desired results hold for a k — 1 step monotone missing pattern,
we are going to prove that Proposition 2 remains valid for a k step pattern. The MLE
estimator of A 1)k, for £ > 3 is

Aqiorye = lele—1)Uree-1)] ~ €he_1yUsYs,
with eg—1) = Yjg_1) — ﬁ(k—n = Y1) — lNk-é{k—l)~ In view of relations (57) and (58), we

obtain N
A(l---f‘c—l);'c = S(—1.1..k—1)(1...k-1),kS(1---k—i)k,k- (60)
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Moreover, using Remark 1 b)

By = (1y1w) 1, (Yk—etk—nﬁ(x."k—nk)

1 1 t ~
A 1 %~ A Iy, er—0An.k—1)k

= Yi— Y- — §(k-1})3(1...k—1)k= for k = 3,

because it holds that 1§vk"3(k—1) = N, (?(k_l) — §(k_1)) .

In order to compute the estimator of &,k, we have to compute the quantity Q(Ek, Zi(l___k_l}k) ;
which is given in view of Theorem 1 and (32), by the following relation

s —~ t -
Q(Bk, Aq..k-nk) = (Yk = e(k—l)A(l...k—l)k) Uk (Yic % e(k-—l}A(l...k—l)k)
= YiUpYe + Zik(l...k-l)e?k_nUke(k—l)z(l...k—l)k
-Aku...k—l)efk..l)UkYic = HUke(k-—l)A(L..k-—l}k-
Using relations (56)- (58) and relation (60), we reach the following relation

Q(Brs A k-1k) = Skick -Sk(1...k—1),kS(';_1__k_l)(1___;:._1)#5(1...;:—1)::,:;
= Sk(l.k-1)k
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