MANEMIZTHMIO IQANNINQN UNIVERSITY OF IOANNINA

TMHMA MAGHMATIKQN DEPARTMENT OF MATHEMATICS

a A. K. Katsaras:
NON - ARCHIMEDEAN INTEGRATION AND STRICT TOPOLOGIES

2. J. H. Shen and |. P. Stavroulakis:
SHARP CONDITIONS FOR NON - OSCILLATION OF FUNCTIONAL EQUATIONS

3. G. Aulogiaris and K. Zografos:
SYMMETRIC KOTZ TYPE AND BURR MULTIVARIATE DISTRIBUTIONS:
A MAXIMUM ENTROPY CHARACTERIZATION

4, Nondas E. Kechagias:
THE STEENROD ALGEBRA ACTION ON DICKSON ALGEBRA GENERATORS
AND PETERSON 'S POLYNOMIALS

5. A. K. Katsaras:
STRICT TOPOLOGIES AND VECTOR - MEASURES ON
NON - ARCHIMEDEAN SPACES

6. M. Benchohra and S. K. Niouyas:
CONTROLLABILITY OF SECOND ORDER DELAY INTEGRODIFFERENTIAL
INCLUSIONS WITH NON - LOCAL CONDITIONS

7. Y. G. Sficas and |. P. Stavroulakis:
OSCILLATION CRITERIA FOR FIRST - ORDER DELAY EQUATIONS

8. S. D. Baldzis, S. A. Kolalas and C. N. Savranidis:
A VERSION OF GT GRAMMAR FOR MODERN GREEK LANGUAGE
PROCESSING PROPOSED AS A MODERN GREEK LANGUAGE CALL
METHOD DEVELOPER

Number 6 Volume Decembertr 2 00 1






Non-Archimedean Integration and Strict
Topologies

A. K. KATSARAS Department of Mathematics, University of Ioannina, 45110 Ioan-
nina, Greece

1991 Mathematics Subject Classification: 46510

Introduction

Let Cy(X, E) be the space of all bounded continuous functions from a zero-dimensional
Hausdorff topological space X to a non-Archimedean Hausdorff locally convex space
E. By Cr.(X, E) we denote the space of all f € Cp(X, E) for which f(X) is a rel-
atively compact subset of E. In section 2 of this paper we show that, if E is polar
and complete and Y a closed subset of X which is either compact or X is ultranor-
mal, then there exists a linear map T : Cro(Y, E) — Cre(X, E) such that T'f is an
extension of f and ||Tf|lp = ||f|lp for all f € Cre(Y, E) and every polar continuous
seminorm p on E. Using this we identify in section 3 the completion of the space
Cy(X, E) under the strict topology B, when F is polar. If K(X) is the algebra of all
clopen (i.e. both closed and open) subsets of X, we define in section 4 the product
of certain K-valued finitely-additive measures on K(X) with E’-valued measures on
K(Y), where Y is another zero-dimensional topological space. Finally in sections 5
and 6 we define the so called (V R)-integral and Q-integral of functions in EX with
respect to certain measures on K (X).

1 Preliminaries

Throughout this paper, K stands for a complete non-Archimedean valued field whose
valuation is non-trivial. By a seminorm, on a vector space E over K, we mean a
non-Archimedean seminorm. Similarly, by a locally convex space we mean a non-
Archimedean locally convex space over K. For E a locally convex space, we denote
by cs(E) the collection of all continuous seminorms on E, by E’ its dual space and
by E its completion. If F is another locally convex space, then E ® F will be the
tensor product of E, F' with the projective topology.

Let now X be a zero-dimensional Hausdorff topological space and FE a Hausdorff
locally convex space. We will denote by §,X the Banaschewski compactification
of X (see [4]) and by v, X the N-repletion of X (N is the set of natural numbers),
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i.e. the subspace of 5,X consisting of all z € 3,X with the following property: For
each sequence (V,) of neighborhoods of z in 3,X we have that [V, N X # 0. The
space X is called N-replete if X = v,X. We will denote by Cp(X, E) the space of
all bounded continuous E-valued functions on X and by Cr.(X, E) the space of all
f € Cy(X, E) for which f(X) is relatively compact in E. In case E = K, we will
simply write Cy(X) and Crc(X) respectively. For A C X, we denote by x4 the
K-valued characteristic function of A in X and by A%% the closure of A in BoX.
Every f € Cr.(X, E) has a unique continuous extension fBe to all of 8,X. For f an
E-valued function on X, p a seminorm on F and A C X, we define

I £llp = sup p(f(2)), [Ifllap = supp(f(z))-
zeX TEA

The strict topology 3, on Cy(X, E) (see [7]) is the locally convex topology gen-
erated by the seminorms f + ||kf||p, Where p € cs(E) and h is in the space B,(X)
of all bounded K-valued functions on X which vanish at infinity, i.e. for each ¢ > 0
there exists a compact subset Y of X such that |h(z)| < € if z is not in Y. Let ©
be the family of all compact subsets of 3,X which are disjoint from X. For H € €,
let Cx be the space of all h € Cr.(X) whose continuous extension kP> vanishes on
H. For p € cs(E), let B p be the locally convex topology on Cy(X, E) generated by
the seminorms f — ||hf|lp, h € Cu. The inductive limit of the topologies Bpp, as
H ranges over , is denoted by (3, while § is the projective limit of the topologies
Bp,p € cs(E). The following Theorem is proved in [11].

Theorem 1.1 An absolutely conver subset V of Cy(X, E) is a Bgp-neighborhood of
zero iff the following condition is satisfied: For each r > 0, there ezist € > 0 and a
clopen subset A of X, with ABX N H =0, such that

{f€C(XE): Iflp<mlliflap < e} CV.

Let now K (X) be the algebra of all clopen, (i.e. closed and open) subsets of X. We
denote by M(X,E') (see [6]) the space of all finitely-additive E'-valued measures
m on K (X) for which m(K (X)) is an equicontinuous subset of E'. For each m in
M (X, E') there exists p € cs(E) with mp(X) < oo, where, for A € K(X),

myp(A) = sup{|m(B)s|/p(s) : p(s) # 0,A D B € K(X)}.

The space of all m € M (X, E') with my(X) < co is denoted by My(X, E'). We
denote by M. (X, E') the space of all m € M (X, E') such that, for every decreasing
net (As) of clopen subsets of X, with NA4s = 0, there exists p € cs(E) such that
my(As) — 0. Also by M (X, E") we denote the space of all m € Mp(X, E') such
that m,(As) — O for every decreasing net (As) of clopen subsets of X with NAs = 0.
Let
M(X,E)= |) M p(X, E).
pees(E)

For p € cs(E), we denote by M;,(X, E') the space of all m € My(X, E') for which
my is tight, i.e. for every e > 0, there exists a compact subset ¥ of X such that
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mp(A) < € if A is disjoint from Y. We define

My(X,E") = U Mp(X, E').
pecs(E)

As it is shown in [11], M. ,(X,E") = Mip(X,E’). In case E = K, we write
M(X),M-(X) and M¢(X) for M(X,E'), M;(X,E") and M(X,E'), respectively.
Also, for u € M(X), we define |p|(A) = pp(A), where p = |.| is the valuation of K.

Next, we recall the definition of the integral of an E-valued function f on X
with respect to an m € M (X, E’). For A € K(X),A# 0, let D4 denote the family
of all @ = {A1,...,An : T1,... ,Zn}, Where {A;,...,An} is a clopen partition of
A and z; € A;. We make Dy a directed set by defining a; > ap iff the partition
of A in @ is a refinement of the one in as. For f € EX,m € M(X,FE') and
a = {A1,...,An ¢ T1,... ,Zn}, we define wo(f,m) = 3 m(A;)f(z:). If the
limg wa(f, m) exists in K, we will say that f is m-integrable over A and denote this
limit by [ 4 fdm. We define the integral over the empty set to be 0. For A = X,
we write simply f fdm. It is easy to see that if f is m-integrable over X, then it is
m-integrable over every A € K(X) and [, fdm = [ xafdm. Every m € M(X, E)
defines a 7,-continuous linear functional on Cr.(X, E) by f — [ fdm (see [6]). Also
every ¢ € (Cre(X, E), ) is given in this way by a unique m.

As it is shown in [7], every m € M;(X, E’) defines a f,-continuous linear form
on Cy(X, E) by um(f) = [ fdm. Moreover the map m — um, from M(X, E') to
(Co(X,E),B,)", is an algebraic isomorphism. Also it is shown in [11] that every
f € Cy(X,E) is m-integrable, for every m € M, (X, E’, and the map up, is (-
continuous. Moreover, every element of (Cy(X, E), )" is given in this way for a
unique m € M, (X, E'). For all unexplained terms on locally convex spaces we refer
to [15] and [16].

Throughout the paper, unless it is stated explicitly othewise, X is a zero-
dimensional Hausdorff topological space and E a Hausdorff locally convex space.

2 Extensions of Continuous Functions

The classical Tietze’s extension Theorem states that, for a Hausdorff tropological
space X, the following are equivalent: 1) X is normal.

2) For every closed subset ¥ of X and each continuous function f :Y — R, which
is bounded (equivalently for which f(X) is relatively compact), there exists a con-
tinuous extension f : X — R such that sup{|f(z)|: z € Y} = sup{|f(z)| : ¢ € X}
In this section we will examine the extension problem when we replace R by a
complete non-Archimedean locally convex space E.

Lemma 2.1 Let E be a Hausdorff locally convez space, E # {0}. If X is a Haus-
dorff topological space such that, for any closed subsetY of X and any f & Cre(Y, E),
there exists a continuous extension f: X — E of f, then X is ultranormal.

Proof: Let A, B be disjoint closed subsets of X and let a be a nonzero element of E.
The function f: AUB — E, f(z) =0if z € A and f(z) = a if z € B is continuous.
If g is a continuous extension of f and V' a clopen neighborhood of zero in E not
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containing a, then g~*(V) is a a clopen subset of X containing A and disjoint from
B, which proves that X is ultranormal.

Assume now that Y is a closed subset of X and that either ¥ is compact or
X is ultranormal. In both cases, for every clopen in Y subset A of Y there exists
a clopen subset B of X with A = BNY. By [16], Corollary 5.23, there exists
a family (4;)ier of clopen in Y subsets of Y such that the family {xa4, : ¢ € I}
of the corresponding characteritic functions is an orthonormal basis'in “Cre(Y) for
the tropology of uniform convergence on Cr.(Y). For each ¢ € I, choose a clopen
subset A; of X whose intersection with Y is A;. Then, as it is shown in the proof of
Theorem 5.24 in [16], there exists a linear isometry S : Cre(Y) — Cre(X) such that
f(xa;) = x4, and Sg is an extension of g for every g € Cr.(Y).

Theorem 2.2 Let X,Y, (Ai)ies and S be as above and assume that E is polar and
complete. Then, there exists a linear map

T ; Cral¥, B}~ Cre X E)

such that Tf is an extension of f and |Tf|lp = |Ifllp for all f € Cre(Y,E) and
all polar p € cs(E). Moreover, if f = Y ;e XA:Si, then Tf = 3 i1 X 5,5 where
convergence of the sums is with respect to the corresponding topologies of uniform
convergence.

Proof: Claim I: If J is a finite subset of I, f = ;.7 Xx4,8i;h = Y el X 4,5i: 51 € E,
then ]l < [|fllp (and hence ||k}, = |£1],)
Indeed, given € > 0, there exists z € X with p(h(z)) > [|k|, —€. As pis polar, there
exists ¢ € E',|¢| < p, such that |¢(h(z))| > ||hll, — €. Since S (Yiesdlsedxa) =
Y ics #(si)x 4,, we have that

11l = 1S dsidxall = 1D $lsidxa,ll 2 lo(h(z)] > [l — €,

ieJ ieJ

and the claim follows.

Claim IT : If G is the subspace of all f € Cy.(Y, E) which can be written in the form
f = > icsXA;Si, where all but a finite number of the s; are zero, then G is 7,,-dense
in Csa( ¥, B,

To show this, we first observe that every f € G can be written uniquely in the form
f=icsxa;:5i. In fact assume that f = 3 ;e XA:5i = 2 ie s, XA, Wi, Where J1, J2
are finite subsets of I. We may assume that J; = Jo = J. For each ¢ € E', we
have that 3, ; #(si)xa, = 2ies @(ui)x 5, and so ¢(s;) = ¢(us), for all i € J, which
implies that s; = u; since E is Hausdorff and polar. Let now f € Cr.(Y, E) and
a polar p € cs(E). There exist a finite clopen partition {Dy,...,Dn} of ¥ and
z; € Dj such that ||f — > p_; x0.f(zk)llp < 1. Let A be a clopen subset of Y.
Then x4 = 3 ;7 @iXa; @i € K, and 50 x5 = 3 _;cr ctixa,s for all s € E. To finish
the proof of our claim, it suffices to prove that every x4s is in the closure of G in
Cr.(Y, E). So let g be a polar continuous seminorm on E and € > 0. There exists a
finite subset J of I such that |[xas— Y ;c; @ixaslls = a(s)llxa —2ies aixallg <€
which proves that x4s € G. This completes the proof of our claim.
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Claim III: There exists a continuous linear map T : Cro(Y, E) — C,.(X, E) such
that T(f) = > ;e X 4,8 for f= > ic1 XA;5i in G. Indeed, define

T:G — CrelX, E), ZXA 53) ZX,@iSi-

iel iel

Then T-is well defined and linear. Moreover ||T'f||, = || fl|p for each f € G and each
polar p € cs(E). Since E is complete, the space Cr.(X, E), with the topology of
uniform convergence 7, is complete and hence (by Claim II) there exists a unique
continuous extension of T to all of Cr.(Y, E)). We denote also by T this extension.
If p is a polar continuous seminorm on E and f € Cr(Y, E), then there exists a net
(f5) in G converginmg to f. Thus ||Tf|l, = lim || T fs|lp = lim || fsllp = l|fllp- Since
T'fs is an extension of fs, it follows that T'f is an extension of f. This completes
the proof.

For p € ¢s(E), let My ,(X, E') be the space of all m € My(X, E') which have
a compact support, i.e. there exists a compact subset ¥ of X such that m(A4) =0
if A is disjoint from Y. Let m € My(X,E’), where p € cs(E). We will denote
also by p the unique continuous extension of p to all of E. If ¢ € E' is such that
|¢| < p, then there exists a unique continuous extension & of ¢ to all of E. For each
A € K(X), let m(A) be the continuous extension of m(A). Then /m € My(X, B
and m,(A) = mp(A). In fact, it is clear that my(A) < 7My(A). On the other hand,
let B be contained in A and let s € E,s # 0. If (B)s # 0, then there exists
u € E with p(s — u) < p(s) and |m(B)(s — u)| < |M(B)s| Now p(s) = p(u) and
|m(B)s| = |m(B)u|. It follows easily from this that 7,(A) < my(A), and the claim
follows. It is also clear that i € My ,(X, ') if m € My,(X, E').

As an application of the preceding Theorem , we get the following

Theorem 2.3 Assume that E is polar and let p be a polar continuous seminorm
on E. If we consider on Mpy(X,E') the norm |m|lp, = my(X), then Mip(X, E')
coincides with the closure of My ,(X, E') in My(X, E').

Proof: Let m € Mp(X, E') be in the closure of M ,(X, E'). Given € > 0, choose
m € My (X, E') such that |m — |, < e. Let Y be a compact support for m. If
A € K(X) is disjoint from ¥, then for B C A and s € E we have |m(B)s| = |[m(B)—
m(B)]s| < |lm — m||pp(s) and so mp(A) < ¢, which proves that m € Mp(X, E').
Conversely, let m € M;,(X, E'). Then 1 € M; (X, E'). Let Y be a compact subset
of X such that my(A) = mp(A) < € if A is disjoint from Y. Since E is complete
and polar, there exists a linear map S : Cre(Y; E) — Cre(X, E) such that, for each
f &Y, B8 [ is an extension of f and ||Sf|lq = [|f||q for each continuous polar
seminorm g on E. Define

81 Crel X, B) = Ko 8(f) = [ S(I¥)ain.

Then
lo(H)] £ mp(X)IS(FIY) e = mp(X)|| fllyp < mp(X)][[ £llp-
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Hence, there exists yu € Mp(X, E’) such that ¢(f) = [ fdu for all f € Cr(Y, E).
Then Y is a support set for p. Let m : K(X) — E',m(A) = u(A)|E. Then
m € Myp(X,E'). Finally, if |A| > 1, then ||/ — m| < €|A|. Indeed, let s € E with
p(s) <1andlet Ae K(X). If h = S((xas)|Y) and g = xas —h,theng=0on Y
and ||g|l, < 1. Let u € K,0 < || < ¢/mp(X). Theset V = {z € X : p(g(z)) > |ul}
is clopen and does not meet Y. Thus

< |plmp(X) < e

gdm’Smp(V)Se, ’ /. gam
v X\V

Therefore |m(A)s — m(A)s| = | [ gdm| < e. It follows that ||m — || < €|A|, which
completes the proof.

3 The Completion of (Cy(X, E),5,)

Let Cp x(X, E) be the space of all bounded E-valued functions on X whose restriction
to every compact subset of X is continuous. For p € cs(E), let ﬁop be the locally
convex topology on Gy (X, E) generated by the seminorms f 1R fllp, h € Bo(X).
We define 3, to be the projective limit of the topologies Bop,p € cs(E). For a
sequence (K,) of compact subsets of X and a sequence (d,,) of positive numbers, with
dp, — 00, we denote by Wi p(Kn, dn) the set (Noe,{f € Cox(X, E) : | fllnp < dn}-
As in the case of 3, (see [7], p. 193), it can be shown that each Wi p(Kn,dn) is
a [3,p-neighborhood of zero. We also have the following Theorem whose proof is
analogous to the proof of Proposition 2.6 in [7].

Theorem 3.1 The sets of the form Wi p(Kn,|An|), where (Ky) is an increasing
sequence of compact subsets of X and (An) a sequence in K with 0 < |Ap| < [Apt1] —
00, form a base at zero for Bop.

Theorem 3.2 Letp € cs(E) and let W be an absolutely convez subset of Cy (X, E).
Then

(1). If W is a B, p-neighborhood of zero, then for every r > 0 there ezist a compact
subset Y of X and e > 0 such that

{f € Con(X, E) : | fllp <7 I fllyip S €} C W

(2). If E is complete and polar and p a polar seminorm, then the converse holds in

(1).

Proof: (1). It follows from the preceding Theorem.

(2). Assume that E is complete and polar, p is a polar seminorm and the condition
holds in (1). Then, given |A| > 1, there exist an increasing sequence (K ) of compact
subsets of X and a decreasing sequence (ey,) of positive numbers such that V,NA"V C
W, where

Va={f € Cop(X,E): |fllkap S n}, V ={f € Cop(X,E) : Ifll, <1}
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Set W1 = V1 N[N (Vht1 + A"V)]. As in the proof of Theorem 2.8 in [7], we have
that W C W Let now A1 € K,0 < |A| < min{l,e1} and let A\, = A" for
n > 1. We will finish the proof by showing that Wa = Wi ,(Kp, |An]) € Wi. So
let f € W5. Then f € V1. Let m be a positive integer. There exists a linear map
T : C(Kmy1, E) — Cre(X, E) such that, for every g € C(Kmp41, E), Tg is an exten-
sion of g and ||Tgllq = ||gllq for every polar g € cs(E). Let g = T(f|Km+1),h = f—g.
Then b = 0 on Kppy1 and so h € Vipy1. Also |lgllp = | fIEm+1llp £ |A™ and so
f € Vina1 + A™V, which proves that f € W;. This clearly completes the proof.

In the following Theorem, for each p € cs(E), we will denote also by p the unique
continuous extension of p to all of E.

Theorem 3.3 If E is polar, then (Cp (X, E‘), B,) coincides with the completion of
(Cb(Xa E): 460)'

Proof: Claim I: Cy(X, E) is B,-dense in Cy(X, E). Indeed, let W be a convex (-
neighborhood of zero in Cy(X, E). Since 3, is coarser than 7, there exists p € cs(E)
such that Wi = {f € Co(X, E) : ||fllp < 1} C W. Let A € K(X) and s € E. Choose
w € E with p(s —w) < 1. Then xas — xaw € W1, which proves that x4s belongs
to the closure of Cy(X, E) in Cp(X, E). Since the space spanned by the functions
xas, A € K(X),s € E, is B,~dense in Cy(X, E), our claim follows.

Let now W be a convex (,-neighborhood of zero in Cj (X, E)andlet f € Ch (X, E).
There exists a polar continuous seminorm p on E such that Wisa Bo,p-neighborhood.
In view of the preceding Theorem, there exist a compact subset Y of X and € > 0
such that

{9 € Cor(X, E) < llgllp < I fllp: llgllyp < €} < W.

Let h € Cy(X, E) be an extension of f|Y such that ||hll, = || fllvp. Now ||f — Al <
|fllp and f = h on Y, which implies that f —h is in W. Thus Cp(X, E) is B,-dense
in Cp (X, E), which, combined with Claim I, implies that Cy(X, E) is B,-dense in
Cb,k (Xa E)
Claim IT: (Cy (X, E), B,) is complete. In fact, let (f5) be a Bo-Cauchy net. For each
z € X, (fs(z)) is a Cauchy net in E. Thus we get a function f : X — E, f(z) =
lim fs(x). Since fs — f uniformly on compact subsets of X, it follows that f|Y
is continuous for every compact set Y. Also, f is bounded. Indeed, suppose that
there exist p € cs(E) and a sequence (zn) of elements of X such that p(f(zn)) <
p(f(znt1)) — oo. The set W = {g € Cor(X,E) : p(9(zn)) < p(f(zr))/2} is
a B p-neighborhood of zero. Thus, there exists §, such that fs — fs, € W for
§ > 8,. It follows from this that p(f(zn) — fs,(zn)) < p(f(zn))/2. Thus p(fs, (zn)) =
p(f(zy)) — o0, a contradiction. By the above f € Cyx(X, E). Moreover fs — f in
Cy (X, E) which completes the proof. : - :

Corollary 3.4 If E is polar, then (Co(X, E), B) is complete iff E is complete and
every bounded E-valued f on X such that f|Y s continuous, for every compact
subset Y of X, is continuous on X.
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Theorem 3.5 If E is polar and complete, then (Cy(X, E), Bo) is complete iff it is
quasicomplete.

Proof: Assume that (Cy(X, E),B,) is quasicomplete and let f € Cyr(X, E). For
each compact subset K of X there exists fx in Cy(X, E) such that fx = f on K
and ||fllxp = ||fx|lp for each continuous polar seminorm p on E. The set {fx :
K C X,Kcompact} is contained in the uniformly bounded subset D of Cy(X, E)
consisting of all g with ||g|l, < ||f]lp for all p € cs(E), p polar. On D, B, coincides
with the topology T of compact convergence. Ordering the family K of all compact
subsets of X by set inclusion, we get a net (fx)xex in Cy(X, E) which is 1z-Cauchy
and hence B,-Cauchy. Since D is B,-bounded, there exists g € Cp(X, E) such that
the net (fx) is B,-cnvergent to g. But then g(z) = lim fx(z) = f(z) for all  and
so f = g € Cy(X, E). Now the result follows from the preceding Corollary.

Recall that a topological space Y is called a P-space if every zero set is open. In
case Y is zero-dimensional, Y is a P-space iff every K-zero set is open, equivalently
iff every countable intersection of clopen sets is clopen.

Theorem 3.6 If X is a P-space, then (Cy(X, E), Bo) is sequentially-complete iff E
is sequentially-complete.

Proof: Assume that (Cy(X, E), B5) is sequentially-complete and let (sn) be a Cauchy
sequence in E. The sequence (gn), gn(z) = sp for all z € X, is f,-Cauchy. If (gn) is
B,-cnvergent to g, then g(z) = lim s, and so E is sequentially-complete. Conversely,
let E be sequentially-complete and let (fn) be a Bo-Cauchy sequence in Cy(X, E).
Since 3, is finer than the topology of simple convergence, the limit f(z) = lim Frlz]
exists in E for each £ € X. Then f is bounded. Indeed, assume that there exists a
p € cs(E) such that || f|, = co. Choose a sequence (an) of elements of X such that
p(f(an)) > n for all n. The set

W = {g € Cy(X,E) : p(9(ar)) < n,n € N}

is a B,-neighborhood of zero. Let n, be such that fr,—fn, € W forn > n,. Forn 2 n,
we have that p(fn(axr) — fa,(ar)) < k and so p(f(ar) = fa,(ar)) < k, which implies
that p(fn,(ax)) = p(f(az)) > k, for all k, a contradiction since fn, is bounded. Also
f is continuous. In fact, let z € X and let D be a clopen neighborhood of f(z) in
E. Bach f71(D) is a clopen neighborhood of z and so V' = NV;, is a neighborhood
of x since X is a P-space. Moreover, for y € V, f(y) € D = D, which proves the
continuity of f at z. Moreover, since 3, has a base at zero consisting of sets which
are closed with respect to the topology of simple convergence, it follows that (f,) is
Bs-convegent to f, and this completes the proof.

4 Product Measures

Let Bou(X) be the family of all ¢ € B,(X) for which |¢| is upper semicontinuous.
As it is shown in [12], if |A| > 1, then for every ¢ € B,(X) there exists ¢ €
Bou(X) such that || < |¢| < Mp|. Thus G, is defined by the seminorms f —
67, ¢ € Bou(X),p € cs(E). If Y is another Hausdorff zero-dimensional topological
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space, then for each ¢ € B,y (X) and each ¢o € By (Y), the function ¢; x ¢a,
which is defined on X x ¥ by ¢1 x ¢a(z,y) = d1(z)d2(y), is in By (X x Y). Also,
given ¢ € By(X x Y), there exist ¢ € Bou(X),¢2 € Bou(Y) such that |¢; x
@3] = |¢|. Thus the topology B, on Cy(X, E) is defined by the seminorms f —
SUPreX yeY p(¢1($}¢2(y)f($,y)), where ¢1 € BOu(X)a ¢2 € Bou(Y)ap = C'S(E)'

Theorem 4.1 Let X,Y be zero-dimiensional Hausdorff topological spaces: If'G is -
the subspace of Cy(X x Y,E) spanned by the functions xaxps,A € K(X),B €
K(Y),s € E, then G is B,-dense in Cp(X x Y, E).

Proof: Let p € cs(E),¢1 € Bou(X), 02 € Bou(Y), W = {f € Cp(X x Y, E) :
p(o1(z)d2(y) f(z,y)) < 1}. Let f € Cp(X x Y, E). The set

D = {(z,y) : p(¢1(z)¢2(y) f(=, 7)) = 1/2}

is compact. If Dj, D are the projections of D on X,Y, respectively, then D C

Dy x Dy. Choose d > ||¢1]], ||¢2|| and let z € D;. There exists y € ¥ such that

(z,y) € D and hence ¢1(z) # 0. The set Z; = {z € X : |¢1(2)| < 2|¢1(2)|}

is open and contains z. Using the compactness of Dy, we find a clopen neigh-

borhood A, of z contained in Z, such that p(f(z,y) — f(z,y)) < 1/d? for all

z € Ag,y € Ds. Because of the compactness of Dp, there are z1,...,Zm in D

such that Dy C U™, Ag,. Let A1 = Ap, Apps = Agp \UE; Az, k=1,... ,m—1.

Keeping those of the Aj which are not empty, we may assume that each Ay # 0.

For each 1 < k < m, there are pairwise disjoint clopen sets Bgi,...,Bgn, of
Y, covering Dy, and yr; € Byj such that p(f(zk,y) — f(zk, vks)) < 1/(2d?) if
y € By;. Let now h = Z;n___l z;lil XAkakjf(-rkaykj)- Then h € G. Moreover,

p(o1(x)d2(y)(f(z,y) — h(z,y)) < 1 for all (z,y). To prove this, we consider the

three possible cases:

Casel. z ¢ |J7o, Ax. Then h(z,y) = 0. Also (z,y) ¢ D and so p(¢1(z)d2(y)f(z,y)) <
175,

Case II. £ € Ag,y € Ds. There exists j with y € By;. Now p(f(z,y) — f(zx,¥)) <

1/d and p(f(zx,y) — f(Tk Yij)) < gor, which implies that p(¢1(2)é2(y)(f(z.y) —

h(z,y)) < 1.

Case II. z € Ag,y € Do. Then (z,y) ¢ D and so p(¢1(z)d2(y) f(z,y)) < 1/2. If

h(z,y) # 0, then y € By; for some j, and so h(z,y) = f(zk,yx;), p(f(zr,y) —

flow yes)) & '2%3'. Since = € A, we have that |¢1(z)] < 2|¢1(zx)| and thus

p(61(x)2(y) f(zk:y)) < 2p($1(zk)B2(y) f(zr,y)) < 1 since (zx,y) € D. It follows

that p(é1(z)d2(v)h(z,y)) < 1 and our claim follows. This clearly completes the

proof.

Theorem 4.2 If p € M (X) and m € M;,(Y, E'), then there exists a unique m €
My(Xex Y, E') such that m(A x B)r= p(A)m(B) for each A € K(X).and each
B € K(Y). Moreover, m € Myp(X x Y, E’).

Proof: By [12], Theorem 4.6, there exists a linear map

w: M = (Co(X), o) @ (Cp(Y, E), Bo) = (Co(X x ¥, E), Bo)
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such that w(g® f) = g x f, for all g € Cy(X), f € Cy(Y, E), where (g x f)(z,y) =
g(z)f(y), and w : M — w(M) is a topological isomorphism. In view of the preceding
Theorem, w(M) is B,-dernse in Cp(X x Y, E). The bilinear map

T (Co(X),80) x (¥, E), 60) — K, Tlo.) = ( [ od) (/ ram)

is continuous. Hence we have a continuous linear map ¢ : M — K, ¢(g®f) = T'(g, f)-
Since w : M — w(M) is a topological isomorphism, it follows that the linear map
Y w(M) = K¢ = ¢ow™l, is Bo-continuous on w(M). As w(M) is So-dense in
Cy(X x Y, E), there is a continuous extension ¢ of ¢ to all of Cp(X x Y, E). Thus,
there exists M € My(X x Y, E) such that (k) = [ hdm for all h € Cy(X x Y, E).
In particular, for g € Cp(X),f € Cy(Y, E), we have 1(g x f) = [(g x f)dm =
([ gdu)([ fdm). If A € K(X),B € K(Y),s € E and h = xaxBs = x4 % (x89);
then )
(A x B)s = §(h) = p(A)m(B)s

and so m(A x B)) = p(A)m(B).

Let now m; € My(X x Y, E') be such that m;(4 x B)) = ,u{A)m( ) for all A €
K(X),B € K(Y). Consider the 3,-continuous linear forms $1(h) = [ hdm,¢a(h) =

[ hdmy. If G is as in the proof of the preceding Theorem, then ¢1 = g2 on G
and hence ¢1 = ¢ since G is B,-dense in Cp(X x Y, E). Thus m = my. Finally,
assume that m € M; (X, E’). There are ¢1 € Bou(X) and ¢3 € Bou(Y) such that
[ gdm| < 1]l and | [ fdm| < gafllp for all g € Co(X), € Co(Y, E). Thus, for
h = gx f, we have that | [ hdm| < [|(¢1 X ¢2)hlp- Since the map b — [|(¢1 X $2)hl|p is
a f3,-continuous seminorm on Cy(X x Y, E), it follows that | [ hdmn| < ||(¢1 x ¢2)hllp
for all h € Cy(X x Y, E). In particular, for D € K(X xY) and s € E, we have

|m(D)s| < p(s) sup |d1(z)e2(y)] < p(s)lldr x @2l

(z,y)eX xY)

Thus, m,y(X x Y) < ||é1 x ¢2|| = ||¢1]l¢2ll. This completes the proof.

Definition 4.3 For u € M,(X) and m € M(Y, E’) we define by u X m the unique
element m of My(X x Y, E') for which m(A x B) = u(A)m)B) for A€ K(X),B €
K(Y). We call this m the product of p and m.

Theorem 4.4 Let h € Cy(X x Y, E) and m € Myp(Y, E’). Then the function

g: X =K, g(x)=Lf(x,y)dm(y)

1s bounded and continuous.

Proof: Without loss of generality, we may assume that ||m|j, < 1 and ||f[l, < 1.
Let € > 0 and let D be a compact subset of ¥ such that m,(A) < e if A is disjoint
from D. Let z, € X. For each y € D there are clopen neighborhoods V,, and W),
of y and z,, respectively, such that p(f(z,2) — f(zo,y)) < eif x € W,z € V. Let
Y1,-.-,Yn in D be such that D C V = [Jj_; Vy, and let W = (;_; Wy,. Then, for
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z € W,y € V we have that p(f(z,y) — f(zo,y)) < €. It follows that , for z € W, we
have

| /V 7z, 9)dm{y) — fv F (50, y)dm(@)] < e.
Also,

| /Y | F@Am@I < I flymy(\V) <€ and | ]y o namw < e

Thus, for z € W, we have |g(x) — g(z,)| < €, which proves thast g is continuous.
Moreover ||g|| < 1.

Theorem 4.5 Let p € M, (X),m € Mp(Y,E'),m=pxm. Ifh € C(X x Y, E),
then fhd'rh = fx[f}’ h(z,y)dm(y)]du(z).

Proof: Define
v:GXxYB) =K ()= [ [ fa)an)due).

There are ¢1 € Boy(X),d2 € Bou(Y) such that for every g € Cp(X) and every
f € Cp(Y, E), we have

| / gdil < lprgll end | f fdm| < ||éafllp

Now, for all z € X, we have 1fy h(z,y)dm(y)| < SUPyey |d2(y)p(h(z, y)) and

| f [[ h(z, 3)dm(p)ldu(@)] < suplsup @) p(h(z, V)ldr(@) =  sup  |d1xda(z,v)lp(h(z,)).
X JY zeX ye¥

(zy)eXxY

Since ¢ X @2 € By (X x Y), it follows that v is B,-continuous on Cp(X x Y, E).
For A€ K(X),Be K(Y), f = xaxB)s = xa % (xBs), we have

$() = /X [ /Y xa(@)x()dm(y)ldu(z) = p(A)m(B)s

and [ fdm = p(A)m(B)s. Thus ¢(f) = [ fdm for f € G, where G is as in
Theorem 4.1. Since G is B,-dense in Cy(X x Y, E), we have that ¢(f) = [ fdm for
all f € Cp(X x Y, E). This completes the proof.

5 (VR)-Integrals

Van Rooij defined in [16] integration of functions in KX with respect to members p
of M,(X). His definition however cannot be applied for arbitrary p in M(X). Let
p € M-(X). He defined N, : X — R by N,(z) = inf{|p|(4) : z € A € K(X)}.
Then N, is upper semicontinuous and, for every e > 0, the set {z € X : Ny(z) > €}
is compact. For A € K(X) we have that |u|(A) = supye4 Nu(z). For f € KX,
he defined ||f|ln, = sup, |f(z)|Nu(z). If g is a K(X)-simple function, ie. g =
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SR akxa,, with A; € K(X),ox € K, he defined [gdu = }5_; axm(4g). Van
Rooij called an f € KX p-integrable if there exists a sequence (g ) of simple functions
such that || f — gnlln, — 0. In this case, he called integral of f the lim [ gndp. We
will denote by (VR) [ fdu the integral of f in his sense. It was proved in [10] that,
for 4 € M-(X), if f is p-integrable in our sense, then f is also integrable in Van
Rooij’s sense and the two integrals coincide.

In this section we will assume that E is a normed space and we will define the
integral (VR) [ fdm of an f in EX with respect to an m € M(X, E') = M (X, E').
Most of the aguments we will use will be analogous to the ones used in [16] where
scalar-valued measurers and functions in K* are treated. Let m € My(X,E’). As
in [16], we define

Ny : X = R, Np(z) = inf{|m|(4) : z € A € K(X)},

where |m| = my . Then Ny, is upper-semicontinuous and |m|(4) = supyc g Nm(x)
for each A € K(X).

Let S(X,E) be the space of all E-valued K(X)-simple functions on X. For
h € EX, we define ||h||n,, = supzex Nm(z)||R(z)]|-

Lemma 5.1 I[fm € My(X,E') and g =Y p_y XA, 5% € S(X, E), then

1> m(An)skl < llgllwn < lgllimll-
k=1

Proof: Without loss of generality we may assume that the sets Aj,...,Ap are
pairwise disjoint. Since, for A € K(X) and s € E, we have |m(A)s| < |[s]||m|(4) =
||s|l supze 4 Nm(z), the Lemma follows.
We have the following easily established
Lemma 5.2 Let m € My(X,E’) and f € EX. Assume that there ezists a sequence
(gn) C S(X, E) such that ||f — gnllN,. — 0. Then: (1) The limp_,co [ gndm ezists.
(2) If (hn) is another sequence in S(X, E) such that || f—hn|IN,, — 0, then limy—o0 [ gndm =

himg e [ Apdma.
(8) |limn—co [ gndm| < || fllN,, < oo

Definition 5.3 Let m € My(X,E'). A function f € EX is called (V R)-integrable
with respect to m if there ezists a sequence (gn) C S(X, E) such that || f—gn||n,, — O
In this case we define

(VR) / fdm = Ji_lggo/gndm.
Let now m € My(X, E’) and let
Sm = {A @X vxas is (VR)-integrable for all's € E'}.
As in [16], Lemma 7.3, we have the following

Lemma 5.4 Let m € My(X,E') and A C X. Then A € Sn iff, for every € > 0,
there erists B € K(X) such that N, < € on AAB = (A\ B)U(B\ 4).
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Proof: Assume that A € Sy, and let s be a non-zero element of E. Let g € (X, E)
be such that ||xas — g|ln,. <e€lis||l. I B ={z:||g(z) — s|| < |s|/}, then B € K(X)
and |lg(z) — xa(z)s|| < min{[lg(z)|l; [9(z) — 5|} < llg(z) — xa(z)s]| and so

Ixas = xBslN,, < max{llxas— gllnn, IxBS = gllvn} = lIxas = gllvn <ells];

which implies that Ny;"<'e o AAB.

Conversely, suppose that the condition is satisfied and let s be a non-zero element
of E. Choose B € K(X) such that N,,, < ¢/||s|| on AAB. Then | xas—xBs|N,, <€
which completes the proof.

We can easily prove the following

Lemma 5.5 Let m € My(X, E"). Then: (1) For each A € S, the complement A°
18 also 1n Sp,.

(2) If Ay, As € Sy, then A1 U Az and A1 N Ay are in Sp.

(8) K(X) C Sm.

(4) A € Sy, iff, for each € > 0, there exists B € K(X) such that ANXy, e = BNXm e,
where X« = {z : Nm(x) = €}.

For m € M;(X, E’), we denote by 7, the zero-dimensional topology on X having
Sy, as a base. Clearly 7, is finer than the topology 7 of X. We denote by X, the
set X equipped with the topology Tm.

Theorem 5.6 Let m € My(X,E"). Then X, ¢ is Tm-compact for each € > 0.

Proof: It suffices to show that every cover U of X, by sets in Sy, has a finite
subcover. Without loss of generality, we may assume that A; UAs isinf if Ay, As €
U. Since N,y is Tp-upper semicontinuous, Xy, ¢ is 7m-closed. Hence the family

V={(VUZ)Y:Vel,ZCX] . 2ZESy}

is downwards directed to the empty set. Since |m| is T-additive, there exist V €
U,z C Xg, . such that |m|((V U Z)°) < € and so Xjp C V U Z, which implies that
Xm,e CV, and we are done.

Since Xm ¢ is Tm-compact and 7 is Hausdorff, it follows that 7 = 7, on Xme-

Lemma 5.7 For m € My(X,E"), an A C X is T -clopen iff it is in Sp,.

Proof: Asuume that A is 7,-clopen. Then, for € > 0, the set AN X, ¢ is clopen
in in X, . for the topology induced by T, and hence for the topology induced by 7.
Since X ¢ is T-compact, there exists B € K(X) such that AN Xp = BN Xpye.
The result now follows from Lemma 5.5.

Proposition 5.8 Ifm € My(X,E') and f € EX, then f is Tm-continuous iff f|Xm,e
is T-continuous for each € > 0.

13
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Proof: Since T = Ty, o0 X e, the necessity is clear. Conversely, assume that the
condition is satisfied. If D is a clopen subset of E, then f~!(D)N Xy is clopen in
Xm.e for the topology induced on Xm e by . Since X ¢ is T-compact, there exists
A € K(X) such that AN Xme = f71(D) N Xpme. Thus f~Y(D is Tm-clopen by
Lemma 5.5 and the result follows.

Theorem 5.9 Let m € My(X, E'). For a Tm-clopen subset A of X, we define m(A)
on E by m(A)s = (VR) [ xasdm. Then : 1) m(A) € E".
2) (A) € My(Xm, E"), Im| = ||| and |m|(A) = |m|(4) for A € K(X).

Proof: 1) It follows from the inequality
(VE) [ xasdm] < suplslNn(z) < I Il
T

2) Clearly m is finitely additive. Let A be a family of m,-clopen sets which is
downwards directed to the empty set and let ¥ = Xp . For each A € A, there
exists B € K(X) such that ANY = BNY. Let

B={BecK(X):3A€ A ANY =BNY}.

Let By, By € B and let Aj, Ay € A such that 4;,NY = B;N Y. fori=12. Let
A€ A, AC A1NA; and choose B € K(X) with ANY = BNY. If D = ANB1N By,
then ANY = DNY and so D € B, which proves that B is downwards directed.
Moreover (1B = 0. Indeed assume that 2z € (\B. If z ¢ Y, then there exists
Z € K(X) containing z with |m|(Z) < € and so Z is disjoint from Y. If B € B, then
there exists 4 € A with ANY = BNY = (B\Z)NY and so B\ Z € B, a contradiction
since z ¢ B\ Z. Thus z must bein Y and so z € NB = (g BNY. Given A € A,
there exists B € B with ANY = BNY andso z € 4, i.e. z €A, a contradiction.
Thus B is downwards directed to the empty set. Since m € M;(X, E’), thefe exists
B € Bwith |m|(B) <e Let Ac Awith ANY =BNY =0.Ifz € 4, thenz ¢ ¥
and 50 Np,(X) < e. If G is a Tm-clopen set contained in A, then for each s € E we
have
17](G)s| < sup ||sl|Nom(2) < el
zelG

and so |m|(A) < e. This proves that m € M. (Xm, E') = My(Xm, E'). Finally, let
A € K(X). Clearly |m|(4) < |m|(4). On the other hand, let D be a 7m-clopen
subset of A. For each s € E, we have

m(D)s| = |(VR) [ xpsdm| < sup ||sl| Nm(z) < [ls]llml(4),
zeD

which proves that |m|(4) > |7m|(A4), and the result follows.

Proposition 5.10 If m € My(X, E'), then Np = Np,.

Proof: Since |m|(A) = |m|(4) for A € K(X), it follows that Nem < Nm. Assume
that, for some z € X, we have Ns,(z) < € < Np(z). There exists a Tp-clopen set A
containing z with |m|(4) < e. Let B € K(X) such that ANY = BNY,Y = {y:
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Nim(y) = €}. Then z € B and so |m|(B) > Np(z) > e. Let D € K(X) contained in
B and s € E be such that |m(D)s|/||s|| > e. Then |m(DNA)s|/|s|| £ |m|(DNA) <e.
Since m(D) = m(D), we have that |m(D)s| = |m(D)s — m(D N A)s| = |m(D \
A)s| < ||s|| supyepya Nm(y)- But, if y € D\ A, then Np(y) < ¢, since D C B and
ANY =BNY, and so |m(D)s| < ¢||s||, a contradiction. This completes the proof.

Lemma 5.11 Let m € My(X, E') and g € S(Xm, E). Then, for each e> Q, there:
exists h € S(X, E) such that ||g — h||n,, <e.

Proof: If g # 0, there are paiwise disjoint Tm,-clopen sets Aj,...,An, and non-
zero elements si,...,S, in E such that ¢ = Y p_; xA.Sk- Let a = min{||s;|| :
= Ly oo TR For each i, choose B; € K(X) with Ny < €/a on A;AB;. Let
Zy = Bl,ZkH = B3 \U1 1 Bi,fork=1,... ,n—1. Then Ny, < ¢/a on A,AZ;.
Let b = Y p_; Xz.Sk- Since z € |Ji—; AkAZk when g(z) # h(z), we have that
llg — Rl|ln,, < e and the result follows.

Corollary 5.12 If m € My(X,E') and f € EX, then f is (V R)-integrable with re-
spect tom iff it is (V R)-integrable with respect to m.In this case we have (VR) [ fdm =
(VR) [ fdm.

Theorem 5.13 Form € My(X,E') and f € EX the following are equivalent:

(1) f is (V R)-integrable with respect to m.

(2) For each € > 0, f|Xm, is continuous and the set D = {z : || f(z)||[Nm(z) > €} is
T -COMPACE.

Proof: (1) = (2). Choose g € (X, E) such that ||f — glln,, < €*. Let 2, € Xme
and V = {z : |lg(z) — 9(z0)|| < €}. If £ € V N X, then [|f(z) — g(z)]| < € and
so ||f(z) = f(zo)|| < €, which proves that f|Xm, ¢ is continuous. To prove that D is
Tm-compact, choose g € S(X, E) with ||g — f|ln,, <€ Then

{z: [If(@) | Nm(z) 2 e} = {z : [lg(z)[| Nom z) 2 €}

Let Ay,...,A, € K(X) be disjoint and s; non-zero elements of E such that g =
Y p=1 XA,k Then

Az : l9(@)|Nm(z) 2 €} = {2 : |sel| Nm(2) = €} = Ak [ {2 : Nm(2) 2 €/||skll} = D

Thus D = | J Dg is 7m-compact.

(2) = (1). Our hypothesis implies (in view of Proposition 5.8) that f is Tm-
continuous. Since D is T,-compact and Ny, is T,-upper semicontinuous, there exists
a positive number « such that Ny, (z) < a for each z € D . For each z € D, the set
M, ={y:||f(y) — f(z)|| < ¢/} is a Tm-clopen neighborhood of z. If M, N M, # 0,
then M, = M,. Hence there are ai, ... ,a, € D such that the sets M,, are disjoint
and cover D. Let 0 < €; < « be such that ||f(aklle1 <€, for E =1,...,n. There
are Ay € K(X) such that M,, NY = A, NY, where Y = {z : Njy(z) > €1}. Take
Z) = Ay, Zrer = Besr \UE A, for k=1,...,n—1. Then ZxNY = A, NY.
Let g = Y 71 xa.f(ax). Then ||f(z) — g(z)||[Nm(z) < € for all z. To show this,
we consider the two possible cases. Case I: z € D. Then z € M,,, for some k,
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and 5o [|f(z) — (ak) [ Nm(2) < allf(2) — Fla)ll < . Since [I£(@)[Nm(2) > ¢, we
have ||f(z)|| = ||f(ar)||- If now z € Y, then = € Z; and so g(z) = f(ax), which
implies that ||f(z) — g(z)||Nm(z) = ||f(z) — flar)||Nm(z) < €. Ifz ¢ Y, then
1 @) Nom(z) = | F(a8)|Nom(z) < 2]l 7@} < &, a contradiction.

Case II: z ¢ D. Then ||f(z)|Nm(z) < e If |f(z) — g(z)||[Nm(z) > ¢, then
llg(z)||Nm(z) > € and so = € Zj, for some k, which implies that g(z) = f(ax) and
50 || f(ax){[Nm(z) > €. Consequently, Nm(z) > €1 and thusz € Zx NY = M, NY.
But then

1f(2) — 9(2)|Nm(z) = If(z) — f(ar)[|Nm(z) < e1¢/ex <,

a contradiction. Thus ||f — g||n,, < € which proves that f is (V R)-integrable with
respect to m and we are done.

Lemma 5.14 If ¢ € E' and Y a compact subset of X, then there exists an m €
My(X, E') such that Ny (z) = ||¢|| for z €Y and Npy(z) =0 forz ¢ Y.

Proof: By [16], p. 273, thete exists a u € M, (X) such that Ny(z) = 1forz € Y and
Ny(z)=0forz ¢ Y. Let m : K(X) — E',m(A) = u(A)¢. Then m € My(X, E')
and Ny, = ||¢||Ny, which proves the Lemma.

Theorem 5.15 If f € Cyp (X, E), then f is (VR)-integrable with respect to every
m € My(X,E"). If E is polar, then the converse is also true.

Proof: Assume that f € Cy (X, F) and let m € M;(X,E'). Let o > ||f| and € > 0.
Then
D= {z:|f()[|[Nm(z) = €} C {z: Nm(z) 2 ¢/a} = Z.

The set Z is Tm-compact. Also, f is Tp-continuous (by Theorem 5.13) and Ny, is
Tm-upper semicontinuous. Thus D is a Ty,-closed subset of Z and hence D is Tm-
compact. Hence f is (V R)-integrable by Theorem 5.13.

Conversely, assume that F is polar and that the condition is satisfied. We show
first that f is bounded. Assume the contrary. Since E is polar, there exists ¢ € E’
such that sup,ecx |¢(f(z))| = co. Let |A] > 1 and choose a sequence (a,) of distinct
elements of X such that |¢(ay)| > |A|*® for all n. Define m : K(X) — E',m(4) =
(Pa,ca)®- Then m € My(X, E'). Let an € A € K(X). If k is the smallest integer
with ay € A, then, for @(s) # 0, we have

m(A)s| = | > A7(s)| = IXTFo(s)| = AT (s)),

a;EA

and so |m|(4) > |A7"|||¢||. On the other hand, suppose that a, € A € K(X). There

exists a clopen neighborhood B of a, contained in A and not containing any ag

for k < n. If now D is a clopen subset of B, then |m(D)s| < [A™"¢(s)| and so
Np(an) <dm|(B) < |A7"||¢]]. Thus Np(an) = |AT"|||4||. But then

1l 2 sup [ £ (an) [16]][A]™ = sup A7 |e(f(an)| = o0

a contradiction since f is (V R)-integrable. Thus f is bounded. Let next Y be a
compact subset of X and let ¢ be a nonzero element of E’. By the preceding Lemma,
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there exists an m € My(X, E') such that Nn(z) = ||¢|| for z € Y and Np(z) = 0
for z ¢ Y. Given € > 0, there exists g € S(X, E) such that ||f — g||n,. < ||¢]le. Let
zo, €Y and V = {z : ||g(z) — g9(zo)|| < ||¢lle}. f x € V NY, then

1£(z) = £(zo)ll < max{||f(z) — g()|I, lg(z) — g(zo)ll; l9(zo) — F(zo)l|} <€,

which proves that f|Y is continuous. This completes the proof.

Theorem 5.16 Let m € My(X,E'). If f € EX is bounded and m-integrable, then
| [ fdm| < || £l Nem-

Proof: Let € > 0. There exists a clopen partition Aj,... ,An of X such that , for
any clopen partition Dy,..., D, of X which is a refinement of A4;,..., A, and any
y; € D;, we have that | [ fdm — f;l m(D;)f(yi)| < €. Let e > 0 be such that
|fllex < e. Choose z € Ag such that sup,ea, Nm(z) < Nm(zk) + €1. Now

|/fdm = Zm(Ak)f(xkﬂ <e
k=1

Moreover

[m(Ak) f(zx)] < |m|(Ar) || f(zx)ll = [S;Il) NI f (zx) || £ [e1+Nmm (x| f (@) || < e+ N (@) | f ()]
Y k
Thus
| [ fami < max{e, mpx m(4)f (@0)]} < max{e,e-+ sup Na(@) @)
zeX
Taking € — 0, we get our result.

Theorem 5.17 Let m € My(X,E') and f € EX a bounded function. If f is both
integrable and (V R)-integrable with respect to m, then [ fdm = (VR) [ fdm.

Proof: There exists a sequence (gn) in S(X, E) such that || f — gn||n,, — 0. Since
f — gn is m-integrable and bounded, we have

| [ sam— [ il <15 = gull, =0

Thus,
]fdm:lim[gndm= (VR}/fdm.

Theorem 5.18 Let m € My(X,E'). For a bounded f € EX, the following are
equivalent:

(1)f is (V R)-integrable with respect to m.

(2) For every € > 0, f|Xm  is continuous.

(8) f is Tm-continuous.

(4) f is (V R)-integrable with respect to .

In each of the above cases, we have

(VR) / fdm = (VR) f Fdin = f Fdm.
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Proof: (2) is equivalent to (3) and (1) is equivalent to (4) by Proposition 5.8 and
Corollary 5.12. Also (1) implies (2) by Theorem 5.13. Finally, assume that (2) holds
and let d > || f||. Then

D= {z:||f(@)||Nm(z) = €} C {z : Npn(z) > ¢/d} = Z.

Since f is Tm-continuous and Np, Tm-upper semicontinuous, it follows that D is-a -
Tm-closed subset of the Ty,-compact Z and hence it is Tm-compact. By Threorem
5.13, f is (V R)-integrable with respect to m. In each of the above cases fis Tm-
continuous and so it is m-integrable and thus

(VR) f fdm = (VR) f fdm = / Ffdm

by Corollary 5.12 and Theorem 5.17. This completes the proof.

6 Q-Integrals

Theorem 6.1 Let m € M(X,E') and f € EX. Then f is m-integrable iff the
following condition is satisfied: For each € > 0, there ezists a clopen partition
{A1,... ,An} of X such that, for every z,y which are in the same Ay and any
clopen subset B of Ay, we have |m(B)(f(z) — f(y))| < e

Proof: Assume that f is m-integrable and let ¢ > 0. There exists a clopen par-
tition {A1,...,An} of X such that, for every clopen partition {Dy,... ,Dn}of X
which is a refinement of {A41,...,A,} and any choice of z; € Dy we have that
| [ fdm— ZkN=1 m(Dy) f(zx)| < €. Let now z,y be in some A; and let B be a clopen
subset of A;. We will show that |m(B)(f(z) — f(y))| < e. To prove this, we consider
the three possible cases: -

Case L. z,y € B. Then it is clear that |m(B)(f(z) — f(y))| <e.

Case IL. z,y € D = A; \ B. Assume, by way of contradiction, that |m(B)(f(z) —
Fw))] > e Since ¢ > [m(A)(f(z) — FW)| = Im(B)(£(2) — £(v)) + m(D)(f(z) -
f(¥))], we would have that |m(B)(f(z) — f(¥))| = [m(D)(f(z) = f(¥))| < ¢, a con-

tradiction.

Case III. z € B and y € D (say). Then |m(A4;)f(y) — [m(B)f(z) + m(D)f(y)]l <€
ie. [m(B)(f(z) - F@)| < e

Thus the condition is satisfied. Conversely, suppose that the condition holds and let
€ > 0. Let {4;,..., 4y} be as in the condition and let z € Ag. If {Bi,...,Bn}isa
clopen partition of X which is a refinement of {4, ..., An} and if y; € By, then for
B; C Ay, we have that |m(B;)[f(y;) — f(zx)]| < ¢, and thus | 3 k_; m(Ar)f(zk) —
z;-\;l m(B;)f(y;)| < e. This clearly proves that f is m-integrable and hence the
result follows.

Let now m € M. (X, E') and f € EX. We define Qs on X by

Qms(@) = __jnf  sup{|m(B)f(@)|: B C 4,B € K(X)}.
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Also, for A € K(X), we define

£l a@m =sup Qms(z), [Ifllem = [Ifllx.Qm-
zEA

Lemma 6.2 Ifg = 7_; xA,Sk, where A € K(X), s, € E, then | Sopo m(Ar)sk| <
19/l Q-

Proof: We may assume that the Ay are pairwise disjoint. We prove first that, for
A€ K(X),s € E,h = xas, we have that |m(A4)s| < supzec4 Qmn(z). Indeed, let
6 > supyec4 Qmn(z). For each z € A, there exists a clopen neighborhood V; of
contained in A such that |m(B)h(z)| = |m(B)s| < 0 for evey clopen set B contained
in V. Let u = ms be defined by u(B) = m(B)s, B € K(X). Then p € M;(X).
Since |u|(Vz) < 6 for every z € A, it follows that |u|(A) < 8. Thus |m(A)s| < 6,
which proves that |m(A)s| < suprea@mn(z). If hy = x4, 5k, then for z € Ay we
have Qm p, (z) = Qmg(z) and so [m(Ax)sk| < supzea,@m,g(z) which clearly com-
pletes the proof.

As we have shown in the proof of Theorem 6.1, we have the following

Theorem 6.3 Let m € M, (X,E') and let f € EX be m-integrable. Then, given
e > 0, there exists a clopen partition {A1,...,A,} of X such that for any z €

Ay and g = S7_, xa, f(zx) we have that | [ fdm — > p_; m(Ax)f(zx)| < € and
If —9gliem < e

Lemma 6.4 Let m € M, (X, E") and let p € cs(E) be such that my(X) < oco. If
f € BX is bounded, then | fllan < IIf lymo(X).

Proof: It folows from the fact that, for B € K(X), we have |m(B)f(z)| < mp(X)p(f(z)).

Lemma 6.5 Let m € M.(X,E') and let f € EX be m-integrable. Then ||fllg,, <
0.

Proof: There exists g € S(X) such that ||f — g|lg. < 1. Let p € cs(E) be such
that m,(X) < 1. Then

[ fllom < max{L,|gllg,} < max{L, mp(X)lgli}-

Lemma 6.6 Let m € M.(X,E'"). If f € EX is m-integrable, then | [ fdm| <
1 ll@m-

Proof: Given € > 0, let {41,...,A,} be a clopen plartition of X such that, for
every clopen partition {Dj,...,Dn} of X which is a refinement of {A4;,...,Ar}
and any choice of z; € Dy we have that | [ fdm — Zﬁ;l m(Dg)f(zr)| < e Let
T € Ap and g = 3 F_; xa, f(zk). Let z € Aj. There exist a clopen subset D of Ay
with z € D such that |m(B) f(z)| < Qm,s(x) + € for every clopen set B C D. Thus,
for B C D, we have

im(B)g(z)| = |m(B)f(zk)| < max{|m(B)(f(z)—f())l,Im(B)f(z)|} £ Qm,s(z)+e
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and s0 Qmg(z) < Qm,f(z) + €. Now

| f fdm| < max{e,| 3 m(AR) f (2]} < max{e, 5up Qrm g(2)} < 5up Qmp(a) + e
Bg T zeX

Since € > 0 was arbitrary, the result follows.

Lemma 6.7 Let m € M.(X,E') and f € EX. If (gn) C S(X) is such that || f —
gnllg, — O, then the limy_.o [ gndm ezists. Moreover, if (hy) is another sequence
in S(X) such that ||f — hnllg., — 0, then limpoo [ gndm = limp_.oo [ hndm.

Proof: Since | [ gndm — [ grdm| < llgn — gllq, < max{llgn — fllom, If — gtllam}-
it follows that the lim,_.c [ gndm exists. If (hy) is another sequence in S(X) such

that ||f — hnllQ,. — 0, then

| [ P / ndr] < mex{lgn — Fllges If = Bnllgn} = O-

Thus the result follows.

Definition 6.8 Let m € M, (X,E'). A function f € EX is said to be Q-integrable
with respect to m if there ezists a sequence (g,) in S(X) such that || f — gnllQ,. — 0-
In this case, the lim, oo [ gndm is called the Q-integral of f and will be denoted by

(@) J fdm.

By what we have shown above, if f € EX is m-integrable for some m €
M, (X,E"), then f is Q-integrable and [ fdm = (Q) [ fdm.

Theorem 6.9 If m € M;(X, E'), then every f € EX which is (V R)-integrable with
respect to m, is also Q-integrable and (VR) [ fdm = (Q) [ fdm.

Proof: Tt follows from the fact that, if m € M; (X, E’), then for each h € EX we
have Qma(z) € Ny p(z)p(h(z)) for every z € X.

Theorem 6.10 Assume that E is polar and let f € EX. If f is Q-integrable with
respect to m for each m € M,(X,E'), then f is bounded.

Proof: Assume that f is not bounded. Since E is polar, there exists ¢ € E' with
supgex |#(f(z))| = co. Let |A| > 1 and choose a sequence (a,) of distinct elements of
X such that |¢(f(an)) > [A|*" foralln. Let m : K(X) — E',m(A) = (3, ca X )9
Then m € M.(X,E'). Let now a, € A € K(X) and let D be a clopen subset of A
containing a, and not containing any ay for £ < n. Then

Im(D)f(an)l = 1( Y AF)(F(an))| = X $(f(an))] 2 [AI™
ar€D

This proves that @Qm ¢(an) = |A|™ and thus ||f]|g,, = oo, which implies that"f is
not Q-integrable with respect to m (in view of Lemma 6.5). This contradiction
completes the proof.

For an m € M, (X, E’), define g, on Cpo(X, E) by gm(f) = || fllom-
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Theorem 6.11 If m € M.(X, E'), then gn, is B-continuous.

Proof: It is easy to see that g, is a non-Archimedean seminorm on Cy(X, E).
To prove that g, is B,-continuous, let G € 2. There exists a decreasing net (As) of
clopen subsets of X such that G = ﬂﬁg’s"x. Let p € cs(E) be such that mp(X) < oo
and mp(As) — 0. Let » > 0 and choose 6 such that my(As) < 1/r. The closure in
B, X of theset. X.\ Ajs is disjoint from.G..Now

V={Ff €C(X,E): |Ifllo <7 Ifllzp £ 1/mp(X)} C{f € Co(X, E) : gm(f) < 1}

Indeed, let f € V. If z € As, then Qn, f(z) < mp(As)p(f(z)) < 1. Also, for z € B
and D C B, we have |m(D)f(z)| < mp(X)p(f(z)) <1 and thus ||f]lg,, < 1. This
proves that the set W = {f € Cpo(X, E) : gm(f) < 1} is a Bg-neighborhood of zero
for each G € Q and hence it is a S-neighborhood. Thus g, is - continuous.
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ABSTRACT

Consider the second order linear functional equation

z(g(t)) = P(t)e(t) + Q(#)z(g°(t), (%)

where P,Q € C([0,00),[0,00)),9 € C([0,00), R), g(t) is increasing, g(t) > t or
g(t) < t and g(t) — oo as t — oo, and the linear functional equation

z(t) — pz(t = 7) + ¢(t)z(t — ) = 0, (%)

where p, 7,0 € (0,00),q(t) € C([0,00), [0,00)). We establish the following “sharp”
nonoscillation criteria for Eq. () and Eq. (s#%):

Theorem 1. If Q(¢)P(g(t)) < 1/4 for large t, then Eg. (x) has a nonoscillatory
solution.

Theorem 2. If o > 7 and for large t

_ o/t _ -1
p—a/'r -q(t) < (a T) : (J T) ,
& T

then Egq. (*x) has a nonoscillatory solution.
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1. INTRODUCTION

The oscillatory properties of solutions of differential equations with deviating
arguments and difference equations with discrete arguments have been the subject
of many recent investigations. See, for example, [1,3-5,7,9-11,13,14,18] and the
references cited therein. For the oscillatory properties of solutions of functional
equations which include difference equations with continuous arguments, the reader
is referred to [2,6,12,15,17,19-22].

In 1992, Ladas, Pakula and Wang [12] considered the difference equation

z(t) + prz(t — 71) + pax(t —72) =0, p1,p2, 71,72 €R (1.1)

and proved that every continuous solution of Eq. (1.1) oscillates if and only if the
characteristic equation
14+ pre™™ 4 ppe™2 =0 (1.2)

has no real roots. Observe that when p1,p2 € (0, 00), every solution of Eq. (1.1)
oscillates. Without loss of generality, it can be assumed that 7 > 7o > 0. But
then p; > 0 is a necessary condition for all solutions of Eq. (1.1) to oscillate. On
the basis of this discussion they studied the equation

z(t) —pz(t —7) +qz(t — o) =0, (1.3)
where
p,q,T,0 € (0,00) and T<0,

and derived the following necessary and sufficient oscillation condition
g% >p°tT(c—T)°". (1.4)

In 1993 Domshlak [2], in 1995 Zhang and Yan [20], in 1996 Shen [17], in 1997
Zhang, Yan and Zhao [22] and in 1998 Zhang, Yan and Choi [21] studied such
equations with variable coefficients, while in 1999, Yan and Zhang [19] considered
a system of delay difference equations with constant coefficients. Here, we mention
the paper [22] in which the authors considered the difference equation with a
variable coefficient of the form

2(t] ~=(t~7) +Fq(f)z(t—0c) =0, (1.5)
where
7,0 € (0,00),7 <o and g(t) € C([0,0), (0,00)), (1.6)
and proved that all solutions of (1.5) oscillate if
. -1\ fo—1\"1
llgriégfq(t)> ( = ) . ( = ) : {1.7)
and Eq. (1.5) has a nonoscillatory solution if
_ o/t _ -1
limsup g(t) < (J T) . (g T)- ) S (1.8)
t—o0o on T



with the additional condition
lg(t) —q(t")| < L|t' = ¢| for any #,t" € (0, 00), (1.9)

where L > 0 is some constant.

In the above mentioned papers the equations under consideration are called
difference equations with continuous arguments (or continuous variables or con-
tinuous time) most likely because constant time delays appear in these equations.

In 1994, Golda and Werbowski [6] studied the second order linear functional
equation of the form

z(g(t)) = P(t)z(t) + Q(t)z(¢*(t), t=0, (1.10)

where P,Q : R* — RT,g: RT — R (R™ = [0, 0c0)) are given real valued functions,
g(t) Z t for t > 0,lims o0 g(t) = o0, and g™ denotes the m-th iterate of the
function g, i.e.,

) =t, ¢ () =g(d'@), t=0, i=0,1,2,---,

and established several oscillation conditions. In particular, they proved that all
solutions of Eq. (1.10) oscillate if

i 1
llﬂéglf@(t)P(g(t)) = (111}
It should be emphasized that condition (1.11) (resp. (1.7)) is a “sharp” con-

dition in the sense that, when P(t) =p > 0,Q(t) = ¢ >0and g(t) =t — 7,7 >
0 (resp. q(t) = q > 0), it reduces to

1 o—7\" (o—7\"1
pq>z ('resp.q>( - ) ( - ) ), (1.12)

which is a necessary and sufficient condition for the oscillation of all solutions of

z(t — 7) = pz(t) + qz(t — 27) (resp. z(t) —z(t — 7) + qz(t — 0) = 0)

because if we consider the last two equations then (1.4) reduces to the two condi-
tions in (1.12) respectively.

Note that all the above mentioned papers deal with the oscillatory behavior
only except [22] in which the nonoscillation conditions (1.8) and (1.9) were estab-
lished for Eq. (1.5).

From the above discussion, the questions naturally arise as to whether the

conditions
Q(t)P(g(t)) <1/4 for large t {1.13)

and

q(t) < (J;T)G/T- (J_T)_l for- large ¢ " (1.14)

T



imply that Eq. (1.10) and (1.5) have a nonoscillatory solution respectively.

The aim of this paper is to give answers to the above questions. We will
prove that, under additional conditions on g(t), condition (1.13) implies that Eq.
(1.10) has a nonoscillatory solution. We will also prove that (1.14) is sufficient
to guarantee the existence of a nonoscillatory solution of Eq. (1.5). It is to be
noted that condition (1.9) is no longer required in our result and condition (1.14)
is weaker than condition (1.8). The last result is given by considering the more
general equation of the form

z(t) —px(t — 1)+ q(t)z(t — o) =0, (1.15)

where p € (0,00) and 7,0 and g(t) satisfy (1.6).

By a solution of (1.10) (resp. (1.15)) we understand a continuous real valued
function = : R* — R such that sup{|z(s)| : s > to} > 0 for any ¢, > 0 and =z
satisfies (1.10) (resp. (1.15)) on [0, c0). Such a solution is called oscillatory if it has
arbitrarily large zeros, otherwise it is called nonoscillatory. Thus a nonoscillatory
solution is either eventually positive or eventually negative.

2. MAIN RESULTS

2.1. Nonoscillation criteria for Eq. (1.10)

We will use the following hypotheses for Eq. (1.10).

(H1) P(t) € C(R™,(0,00)),Q(t) € C(RT,R™);

(Hs) g(t) € C(RT,R),g(0) = —r1 < g(t) < t (retarded argument), r; >
0,g(t) — oo as t — oo and g(t) is strictly increasing;

(Hs) g(t) € C(R*,(0,00)),g(t) > t (advanced argument), and is strictly in-
creasing.

Theorem 2.1. Let (H;) holds. Assume that either (Hz) or (H3) is satisfied. If
Q()P(g(t)) <1/4 for large t, (1.13)
then Eq. (1.10) has a nonoscillatory solution. -

To prove Theorem 2.1, we need the following lemmas.

Lemma 2.1. Consider the first order nonlinear functional equation

- >0, (2.1)

v = T e —1 ‘2

where a(t) € C(R™, RY) is a given function. Assume that
a(t) < 1/4 for large t. (2.2)

Then Eq. (2.1) has an eventually positive continuous solution u(t).
Proof. Without less of generality, we assume that

0<a(t)<1/4 for t>0. (2.3)

3



Set

1-1/1-4a(0) |,
1, if a(0)=0.
Then o satisfies the relation 1
=1z a(0)e’ (25)
We claim that
1<a<?2. (2.6)
Indeed, let
1—-+/1-4
f(§)=——"2€—'§, 0<é<1/4
Then ¢ z
fpek o LB —afl—d
f(&)'- 262@ ) 0<§<1/4
Set
F)=1-26—+1—-4§, 0<EL1/4
Then

ik

Fo =2

Thus, F(£) is strictly increasing on (0,1/4). Since F(0) = 0, it follows that

F(§) > 0for 0 < £ < 1/4. Therefore, f'(£§) > 0 for 0 < £ < 1/4. Noting that
f(1/4) = 2 and

—1)>0, 0<¢<1/4.

: L 1-yT=Z 1
i JO =l i

£—0+ 0 2¢
we have 1 < f(§) <2 for 0 < £ <1/4. This and (2.4) lead to (2.6).
Next, we define a function u(t) as follows:

L

: -1<t<0
b m, - - ? 2 7
P {mflm-—l k<t<k+1, £=0,1,2,.. (2.7)
From (2.5), it is not difficult to see that
i u(t) = T 550 = Ta s = O (2.8)
ot 1-a(@u(-1) " 1-a(0a -

(2.7) and (2.8) imply that u(t) is continuous on [—1, c0). We prove that
u(t)>1 for t>-1. (2.9)
Indeed, from (2.5), (2.6) and (2.7), we have

1<u) <2 for 51 <t<0. L e (2:10)



For 0 <t <1, by (2.2), (2.7) and (2.9), we have

1 < L <2
—a@ut—1) = 1-2a(®) =

1§u(t}=1

In general we have 1 < u(t) <2fork <t <k+1,k=0,1,2,.... Thus, (2.9) holds.
From (2.7) we see that

L t=> 0.

"= TS mee—1 £2

This shows that u(t) is a positive continuous solution of (2.1). The proof is com-
plete. '

We now give some notations on the function g(t). If g(¢) satisfies the condition
(Hj), then g~1(t) (g~ 1(t) > t) denotes the inverse of the function g() and g~*(¢)
is defined by g~*~1(t) = g 1(¢7*(t)),k = 1,2,...; If g(t) satisfies the condition
(Hs), then g_1(t) (g—1(t) < t) denotes the inverse of the function g(t) and g_g(t)
is defined by g—x—1(f) = g-1(9-x(%)), k= 1,2, ....

Lemma 2.2. Consider the first order nonlinear functional egquation

! >0, (2.11)

V= Tewemy f2

where b(t) € C(R™, R™) and g(t) satisfies the condition (H3). Then there ezists a
continuous change of variables that transforms Eq. (2.11) into Eg. (2.1). Such a
change of variables is given by u(t) = W(h(t)),t > 0, and a(t) = b(h(t)), where
h(t) is defined by

h(t) =g "(¢(t—n)), n—1<t<n, n=0,1,2,.. (2.12)
and ¢ : [-1,0] — [—r1,00) is any continuous increasing function satisfying the
condition -

9(4(07)) = ¥(-17). (2.13)

Furthermore, we have that u(-) defined by u(t) = W(h(t)) oscillates if and only if
W {(-) oscillates.

Proof. Replacing t by h(t) in (2.11) we have (cf.[1])

1
~ 1-b(@)W(g(r(®))

The term on the left side is just u(¢). To complete the transformation it suffices
to have a(t) = b(h(t)) and g(h(t)) = h(t — 1), for ¢ > 0. From (2.12), we have

W (h(2)) (2.14)

h(t) = (), -1<¢<0,

h(ty=g  (h(t—1)), n—1<t<n, n=12,...



By (2.13) we see that h is continuous. Since 1 is increasing on [—1, 0], it follows that
h is increasing. Finally, to see that u(-) oscillates if and only if W(-) oscillates,
it suffices to prove that h(t) — co as t — oo. Indeed, if u() oscillates, then
there exists a sequence {t,} such that ¢, — oo as n — oo and u(t,) = 0. Let
sn = h(t,), then s, — 00 as n — oo because h(t) — oo as ¢ — oo. Thus,
W(sn) = W(h(tn)) = u(ty,) = 0. This shows that W(-) oscillates. Conversely, if
W (-) oscillates, then there exists a sequence {s,} such that s, — oo as n — oo
and W(sp) = 0. Let t, = h™%(sn) (here h~! is the inverse of the function h
), then t, — oo as n — oo and u(tn) = W(h(tn)) = W(ss) = 0. Thus, u(:)
oscillates. Now, to prove that h(t) — oo as t — oo, we need only to prove that
h(n) — oo as n — oo, where n takes only integer values. Otherwise, the sequence
h(n) = ¢7™(¢(0)) has a limit L, then '

g7} (L) = g7 (lim_g™"(®(0))) = lim g~V (y(0)) = L

This is impossible because g~1(¢) > ¢ for all £. The proof is complete.

Remark 2.1. One way to transform (2.11) into (2.1) is to suppose that the func-
tion 1 has the form ¥(t) = at + b, where a and b are to be determined. We first
require 1(—1) = —r;, which gives b — a = —r;. In addition, condition (2.13) re-
quires g(b) = —a + b. From (Hz3), g(0) = —ry, it follows that b = 0,a = r;. Thus
’f,b(t) = rit.

Lemma 2.3. Assume that (Hy) and (Hz) hold. Then Eq. (1.10) has an eventually
positive solution if and only if the first order nonlinear functional equation

1
YO = T omreOwEn) 2" =y

has an eventually positive continuous solution.

Proof. Assume that z(t) is an eventually positive solution of Eq. (1.10). Dividing
both sides of (1.10) by z(g(t)) gives

s 2(%()
= POy T2 20y (216)
Set
) W) = 29 (2.17)
P)a(t) ‘

Then W (t) is eventually positive and continuous and satisfies

1= 5 + QOPEOT (o), (218)

which shows that W (t) is an eventually positive continuous solution of (2.15).
Next assume that W(t) is an eventually positive continuous solution of (2.15).
Without loss‘ of generality, we may assume that W (t) > 0 for £ >'0. By similar



arguments, as in the proof of Lemma 2.2, we see that there exists a continuous
change of variables that transforms the equation

x(t) = Wt;?(?)‘”(g(t))’ £20 (2.19)

into the equation
y(t) = Ryt —1), t=0, (2.20)

where R(t) = [W(h())P(h(t))]"1, h(t) is as in Lemma 2.2, and Eq. (2.19) has
an eventually positive continuous solution-z(¢) if and only if Eqg:- (2:20) has an
eventually positive continuous solution y(¢). Since R(t) > 0 for ¢ > 0, it is easy
to see that Eq. (2.20) has an eventually positive continuous solution. Indeed, the
function y(¢) defined by

(t)_ T(t)a —1.<_t50=
YW= Ryt—1), k<t<k+1, k=0,1,2,..,

where r(t) is any positive continuous function on [—1, 0] such that r(0) = R(0)r(-1),
is a positive continuous solution of (2.20). Thus, Eq. (2.19) has an eventually pos-
itive continuous solution. Let Z(¢) be such a solution. Substituting

Wiy - Z6)

— Z(t)P(2)
into (2.15), we obtain

Z(g(t)) Z(g2(t)) _
=P (1 —QUHP (g“”f(g(tnp(g(t))) =1

ie.,
Z(g9(2)) = P()z(t) + Q)T (9*(2)).
This shows that Z(t) is a positive solution of (1.10). The proof is complete.

Proof of Theorem 2.1. We first consider the case when g(t] satisfies (H2). By
Lemma 2.3, it suffices to prove that Eq. (2.15) has an eventually positive contin-
uous solution. Set b(t) = Q(t)P(g(t)) and let h(t) be a change of variables as in
Lemma 2.2. Define a(t) = b(h(t)) = Q(h(t))P(g(h(t))) and u(t) = W(h(t)). From
condition (1.13), we have

0 < a(t) = Q(h(t))P(g(h(t))) < 1/4 for large t.

Thus, by Lemma 2.1, Eq. (2.1) has an eventually positive continuous solution
u(t). By Lemma 2.2, we see that Eq. (2.15) has an eventually positive continuous
solution W (t).

Next, we consider the case when g(¢) satisfies (H3). Since g(?) satisfies (H3), it
follows that g_;(t) satisfies (Hg), with the possible exception that g_1(0) = —r2 <
0,72 # 1. Replacing g%(¢) by t in Eq. (1.10), we have

z(g-1(t)) = Q(g-2(1))z(t) + P(g-2(2))z(9-2(2))- (2.21)

7



Condition (1.13) implies that for ¢ sufficiently large

0 < P(g-2(t))Q(g-2(9-1(2))) = Qg-3(t)) P(g9-2(t)) < 1/4.

As in the case when g(t) satisfies (Hz), we see that Eq. (2.21) has an eventually
positive solution. Thus, Eq. (1.10) has an eventually positive solution. The proof
is complete.

Example 2.1. Consider the equation
il

46_t‘/ 22(t/4). (2.22)

z(t/2) = etz(t) +

It is easy to see that

QUP(g(t) = 7/ 2= 7.

Thus, by Theorem 2.1, Eq. (2.22) has a nonoscillatory solution. In fact, z(t) =
t~le~2 is such a nonoscillatory solution.

2.2. Nonoscillation criteria for Eq. (1.15)

We will establish the following nonoscillation theorem for Eq. (1.15).
Theorem 2.2. Let o > 7. Assume that

po/T - q(t) < (U = T)J/T . (g — T)_l for large t. (2.23)

g T

Then Eq. (1.15) has a nonoscillatory solution.

Remark 2.2. When p = 1, condition (2.23) reduces to condition (1.14) and Eq.
(1.15) reduces to Eq. (1.5). Thus condition (1.14) is sufficient for Eq. (1.5) to
have a nonoscillatory solution. On the other hand, condition (2.23) is “sharp” in
the sense that when g(t) = ¢ > 0 condition (2.23) also is necessary for Eq. (1.15)
to have a nonoscillatory solution (cf.(1.4)). §

To prove this theorem, we need two intermediate results. The first one is
Schauder’s fixed-point theorem [16].

Lemma 2.4. Let ) be a nonempty bounded closed convex subset of a Banach space
(B, ||-1]), and let S : Q@ — Q be a continuous mapping such that S(2) is (relatively)
compact (S is completely continuous). Then, S(z) = x, for some z € 2.

The second one is the following version of Ascoli’s theorem.

Lemma 2.5. Let {f : [0,00) — R,n =1,2,..} be a sequence of functions such
that:

(i). there ezists a constant M > 0 such that |fr(t)| < M for alln > 1 and
=0

(ii). fn(t) is continuous on [0,00) for allm > 1;

(iii). there emist constants L > 0,p > 0 such that 0 < fn(t) < Le ™ for
t>T >0 and all n > 1, where T* is @ constant. -



Then there ezists a continuous function f : [0,00) — R and a subsequence {gn} of
{fn} such that gn(t) — f(t) as n — o0, uniformly on [0, c0).

Remark 2.3. The authors are unaware of a precise reference for Lemma 2.5, but
it is a sequence of the results in [8].

Proof of Theorem 2.2. Let the right side of (2.23) be ¢. Then, by the results in
[12] (see also condition (1.4)), the equation

ut) —u(t—7)+cu(t—0)=0 (2.24)

has an nonoscillatory solution of the form u(t) = e*, where XA < 0 is a root of the
characteristic equation 1 — e™*™ 4+ ce™? = (. It is clear that the equality holds:

)= cZu(t +iT — o).

i=1

For each real number 7, let us define B, as the space of all real bounded continuous
functions defined on [r, 00), provided with the usual sup-norm; and let Q, := {v €
B, : 0 < v(t) < eM,t > r}. It is clear that () is a nonempty bounded closed
convex subset of the Banach space B,. Let T > 0 be such that (2.23) holds for
t > T. Define a mapping S on Q7 as follows:

] Rt +in)yt+ir—a), tZ2T+eo—1,
S(y)(t)_{S(y)l(T'l‘O'—T)-l‘ﬂ(f)—‘U,(T-{»-o'—--,r), T€ t < T —r

where
) =p~"-q(t) <c, t>T.
Thenfort>T+0—7
o
0<S(y)(t) D cult+ir—o) =u(t) = e, (2.25)
=1
While for T <t < T + o — 7, we also have
0<SWE) <uT+o-7)+ult)—uT +o—7) =u(t) <M

Thus, (2.25) holds for ¢ > T'. For any y € Qr, we claim that S(y) is continuous.
Since lim;—o u(t) = 0, it follows that for any € > 0 there exists T; > T such that
u(t) < e for t > T;. Choose a positive integer N such that N7 > T;. Then for all
t>T+ o0 — 7 we have

n oo
z Ft+inyt+ir—o) < > cult+ir—o)
i=m+1 i=m-+1

= 4{t-+mr)<e

o0

for any m,n > N, which implies that the series 3 5o, ¢*(t+i7)y(t+i7—0) converges
uniformly on [T'+ o — 7,00). Thus, S(y) is continuous. From this and (2.25), we
have S(Q7) C Qr.



Notice that 0 < S(y)(t) < e¢*. This and Lemma 2.5 imply that S(Qr) is
(relatively) compact. Hence, by Lemma 2.4, S(y) = y for some y € Q7. ie,

[o.a] * - &
_ Rig*t+in)y(t+ir—o), t>T+o—T,
y(”'{y(T+o—T)+u(t)—u(T+a—T), T<t<T+o—r (220
and
yt) -yt -1)+ gyt —0) =0, t2T+o. (2.27)

We claim that y(¢) > 0 for ¢t > T'. Since v/(¢) < 0,t > T, from (2.26), we have -
y(t) >0, T<t<T+o-T.
Assume that there exists a t € [T'+ o — 7, 00) such that y(¢) < 0, then we can let
t*=inf{t >T +0o—7:y(t) <0},

so that

y(t*) =0 and y(t) >0, T <t<t™
On the other hand, from (2.26), we have

co
y(t") = D g*@ +in)y(t* +ir — o)

i=1

> ¢t +7n)yt*+7—-0)>0,

a contradiction. Thus y(¢) > 0 for ¢ > T. Finally, let us define z(t) = pTy(t).
Then, by (2.27), we have

z(t) —pz(t — 1) + q(t)z(t — o) = 0.

Thus, z(t) is a nonoscillatory solution of (1.15). The proof is complete.
Example 2.2. Consider the equation -

(et —t+ 1)(2¢ - 11)

z(t) —z(t—1) + 2t — 1)e55

z(t—5.5) = 0.

It is not difficult to check that for ¢t > 6
_ e —it+ 1)(2t — 11)
qt) = 2t(t — 1)e5d

5-5 == 1 5.5 1
< -(5.5=1)"".
- ( 5.9 ) & )

Thus, by Theorem 2.2, this equation has a nonoscillatory solution. In fact, z(t) =
t~le~t is such a nonoscillatory solution.
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Symmetric Kotz type and Burr multivariate distributions: A
maximum entropy characterization

G. Aulogiaris and K. Zografos!
Department of Mathematics, University of loannina, 45110 Ioannina, GREECE

Abstract

In this paper a maximum entropy characterization is presented for Kotz type
symmetric multivariate distributions as well as for multivariate Burr and Pareto type
IIT distributions. Analytical formulae for the Shannon entropy of these multivariate
distributions are also derived.

Keywords and phrases: Shannon Entropy, Maximum Entropy Principle, Kotz type
multivariate distribution, Burr distribution, Pareto type III distribution.

1 Introduction

The maximum entropy method is a well-known approach to produce the unknown proba-
bility density function f , compatible to new information about f in the form of constraints
on expected values. Although entropy maximization was first formulated in terms of ther-
modynarmic entropy, the principle of maximum entropy was first introduced as a general
method of inference by Jaynes (1957) and it was axiomatically characterized by Shore
and Johnson (1980). It has been successfully applied in a remarkable variety of fields and
has been also used for the characterization of several standard probability distributions
(cf. Kapur (1989), Guiasu (1990), Gzyl (1995)). .

Consider a p—variate random vector X! = (X, ..., X,,), with unknown density f. Al-
though f is unknown, suppose that we have access to some information about this density,
formulated in terms of a set of information constraints on expected values. Consider the
class of p—variate density functions F = {f(x) : E¢[T3(X)] = e, i = 0,1, ..., m}, where
T.,i = 0,1, ...,m, are absolutely integrable functions with respect to f and Tp(x) = ap = 1.
We suppose further that the values of o; and the form of T;,% = 0,1,...,m, are known.
The maximum entropy principle suggests to derive the unknown density function of the
random vector X, by the model that maximizes the Shannon entropy

H(X) = - / £ (%) log f (x)dx, 1)

subject to the information constraints that define the class F. Jaynes states that the
maximum entropy distribution, obtained by this constrained maximization problem, "is

1Corresponding author.
E-mail address: kzograf@cc.uoi.gr



the only unbiased assignement we can make; to use any other would amount to arbitrary
assumption of information which by hypothesis we do not have.” (Jaynes (1957), p. 623).

A considerable part of the literature related to the principle of maximum entropy is
devoted to the maximum entropy characterization of the main univariate probability dis-
tributions. In the work of Kagan et al. (1973), Preda (1982), Bad Dumitrescu (1986),
Kapur (1989), Guiasu (1977, 1990), Ebrahimi (2000), Kotz et al. (2000) and the ref-
erences therein, the main univariate probability distributions have been reobtained by
maximizing the Shannon entropy, subject to various types of constraints expressed by
mean values of random variables. Comparatively little is the literature dealing with the
characterization of multivariate distributions by means of the maximum entropy princi-
ple. The main reference, from this point of view, is the book of Kapur (1989) which
devotes Chapters 4 and 5 for the characterization of some multivariate distributions, and
the paper by Zografos (1999) where Pearson’s Type II and VII multivariate distributions
have reobtained by means of the maximum entropy principle.

In this paper, following Zografos (1999), we will concentrate on the characterization of
Kotz type symmetric multivariate distributions as well as Burr and Pareto type III mul-
tivariate distributions. Analytical formulae for the Shannon entropy of these multivariate
distributions are derived.

2 Symmetric Kotz type multivariate distribution

The p—variate random vector X* = (X7, ..., X,) in RP is said to have a symmetric Kotz
type multivariate distribution, if the density function of X is defined by

) =GB [(x— 'S x — )] exp {—r [(x— = x—-p@]}, (2

for r,s > 0, 2m + p > 2 and C, a normalizing constant. The normalizing constant Cj, is
given by v/2) '

_ sI'(p (2m+p—2)/2s

Cr = T (@m +p —2)/25) ' (3)

The parameter p is the mean vector E(X) and the positive definite matrix 3 is related

to the variance-covariance matrix of X (cf. Fang et al. (1990), p. 76, 77). When m = 1,

s = 1 and r = 1/2, the distribution defined by (2) reduces to a multivariate normal

distribution. The above, are particularly appealing family of distributions in constructing
models in which the usual normality assumption is not satisfied.

In order to give a maximum entropy characterization of the density function defined

by (2) we need the following lemmas. The proof of Lemma 1 is outlined in the Appendix.

Lemma 1. Let RP is the p—dimensional Euclidean space. Then

. 2P/2T((p— .
a) [ (y'y) ™" exp[-s(y'y)’ldy = iﬁ;}“ﬁp—f—Wn(zﬂ P2 >0, p< k.
RP



s— s wP/2 —2 s — s)—
b) [ (v'y) " exp[—r(y'y)’ldy = ZEUE 2200 ((Gup)/29-1 >0, p < s+ 8.
RP

7P/2(20—p) /25

c) I{P (v'y) ™" exp[-r(y'y)log(y'y)dy = =g —
x [I'((p — 2p)/2s) — log(k)T((p — 2)/25)],
for k£ > 0, p < . T denotes the gamma function and I'(t) = (d/dt)T'(t).
Lemma 2. For fixed a > 0, consider the function w(z; @) of z, defined by
w(z; a) = ¥(z) — log(az), forz >0,

with ¥(t) = (d/dt)log[(t), being the digamma function. The equation w(z;a) =
w(xp; ), has the unique solution = = z.

Proof. For z > 0 consider the function ¢(y) = z/(y + z)?, y > 1. It is obvious that ¢ is
continuous, positive and decreasing in ¥ > 1. Hence based on the Cauchy’s integral test
we have that

> o(k)- / ply)dy>0 or Y (:H—xm)z = (4)

k=1 k=0
On the other hand it is well-known that £¥(z) =3 (k+—11}2 Therefore, based on (4)
k=0

d Z"" 1 1
S . — ——— —— — O > O
d:cw(x’a) e (k+z)P? = =% B

which means that w(z; ) is strictly increasing in # > 0, which completes the proof of the
lemma. W

The following lemma proves that Shannon’s entropy, given by (1), is not invariant
under linear, non-singular transformations of the random vector X. The proof is imme-
diately obtained from the more general result that the Shannon entropy is not invariant
under an invertible transformation of the variables (cf. Darbellay and Vajda (2000)).

Lemma 3. Suppose that Y is a p—variate random vector, A a non singular square matrix
of order p and u a fixed p—dimensional vector. Then

H(AY + u) = log |det(A)| + H(Y).

Theorem 1. Let Y''= (V;,...,Y,) be a p—variate random vector in R? with density g.

Let also T 5
txr\s] — p—
EQ' [(Y Y) ] 28?" ] (C].)



and
(C2)

1 2m 4+ p—2 2sr
E,llog(YYY)] = S ( : )

2s "2m+p—2
for 2m +p > 2, r,s > 0, and w the function defined in Lemma 2. Then, the unique
solution of the maximization problem

max H(Y) =max {— _/ 9(y) logg(Y)dY},
under the constraints (C1) and (C2), is given by the density
9(v) = G(y'y)" texp[-r(y'y)?, 1s>0, 2m+p>2,
and the normalizing constant C, is given by (3).

Proof. Based on the Lagrange multipliers method we have

2m+p—2 1 (2m+p—2. 2sr )

HY)—A—p TP = 2
(Y) F s R 2s "2m+p—2

= f 9(y) logle  (y'y) ™" exp[—u(y*y)®lg* (¥)ldy
exp[—u(y'y)*lg (¥)ldy — 1,

K

< f g¥)le*'y)”
with equality if and only if

9(y) = e (y'y) " exp[—u(y'y)’]- (5)

In view of Lemma 1 (a) and the fact that g(y), given by (5), is a density function we
have that o )/25)
— = 0, < = 6

Constraint (C1) and Lemma 1 (b) lead to the relation

6)\2m il st 72T(((p — 2K)/2s) + 1)#((2.5—;0)/23)-—1 1Sl 7 2
2 sT'(p/2) ’ ’ 2

The last equation, taking into account relation (6), gives

28r p—2K

7
2m+p—2 2s (7)

#:

On the other-hand constraint (C2), Lemma 1'(¢) and relation (6), lead to the relation

p— 2K i e B 2sr A P—2kK p— 2K
r F —log(p)T . (8
( 2s ) v ( 2s '2m+p-— 2) ( 2s ) log(k) ( 2s ) (®)

=




Based on this last equation, and relations (7), (8) we have that

w 2m4+p—2 2sr p— 2k 2sr
! = gy . ;
2s "2m+p—2 25 '2m+p—2

In view of Lemma 2 and the last equation we obtain that —x = m — 1 and using (7) we
obtain that u = r. Taking into account that x = 1 —m and p = r, it is obtained that
e = C,, by using relation (6). This completes the proof of the theorem. =

Based on Theorem 1 and Lemma 3 we can now state a similar characterization result
for Kotz type symmetric distribution with density given by (2). In this context, for a
p—dimensional vector p and a positive definite matrix X of order p, consider the linear
transformation X = 3V/2Y 4 p, of the random vector Y of Theorem 1. The next corollary
states that among all densities f in RP that satisfy suitable constraints, the Kotz type
symmetric distribution with density given by (2) is the unique density that maximizes
Shannon’s entropy.

Corollary 1. Let X! = (X, ..., X,) be a p—variate random vector in RP with density f.
Let also

= s 2m+p—2 .
By [(X - )= (X - )] = T, (C1%)
and
- 1 2m +p— 2 2sr .
By [log (X — )’ =7H(X — )] Igw( 25 ;2m+p_2), (C27)

for 2m + p > 2, 7,8 > 0. Then the unique solution of the maximization problem

g H(X) =g { - [ £ 10gf(><)dx} ,

under the constraints (C1*) and (C2*), is the density of the Kotz type symmetric distri-
bution given by (2).

In the next corollary the analytic formula for the entropy of the Kotz type symmetric
distribution is presented. The proof can be immediately obtained in view of Corollary 1,
relations (1) and (2) and taking into account constraints (C1*) and (C2*) of Corollary 1.

Corollary 2. The Shannon entropy of the Kotz type symmetric distribution with density
given by (2) is

1 2m+p—2 1 2m+p—2 25T
H(Kotz)=—long+§log|E|+rT—(m-—l)gw( 5 ;2m+p—2 ;
with C, = — /21“((3;%?—2) oy r@mtr=2)/2s  4y(z:0) = U(z) — log(az), for z > 0, and

7,§>0,2m +p>2.

An application of Corollary 2 for m = 1, s = 1 and r = 1/2, leads to the well-known
entropy of the multivariate normal distribution that is § (plog(27) + log |=| + p).

)



3 Burr and Pareto type ITI multivariate distributions

The aim of this section is to obtain Burr and Pareto type III multivariate distributions
by means of the maximum entropy principle. A random vector X* = (X, ..., X;) follows
a Burr multivariate distribution if the density function of X is defined by (cf. Johnson
and Kotz (1972)),

P

F&x) =]] (@+i—Ddicag (14 Y diaft)~¥P), (9)

=1 i=1

forz; >0,¢;,>0,d; >0,i=1,...,p, and a > 0. From here and in the sequel we shall be
concerned with the case o = 1.
The multivariate Pareto type III distribution has density (cf. Johnson and Kotz

(1972)) L ) e
ofw () (5 o

for z; > X, 7, >0,6; >0,i=1,...,p. fa =1, ¢ =1/7;, and d; = 1, then a Pareto
random vector of type IIL, to be denoted as Z, can be obtained from a Burr random vector
X by the following component-wise transformation

zi=0x;+ X, i=1,...,p

Hence the maximum entropy characterization of Pareto type III multivariate distribu-
tion can be achieved by the respective one of the multivariate Burr distribution in view
of Lemma 3 and the above transformation. In order to present the maximum entropy
characterization of Burr distribution we will follow ideas of the previous section. In this
context the following lemmas are necessary. The proof of Lemma 4 is outlined in the
Appendix.

Lemma 4. Let S={y € RP: y; >0, i=1,..,p}. Thenfor¢; >0,i=1,...,p,

0) (H;yz)“ﬂyﬁ"dy ~T(— 3 8) T B)/Tw 11 e,

i=1 =1 =1

n—

i=1 i=l i=1

x (D it BT (1) — T ()" (u— z 5),

i=1

e S )+ [] v log(1+ z y&)dy = (1T T(8)/T%(w) n &)

) [ogtu)(1+ 3 v+ T s7dy = (L1 T(8)/eT() 1T @)

=1

[

x (D(u= 32 BT(8;) — T(B,)T (u— 32 B)),

=1 =1



p
for B; = (1 — k;)/ci, with 8; > 0, &; real constants and g >3 8;, 4,7 = 1,...,p.

=1
Lemma 5. For p € N, consider the system of equations

U(y) —¥(y —-p:l?) =¥(1+p) — (1) (11)
¥(z) - Y(y—pz)=0 ’

for (z,y) € V = {(z,y) € R?: z >0, y > pz}, with ¥ the digamma function: The
equations (11) have the unique solution z =1 and y = 1+ p.

Proof. Taking into account that the digamma function is strictly increasing, the second
equation of (11) leads to

y= (p+ Lz (12)
Hence the first equation of (11) becomes

U((p+1)z) — ¥(z) = ¥(1+p) — (1) (13)

For z > 0 define the function w(z) = ¥((p+ 1)z) — ¥(z). It is well known that ¥(mz) =
m—1
logm + ﬁ > (m + ﬁ) The derivative of ¥ with respect to z at the point m =p+1

k=0

p
gives that (p+1)¥ ((p+1)z) = ;_:‘ﬁ EZ:=0 III'(:::—I—;ﬁ). Taking into account that the function

¥ is strictly decreasing the last identity leads to (p+1)¥'((p+ 1)z) < ¥'(z). Hence the
function w(z), defined above, is strictly decreasing and the equation (13) has the unique
solution z = 1. From (12) the unique solution with respect to y is y = 1 + p which
completes the proof of the lemma. ]

Theorem 2. Let Y! = (Y3, ...,Y;) be a p—variate random vector in § = {y € RP : y; > 0,
i =1,...,p} with density g. Let also for ¢; > 0, i = 1,..., p, the following constraints are
satisfied,

Ey(log(1+ ) | Y)) = ¥(1+p) — ¥(1), (C3)

=1
E,(log(Y;))=0, j=1,..,p, (C4)

for ¥ the digamma function. In this context, the unique solution of the maximization
problem

e H(Y) =max { = [ oy)loga(y)ay ¢
s
under the constraints (C3) and (C4), is given by the density

P P
9(¥) =[J ieawe™a+ Y 4s)"*, >0, i=1,..,p, and y €.
i=1 i=1

7



Proof. Following the steps of the proof of Theorem 1, for constants X, u, and &;, @ =
1,...,p, we have that

H(Y) = A - p(¥(1+p) - ¥(1)) S/ ( 1+Eyf") “H% ) y)dy — 1,
g i=1
with equality if and only if
P P
M+ oy [T v (14)
i=1 4=1 '
From Lemma 4 (a) and the fact that the density g(y) above integrates to 1, we have that

P P

=T(u— Y B) HF /T (1)

el

Ci, (15)

1~

i=1

p

for 8, = (1 — k;)/c;, with 8; > 0,i=1,...,p, and >3 B;. Constraint (C3) and Lemma
=1

4 (b) lead, after a little algebra, to the equality

Y0+ p) — U(1) = B() — U= 3 B). (16)
i=1
In a similar manner constraint (C4), Lemma 4 (c) and relation (15) give that
—W e i B:)=0, j=1,..p (17)
i=1
Equations (16) and (17) lead,
¥(B;) = ¥(p) — ¥(l+p)+¥(1), forevery j=1,..,p,

which means that
U(B,) = ¥(By) = .. = ¥(B,)-

This last equation and the strict monotonicity of digamma function ¥ ensure that

Br=0y=.= ﬁ =p. (18)
Based on them, equations (16) and (17) are equivalent to the following
Y(1+p) — U(1) = U(u) — U(u—pp), (19)

(8) - ¥(p—pB) =0,

for > 0 and u > pB. From Lemma 5 we have that the unique solution of the equations
(19) is
B=1 and p=1+p. (20)

8



Itis B; = (1 — &;)/ci, i = 1, ..., p, then from (19) and (20) we have that

—K; = C; — ]., 1= 1, cees P (21)

yd

Relations (15), (18), and (20) lead to e™* =]] ic;, which completes the proof of the
i=1

theorem in view of (14). = ‘

The density

P

p ;
=1

i=1

and ye S={y € RP:y, >0,i=1,..,p}, obtained in Theorem 2, can be also used
in order to generate the multivariate Burr distribution with density given by (9) and the
parameter o = 1. Indeed, if the p—variate random vector Y* = (Y7, ..., Y,) has density
g(y), given by (22), then the random vector X! = (X3, ..., X,) defined by the following
component-wise transformation

xT; = dz—_l/Ciyi, g = 1, sy Py

has a multivariate Burr distribution with density given by (9) and the parameter o = 1.
This remark associated with Theorem 2 and Lemma 3 lead to the following corollary
which states the maximum entropy characterization of Burr multivariate distribution for
the parameter o = 1.

Corollary 3. Let X! = (X, ..., X,) be a p—variate random vector in § = {x € RF :
z; > 0,41 = 1,...,p} with density f. Let also for ¢; > 0, i = 1,...,p, the following
constraints are satisfied, -

By(log(1+ 3 deXE) = ¥(1 + ) — (1), (C3")
Ef(log(d;/X,)) =0, j=1,...,p, (Ca)

for ¥ the digamma function. Then the unique solution of the maximization problem
max H(X) =max | — f f(x)log f(x)dx
S
under the constraints (C3*) and (C4*), is given by the density
P P
fx) =[] idicizz™ 1+ > diaf)™ 0, >0, d;>0, i=1,...,p,x€8.  (23)
i=1

=1

9



Based on the discussion at the beginning of this section, the multivariate Pareto type
ITI distribution with density f*(z), given by (10), can be generated from (23) for ¢; = 1/7,,
and d; = 1, and by using the component-wise transformation

Z; = Bimi B Aia 1= 11 ey 22

for z; > M\, v; > 0, 8; >0, i = 1, ...,p. This transformation, in association with Corollary
3 and Lemma 3, leads to a similar maximum entropy characterization of the Pareto type
III density, given by (10), under the following constraints,

Ep (log (1+ zi: (Zie_i A*’)“’%)) =U(1l+p) - tﬁ(1), (C3*)
B (g (Z72)) =0, 5= 1mmp (o)

The above results can be also used in order to evaluate the Shannon entropy of the
multivariate Burr, for & = 1, and the multivariate Pareto type III distributions. These
entropies are presented in the corollary that follows the proof of which can be immediately
obtained in view of Corollary 3, relations (9) and (10) and taking into account constraints

(C3*), (C4%) and (C3™), (C4*).

Corollary 4. a) The Shannon entropy of the Burr distribution with density given by (9)
andao=1,¢>0,d >0,1=1,...,p, is

H(Burr,a=1) 210g2+(1+p)[\11(1 +p) — Zlog (le/c‘)

=1 i=1

b) The Shannon entropy of the Pareto type III distribution, with density given by (10),
is
P

H(Pareto I1I) = — zp: 1og§ +(1+p)T(L+p) - TW)+ Y log (1),
i=1 *

Fed

fory, >0,8: >0,i=1,...p

The above expressions for the Shannon entropy of Burr and Pareto III multivariate
distributions have been also obtained by Darbellay and Vajda (2000) in a different frame-
work.

A Appendix

Proof of Lemma 1. The proof of parts (a) and (c) are given in the sequel. Part (b) can
be proved in a similar manner.

10



(a) Consider the generalized spherical coordinate transformation
zy = r [] sinby
k=1
p—J ) ;
@y = r(]] sinfy)eosl; 50, 28 <p—1
k=1
T = recosf
for0 <r<1,0<6; <7 i=1..,p—2and 0 < 0,; < 27. Clearly, we have
xx = 2?4+ ---+ 22 = 7% and the Jacobian of the transformation from z1,...,z, to

7,01, ..., 0p—1 is TP sinP"26; Sin?~3@ - - - sinf,_» (cf. Muirhead (1982), p. 37). Taking
into account the equality

7 27

2r%
f f / Sin?~26, Sin?~36, - - - sin p_sd0y - - - dfp_2dBp 1 = oo,
L'(%)

(cf. Muirhead (1982), p. 37), we have

_ . P/2 o
[ ty) Hexpl-s(y'y)ldy = £ f # exp[—k(r?)°] P~ dr
RP

= 811'(;;/‘"’2) f 2" exp(—kz)dz.

The last integral is the gamma function T'((p —2u)/2s)x*P/% k>0, p <k, and
the proof of part (a) of the lemma is completed.
(c) If we consider again the generalized spherical coordinate transformation, we have

[ (7'y) 7" exp[—r(yty)’]log(y'y)dy = 125//22) f (r?)~* exp[—r(r?)°] log(r?) rP~1dr
Re 0

_.3 +1 oo} —2u N
- AP
0
(A1)
=l exp(—z)dz, t > 0,

The derivative with respect to # of the gamma function I'(t) =/ =z

o8

is given by I'' (t) =/ z'~!exp(—z)log(z)dz. For z = az, @ > 0, we have
0

I'(t) a/ az) ! exp(—az) log(a dz—i-af )it exp(—az) log(z)dz.
0 0

Hence

a/ )t~ exp(—az) log(z)dz = ' (t) — log(e)T'(¢).
0

11



An application of this last equality, for « = x and t = (p — 2p)/2s, to the relation (Al)
leads to the desired result. |

Proof of Lemma 4. a) Consider the transformation w; = y;*, « = 1,...,p. Then if we
denote by I f (1+ Z g e H y; " dy, we have

[e;ole o] oo p— oc P I 7
B / / / -1 / uﬁp_l(l+zuz')"“dup duy...du,_1  (A2)
00 St . = .

Consider now the integral I, f w1+ Z u;) "“du,. If we will use the transformation

2_

p—1
w=u,/(1+ >_ u;), then
i=1

=1

p—1 &
L=(1+ ) uw) ™ / WP (1 4+ w)Hdw = 1+Z BB, — B,
' 0

for 8, > 0, 4 > B, and B the beta function. Taking into account relation (A2)

P R p—1 —HtBp
T = (H Ci)_lB(ﬁpa# _ ﬁp) f/ / H ufi_l (l—l— Z uz) } dul...dup_l.
i=1 00 0 =1 :

t=1

If the same procedure is repeated (p — 1)—times then the integral I becomes

P

= ch "1HBﬁz,u Zﬁ

i=1 =1

and leads to the desired result.
b) The proof of this part follows immediately from part a) if we observe that

/1+Z:y1 Hyz”*log 1+§:yt ——-—/ l—i—z:y2 Hyz"’dy

ge=] t=1 ]

P P
c) Let I* =/ log(y;)(1+ X y*)™ [] y; ™dy. Consider the transformation u; = y;',
S =1 i=1
1=1,...,p. Then

F=(e; H ci) ! / log(u;)(1+ Z ;) * H u T du, (A3)
2 i=1

i=1 =1

12



p—1
with 8; = (1 —&;) /¢, © = 1, ..., p. If we use the transformation w = u;/(1+ > wu;), and
i=1,i7
take the derivatives, with respect to §;, of both sides of the identity [ WP 14+ w)Pdw =

0
L(8;)T (e — B;)/T(u), B; > 0, u> B;, after a little algebra, we obtain that

G P P p
flog(uj)ufj_1(1+ Z ;) Pdu; = (1+ Z u;) THHP (W1+W210g(1+ Z u,-)) 3
0

i=1 i=1,is] i=1,i5]
(A4)

with Wi = [['(8,)T (s — 8;) — T(8,)T" (n — B;)]/T (1) and Wy = T(8;)T'(u — B;)/T(w)-
Using relation (A4) and parts (a) and (b) of Lemma 4, relation (A3) completes the proof
of the lemma. |
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The Steenrod algebra action on Dickson algebra generators
and Peterson’s polynomials

Nondas E. Kechagias

ABSTRACT. Using Peterson’s polynomials, we provide excplicit formulas for
the action of the Steenrod algebra on Dickson algebra generators for the mod- -
odd case. '

1. Introduction

The action of the Steenrod algebra on Dickson algebra has been under inves-
tigation mainly because it plays an important role in stable homotopy theory and
has geometric applications, (see [2]). The value of this action on generators has
been given for p = 2 and partially for p an odd prime.

The main theme of this work is theorem 1 and 2. Those theorems are included
in section three, where we investigate the value of the action on the two extreme
generators (with respect to degree) of Dickson algebra. Combining theorems 1 and
2 with well known theorems (see [3]), the action can be calculated for any generator.

The key point is this action on Peterson’s polynomials. We are interested in a
special class of Peterson’s polynomials called leading Peterson’s polynomials. The
size of this set is given by a Fibonacci sequence. _

In section two, well known results are recollected from the literature for com-
pleteness.

2. Dickson and Symmetric invariants

Let V() be the i-th dimensional vector space over the field F}, of p-elements
generated by {y1,...,y;} and GL; the general linear group acting as usual. Let also
GL, act on the polynomial algebra P, := Foly1, ..., yn) by the induced action. P,
is graded by [y:| = 2 (for topological reasons).

Since P, < H*(V(™, F,), the Steenrod algebra acts naturally on.

Let h; be the polynomial given by .

(2.1) hi= J] @+a)

aev(s‘— 1)

which has degree 2p"~1. Let us note that 37 is a summand in k; and the last
polynomial is invariant under the upper triangular group U, where only one’s are

1991 Mathematics Subject Classification. Primary 55P99, 55510; Secondary 13F20.

Key words and phrases. Dickson algebra, Steenrod algebra.
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allowed on the main diagonal. This is because g(y; + a) = y; + b + o/, where
b,a' € V=1, If non-zero elements are allowed on the diagonal, then AP™" is
invariant under the Borel subgroup Bj:

gy +af ™t = (cyi + b+ )Pt =Py + 0 + )P

Since the set {h] =1 ..,hE1} is algebraically independent and its elements have
the right degrees with respect to the order of the group By, the corresponding ring
of invariants PB~ is a polynomial algebra ([5]): Fp[h? ™%, ...,h571].

The following proposition is known:

PRrROPOSITION 1. Let f € P,, then it is a GL,-invariant iff f is symmetric and

invariant under the transformation y: — ys +cy;, and y; — y; fori=1,..,t1 -1
and c € F,.

Let the symmetric-group ¥, act on P, by permuting variables; and
Py o= Bplif 5D gl Y]
abbreviate the extended polynomial algebra. Then S, is called the extended sym-
metric algebra where:

P e n—1 s
Al g T s

PR

which is:

By L Pt ) e Flp = =t
i 1,7 175 i
Let ®,, be the algebra map between P, and P2~ given by @, (yf e o R

This is an algebra isomorphism but not a Steenrod algebra map. Then ®,(S,) =
PGLn | the so called Dickson algebra, abbreviated by D,,.

Let the generators for the Dickson algebra be {d, 0, ..., dn,n—1}- Then because
of the isomorphism above, the following relations are deduced:

il fow 5 TEY

1< << ji<n 5=1

n—its—jig

Moreover, using 2.1 and 2.2 we deduce the following well known formula:

i=1

(2.3) hi= T (-1t d;

=0

Here d;_1 ;-1 := 1. Let us also note that the last two formulas will be of great
importance in the sequel.

3. The Steenrod algebra action on Dickson invariants

The action mentioned above has been given for p = 2 in [1] and [3]. For p odd,
it has been calculated only for the Steenrod algebra generators, P¥, and particular
cases ([3]). Extending the idea used in the previous section, we compute it for any
element P* on the two extreme generators of D,,, namely dn,n-1 and dnp.

Let us start with Pkdn,n_l. We recall that

(3.1) Pryp = (:) yHEE=1)



THE STEENROD ALGEBRA ACTION ON DICKSON ALGEBRA GENERATORS AND PETERSON'S POLYNOMIALS
In particular,
ke .
" vy ifk=0
Rl e, n-+1 i "
P Uy = yf itk = ?n
0 otherwise

Let us define an ordering between sequences I = (ip,...,%1) and J = (jn, ..., J1)
such that I > J iff 7; > j; and ¢ is the biggest index with this property; otherwise
I = J. Next we consider sequences between exponents of various monomials in P;.

The biggest exponent in dp n—1 = (hf,’,‘i + hfff;l) +...+ hﬁ’ﬂ—l(p—l)) is (P (p—

1),0,...,0) which is associated with the monomial y‘,’;n_l(p_l). Let us consider a
typical monomial in Dy, d3% - - d.not,, its biggest sequence is the following:

n,n—

62 (7e-0 (T a) -1 (Ta). - 1a)

We are interested in those natural numbers k such that PFd,, »_; = ed2, - - - dpny’

=1
n—2

n—1
for ¢ # 0. For degree reasons: k = p™~! (Z ar — 1) + p™—2 (2 at) vy iy
0 0 ‘

n—1 T t
and 3 a; <p—1 Let k=3 k; and P*: applies to yJ™. Let A; =ag+--+as
0 1

and b; a non-negative integer such that 0 < b; < min[(p — 1)bey1, As—1].” Here
§=0,---,n—landt=1,---,n.

EXAMPLE 1. Let n = 3. We are looking for a k and a ¢ such that PFd3 o =

P (hg_l - hg(p_l) + hfz(p_l)) = cd3%d3h d3%- Let us concentrate only on
- 2 (»-1)
(3.3) I (hé” 1)) = P* (y§ —yidz1 + ysdz,o)

Of course, k = ky + ko + k3 = p*(ag +a1 +az —d) +plag+a;) +ag. Let a summand

in 3.3 be P* ((—1)63.1 (ba(.f-l_-;:i,o) (ba.i’:fa,o)ygz((P-“l)-ba,L—ba,n)-i-pba.l +53.od12>::,.11d12>?60) =

(Purfld e iy TS st i oyl e

3,1
we consider such a k3 such that .

Pka P ((p—1)—bs,1—bs,0)+pbs,1+b3,0 _ ( 2 ((p—1)—ba,1—ba,0)+pbs,1+ba,0 ) (p—1)p?(ao+ar+az)
Ys T \p*(ao+aitaz—1)+p(bs,1+ba,0)+b30 v

This is identically non zero only if b3 o = 0. Hence k3 = p?(ag+a1+as—1) +pb3,

and the summation runs over 0 < bz 1 < p—(ap+a1+az). But k—ks = p(ag+a; —

b3 1) +ag implies that by ; < ag+a;. Thus 0 < bs; < min[p—(ag+a1+az),a0+a1]-

Next we consider sz‘*kldgff = Pkatky(pp=1 4 P11 The only eligible sum-

mand for our target is Pk2+*1(hE~1\bs1 (otherwise, the ezponent of y; ezceeds the

required  ome). Phathei (g _ ygygp ) p-1)baa As  before:

ko, PU(P—1)b3,1—b2)+b2 pk,  (P—1)b2 _ —1)ba,1—b2)+b2\ ((p—1)b2, (P—1)P(a0+a1), (P—1)
P 2y2 v 2P lyl = (pi‘s((itJ'i-t)ns—T}?a.:)zl-ba )((go—gz )y2p i Gx)yip e
Hence ko = p(ag + a1 — bs,1) + b2 and ky = ag — bo. And the summation runs over
0 < by < min((p—1)bs,1,a0). Finally the coefficient of the reguired element is
given by the following sum:

X R (D) (70 (el te) ot oo ) (6 537)

b3,1,b2
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n—1 n—2 n—1
THEOREM 1. Letk = p™~! (z az — 1) +pn2 (Z at)+-~-+ag with zﬁ: a; <
] 0
p—1. Then P*d, .1 = gl d‘:l’,‘,;il , where c is the following constant mod —p.
—1y ((p—1)bn —1)bg\ (P—=1—bn\ ((P—1)ba—bn— —1)be—be_1Y . . ((p—1)b
?(—1)5(:)5,,1)((?5“1_):’ IR (e o) T e | sl v R (s L BELT Wi

n—1
Here b= Z bg.
1

PrOOF. It suffices to consider P"‘(hg’ "1)). ‘We prove the corresponding formula
n—1 2
for P* (h,(f’_l)d) by induction on n. Here k = p™~! (E a; — d) +p™2 (E at) +
0 0

n=1
-+ ap,1<d<p—=1land Y a; < p—1. The case n = 3 has been worked
0
out in the last example. Let us recall that we are looking for the coefficient of

(p-1)p*"!

i=1
zan)
the monomial [] y; ( 3 after applying P*. Expanding (h,)®~1¢ =

=1

s (p—1)d
n—1
(Z (—1)n-1-tyz’ dn-l,:) and considering the coefficient of
t=0

(34) Pkﬂyin—q[(p_l)d_bn'il _..._bn_ip_ll_*_pi;-—lbn_il +'"+Pi”-1-1bn,ip-1
We conclude that only by, := bsn—1 # 0. Moreover, 0 < bpn—1 < (p— 1)d. Thus
we proceed to the following element:

(3.5) bz(_l)b,, ((P _z;nl) d) ((p;i)ld_—lbn) yip_l)""_l ("zo_:1 m) Prkngn

n—2 -3
Here k — k, = p" 2 (Z at—bﬂ) + pn—3 (E at) +---+ap. I
0 0

n-—1

Let us proceed to the case P*d,q = ¢ [] di’,. Restrictions imply that k& =
t=0 -

n—1

5 (ap+---+az—1)p* < p* — 1 and ap > 1. The biggest exponents in d, o and
0

n—1

€ tl;lo d%, are (p""}(p—1),--- ,(p—1)) and (p"~*(p—1)(a0 +- - + an—1)," - (p — 1)ao)

-1
respectively. The idea is to consider all monomials f in dn o = [] AY 1= (E[y]l’g>
o

such that P*f = ¢s[y] (p" ™ p=D(a0-rFan—1),(p=1)a0) gpq ¢y non-identically zero. -

Here o is a permutation on {0,--- ,n — 1} and [y}P" =32 ---3F """, All coeffi-
n-—1

cients ¢y are added and that constant will be the coefficient ¢ of [] d2, in P¥dn 0.
t=0

Note that this decomposition holds for this particular generator only. Let us recall

that an element of the form [y]?" is called a Peterson polynomial and [] k; contains

all such polynomials of the given degree 1 + --- +p™~!. Among those, we.consider

only the ones with the right degree called leading Peterson’s polynomials. Our
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first task is to find the leading Peterson’s polynomials. The cardinality of this set
of polynomials is given by the n-th element of a Fibonacci sequence.

PROPOSITION 2. Let [P =42 ---4f ', for0< iy <m—1. Ift <iy oriy <

t—2, then P*’[y]i"" does not contain a multiple of [y](pnmi(P_I)(“‘J"'"""“““)"”(p_l)“")
n—1

where k = 3 (ag+---+ai—1) p'
)

PRrROOF. Let us recall that d,gp = (Z[y]f”YJ 1 = 2 CL,e Iyer) pﬁ?{y]l’«f’.
Here I, = (ins, " ,i1,5). A Steenrod opc;ration acts on monomials b;=é)a.rtan
formula: k& = k, +- -+ k;. Let us consider Pk‘ytz pietes a typical suinmand in
dno. Here 1 <e, <p-—1. ' _
(3.6) Yrvtes+k(p—1)=p"(p—1)(ao + -+ +arm1) = isy <t
Let 3 pies =p'Ey+p*1E 1 +---+pE1+ (p—1— E: —--- — Ey), then
(3.7)
ke=p""ag+ -+ a1 —Ei=1) +p 2 (p—1 - E,~E¢ ) + -+ (p—1 —E——Ei)

Hence Steenrod’s binomial coefficients are as follows:

(3 8) ( Et—l ) ( Et—?. ) . ( El ’ )
0 \aotote-B-1)\p=1-EB-Ei) " \p-1-Bi— - B

The claimed restrictions are induced: Ey + Ey_; +1 > ag+--- +a;—; and ag +
et ap1 2 B+l p-1l=E+E, 1+ F; 9= Ei_;=0fors>2. B

DEFINITION 1. A Peterson polynomial yf:" ---y{’ii satisfying n — 2 < i, <
n—=1,t-2<14 <tand 0 <4 <1 is called a leading Peterson polynomial. The
set of leading Peterson polynomials is denoted by LPP,.

LEnMA 1. The size of LPP, is given by the n-th element of a Fibonacci se-
guence.

PROOF. Let n = 2, then there are only two pairs of exponents: (1,0) and
(0.1), F5 = 2. Let n = 3, then there are only three triples of exponents: (2,1,0),
(2.0,1) and (1,2,0), F3 = 3. Given F} for k < n, F,, counts sequences of the form
(n=1,4p_1.--+ ,%1) plus (n—2,n—1,ip_o,--- ,i1). The size of the first set is F,_;
and the second F,_s. §

Our problem reduces to the case P*(LPPB,)P~L.

n—1 n—1
THEOREM 2. Letk = 3 (ap+---+as—1)p'. then Pfd, o = [1 d3'; where
0 t=0
the coefficient ¢ is given by:
p-1)! + Bi1,t
(3.9) _ * mod p
ILEEPPH El!'”Ep'l!t]'-—_.Jlr o+ +a—y —1— By

Ei+E,_1=p-1

Here ELPP, is the set which contains all exponents of monomials from LPP, and
By,s is defined inductively as follows:
Bn—l,n — z Es(.in,s - (T’l - 2))!
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Bn--2,'n. =p—1-— Bn—-l,n;
Bi1t-1=p—1—=By_ 14— Bi_y+15
Bi-2t-1=3 Es(iz-1,s — (t —3)) — Bt—1.¢-1;
Bt 3t-1=p=1-—Bi_1t-1—Bt_0;s1.

PROOF. Since k < p®, the value of P* on dn 0 is a monomial. Last proposition
implies that all coefficients in P*(LPP,)?~! must be added up. It remains to
define the terms B, ;. Let us recall that we are considering monomials of the form

I (yﬁiu,t B _yjlo'l")Et. For each variable, the coefficients of powers of its exponents
[ 1

add up to p— L. Let us consider yn: Bn_1np" '+ Bp_2,p" 2 =3 pir+E,. Then
Br-1n2 =7} Es(ins—(n—2)) and By_gn =p—1—By_; . For yn_1, we have the
following equation Bn_1,n-10""" + Bn-2n-10""2 4+ Bp-3n-1p" " ° = Y pin-is B,
which implies Bpin-1=p—1—Bs_ 1, -Bn—2,'n.—1 = ZEs(in--l,s - ('n' -3)) -
Bp-1n-1and Bp_3n-1 =p—1—Bp_gn-1—B —1,n—1. Now the claimed formulas
for B, s are easily deduced. J

Let us recall the analogue formula for P*(h,)P~! from theorem 10 page 950 in
[3].

THEOREM 3. [3] ;
(3.10)

n—2 d
- (Pkdn,o — haP Y (Prdn_10)+ 3 d —1,n-2~mPk“P'“dn—1,o)

dp—
n—1,0 m=0

Pk(hn)p_l = it
0. if k+# zocmpm

Here ppp = p™~ 1 oo g pn=1Im™,

Using formula 2.2, Cartan formula, and the two last theorems, the interested
reader can evaluate P*d, ; for 0 < s <n—1.
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Introduction

Let Cy(X, E) be the space of all bounded continuous functions from a zero-dimensional Haus-
dorff topological space X to a non-Archimedean Hausdorff locally convex space E. In section
2 of this paper, we look at some of the properties of the locally convex topologies 3, &, 51
and 3] on Cy(X, E), introduced by the author in [8], and we show that the corresponding
dual spaces are certain subspaces of a space M (X, E’) of finitely-additive E’-valued measures
on the algebra of all clopen subsets of X introduced in [6]. In case E is a polar space, it
is proved that the strict topology 3., which was defined by the author in [7], coincides with
the polar topology associated with . In section 3 we look at the supports of members of
M(X,E") and in section 4 we introduce the topologies S and §;. In case E is metrizable,
it is shown that 3. is coarser than $; and coincides with the topology of simple convergence
on uniformly bounded equicontinuous subsets of Cy(X, E). In section 5 we look at the dual
spaces of Cy(X, E) under the topologies 3, and (3;, which were defined in [1] and [3], respec-
tively, while in section 6 we investigate the dual spaces for the topologies 3. and §,. When
E is metrizable, it is proved that 3. yields as dual space the space of the so called separable
members of M (X, E') and that the same does 3;,. Moreover the two topologies have the same
equicontinuous sets in their common dual space.

1 Preliminaries

Throughout this paper, K stands for a complete non-Archimedean valued field whose valua-
tion is non-trivial. By a seminorm, on a vector space E over K, we mean a non-Archimedean
seminorm. Similarly, by a locally convex space we mean a non-Archimedean locally convex
space over K, For E a locally convex space, we. denote by cs(E) the collection of all continuous
seminorms on E and by E’ its dual space.

Let now X be a zero-dimensional Hausdorff topological space and E a Hausdorff locally
convex space. We will denote by 3,X the Banaschewski compactification of X (see [4]) and by
v,X the N-repletion of X (N is the set of natural numbers), i.e. the subspace of 8,X consisting

1
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of all z € 3,X with the following property: For each sequence (V;,) of neighborhoods of z in
B,X we have that (| V,NX # 0. The space X is called N-replete if X = v,X. We will denote
by Cy(X, E) the space of all bounded continuous E-valued functions on X and by Cr.(X, E)
the space of all f € Cy(X, E) for which f(X) is relatively compact in E. In case E = K, we
will simply write Cy(X) and Cr.(X) respectively. For A C X, we denote by x4 the K-valued
characteristic function of A in X and by A%X the closure of A4 in BoX. Every f € Cro(X,E)
has a unique continuous extension f% to all of 3,X. For f an E-valued function on X, p a
seminorm on E and A C X, we define

1 fllp = sup p(f(2)), lIflla,p = supp(f(z))-
zeX zEA

The strict topology 3, on Cy(X, E) (see [7]) is the locally convex topology generated by
the seminorms f — ||hf||p, where p € cs(E) and h is in the space B,(X) of all bounded
K-valued functions on X which vanish at infinity, i.e. for each € > 0 there exists a compact
subset ¥ of X such that |h(z)| < € if z is not in Y. As it is shown in [7], B, has the same
bounded sets with the topology 7, of uniform convergence, i.e. the topology generated by the
seminorms |.||p,p € cs(E). Also 3, coincides with the topology 7% of compact convergence
on Ty-bounded subsets of Cp(X, E).

Let now K(X) be the algebra of all clopen, (i.e. closed and open) subsets of X. We denote
by M (X, E’) (see [6]) the space of all finitely-additive E’-valued measures m on K(X) for
which m(K (X)) is an equicontinuous subset of E’. For each m in M (X, E’) there exists
p € cs(E) with my(X) < oo, where, for A € K(X),

myp(A) = sup{|m(B)s|/p(s) : p(s) # 0, A > B € K(X)}.

The space of all m € M (X, E') with m,(X) < oo is denoted by M, (X, E'). Next, we recall the
definition of the integral of an E-valued function f on X with respect to an m € M (X, E').
For A€ K(X),A # 0, let D4 denote the family of all @ = {A;1,...,An : 21,... ,Zpn}, Where
{A1,...,A,} is a clopen partition of A and z; € A;. We make D4 a directed set by defining
a1 > ao iff the partition of A in «; is a refinement of the one in ay. For f € EX,m €
M(X,E) and @ = {A;,... ,An : 21,... ,Tn}, We define wo(f, m) = 3 iy m(Ai) f(z:). If the
limg we(f, m) exists in K, we will say that f is m-integrable over A and denote this limit by
/ 4y fdm. We define the integral over the empty set to be 0. For A = X, we write simply
[ fdm. 1t is easy to see that if f is m-integrable over X, then it is m-integrable over every
A€ K(X) and [, fdm = [xafdm. Every m € M(X, E') defines a 7y-continuous linear
functional on Crc(X, E) by f — [ fdm (see [6]). Also every ¢ € (Cre(X, E), 7u)’ is given in
this way by a unique m.

For p € cs(E), we denote by M, ,(X, E') the space of all m € M,(X, E') for which m,, is
tight, i.e. for every e > 0, there exists a compact subset ¥ of X such that m,(4) < eif Ais
disjoint from Y. We define

M(X,E= ] Mp(X,E).
pees(B)

As it is shown in [7], every m € My(X, E') defines a [B,-continuous linear form on Cy(X, E)
by um(f) = [ fdm. Moreover the map m — up, from M;(X, E’) to (Co(X, E), B,)’, is an
algebraic isomorphism. Finally we recall that a locally convex space E has the countable
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neighborhood property if, for each sequence (p,) of continuous seminorms on E, there exist
ap € cs(E) and a sequence (o) of positive numbers such that p > anp, for all n. For all
unexplained terms on locally convex spaces, we refer to [15] and [16].

Throughout the paper, X is a zero-dimensional Hausdorff topological space and E a
Hausdorff locally convex space.

2 On the Topologies 3,5, 51,5,

We recall the definitions of the locally convex topologies 3, 3, 51 and 81 on Cp(X, E) intro-
duced by the author in [8]. Let 2 = (X be the family of all compact subsets of 5, X which
are disjoint from X. For H € Q, let Cy be the space of all h € C;.(X) whose the continuous
extension kP> vanishes on H. For p € cs(E), let Bu, denote the locally convex topology
on Cp(X, E) generated by the seminorms ||.||np, where € Cg and ||f|lap = [|Af|lp- The
inductive limit of the topologies B, as H ranges over (2, is denoted by [5p, while B is the
projective limit of the topologies By, p € cs(E). Also, for H € Q, By is the locally convex
topology generated by the seminorms ||.||np, b € Cx,p € cs(E). The inductive limit of the
topologies B, H € , is denoted by 8. Replacing 2 by the family ©; of all K-zero subsets of
B,X which are disjoint from X, we get the topologies 31, for p € cs(E), 51 and (8;. Recall
that a K-zero subset of 3,X is a set of the form {z € 8,X : g(z) = 0} for some g € C(5,X).
Analogous with topologies 4 and 3’ are the topologies 38, and 3, which were defined in [3].
They are obtained by replacing € by the family €, of all Q €  with the following property:
There exists a clopen partition (4;);er of X with E?@"X disjoint from @ for all 7 € I.

Theorem 2.1 [8]. For H € Q and p € cs(E), Bup has as a base at zero the sets of the form

o]

({f € Co(X,E) : || fllanp < an},

n=1
where (o) is an increasing sequence of positive numbers, tending to co, and (A,) an increas-
ing sequence of clopen subsets of X with E:’G X disjoint from H for all n.

We only sketch the proof of the next Theorem since it is a modification of the proof of
Theorem 4.1 in [8].

Theorem 2.2 An absolutely conver subset V' of Cy(X, E) is a By p-neighborhood of zero iff
the following condition is satisfied: For each r > 0, there exists a clopen subset A of X, with

APt disjoint from H, and € > 0 such that
{(FeG(XE): |flp nllflap <€t CV.

Proof: The necessity follows using the preceding Theorem. Conversely, suppose that the
condition. is satisfied and let A € K, |A| > 1.. Choose an increasing sequence (A,) of clopen

sets, with A,"°" disjoint from H, and a decreasing sequence (e,) of positive numbers, €, — 0,
such that U, N A"U C V, where

Un={f € (X, E) : | fllanp S €}, U={f€Co(X, E): [Ifllp < 1}-
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Let V1 = U3 ﬂ[ﬂ:’:l(UnH +A™U)]. Then Vi C V. Choose A\; € K, with 0 < ;| < min{l, e },
and take A\, = A\""! for n > 1. Now

N{f € Co(X,E) : | fllanp < [Mnl} € WA,

n=1

and hence the result follows from the preceding Theorem.

Corollary 2.3 If 7., is the topology generated by the seminorm ||.||p, then B, is the finest
loally convez topology on Cy(X, E) which coincides with By on Typ-bounded sets.

We will show next that the dual space of Cp(X, E), under the topology 3, is a certain
subspace of M(X, E'). Let M,(X, E') be the space of all m € M (X, E') with the following
property: For each net (As) of clopen subsets of X which decreases to the empty set, there
exists p € cs(E), with my(X) < oo, such that my(As) — 0. Replacing decreasing nets by
decreasing sequences, we get the space M, (X, E')

Theorem 2.4 If m € M.(X,E'), then every member of Cy(X, E) is m-integrable and the
linear map unm, : Cp(X, E) — K, un(f) = [ fdm, is B-continuous.

Proof: There exists p € cs(E) with mp(X) < 1. Let f € Cp(X, E) and € > 0. We may assume
that ||f|lp < 1. Let (Ai)ier be the clopen partition of X corresponding to the equivalence
relation z ~ y iff p(f(z) — f(y)) < €. Choose z; € A;. The function f* = >, xa,f(z:) is
continuous. For each finite subset J of I, set By = Uigé ;A;. Then Bj is clopen and By | 0.
By our hypothesis, there exists g € c¢s(E),q > p, such that mg(By) — 0. Choose a finite
subset J of I such that mg(By) < €/||fllq- Let g = > ;cyxa,f(z:) and h = f* — g. For any
clopen partitioin {D;,...,D,} of X, which is a refinement of {A; € J} U{B;}, and any
yr € D, we have

S “m(Dak] Seend 3 mDgln) = 3 m{Adf ().
k=1 k=1 ieJ
Thus
> m(De) k) — > m(A:)f(z:)| <e and > m(De)[f(w) — Fw)]| S &
k=1 =i k=1

and so |37 m(Dg) f(ye) — Xiey m(Ai)f ($i)| < e. It follows that f is m-integrable. Finally,
U is (B-continuous. Indeed, let H € Q. It suffices to show that u,, is By p-continuous for
some p € cs(E). To this end, we first observe that there exists a decreasing net (Bs) of
clopen subsets of X with ﬂB—‘s’G °X = H. Since m € M.(X,E’), there exists p € cs(E)
such that m,(X) < 1 and limm,(Bs) = 0. We will show that w,, is Sp p-continuous. Let
W = {f € Co(X,E) : |lum(f)] < 1} and r > 0. There exists § with m,(Bs) < 1/r. If
B = X \ Bs, then BPX is disjoint from H and ="

{FeGX.E): fllp <7 lfllBp <1} CW.

The result now follows from Theorem 2.2.
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Theorem 2.5 The map u : M. (X, E') — (Co(X, E), B)',m — up, is an algebraic isomor-
phism.

Proof: It remains only to show that u is onto. So, let ¢ a [(B-continuous linear functional on
Cy(X, E). Since 8 is coarser that 7,, there exists m € M (X, E’) such that ¢(f) = [ fdm for
all f € Cro(X,E). We will show that m € M, (X, E’). In fact, let (4s) be a net of clopen
sets, which decreases to the empty set, and let H =) fL;‘B X Since ¢ is Sy-continuous, there
exist p € cs(E) and h € Cy such that

W1 =A{f € G(X, E) : |Ihfll, <1} C {f : [o()] < 1}
We will show that mp(As) — 0. So, let i be a non-zero element of K. The set
G ={z € BoX : [W* ()] < |ul}

is clopen and contains H. There exists § with A}ﬁ“x C G. If now A is a clopen subset of A;
and s € E with p(s) < 1, then g=lxas € W; and so |m(A4)s| < |g|. If A € K with |A] < 1,
then m,(As) < |Ap|, which clearly proves that m € M- (X, E’). Finally, ¢ = un, since both ¢
and u,, are -continuous and coincide on the (3-dense subset Cr.(X, E) of Cy(X, E).

Using arguments analogous to the ones used in the proofs of Theorems 2.4 asnd 2.5, we
get the following

Theorem 2.6 A subset H, of the dual space M(X, E') of (Cy(X, E), 8), is B-equicontinuous
iff the following condition is satisfied: For each net (As) of clopen subsets of X, which
decreases to the empty set, there erists p € cs(E) such that sup,ey mp(X) < oo and

SUP e Mp(As) — 0.

Next we will look at the dual space of (Cy(X, E),8’). For p € cs(E), let M, ,(X,E') be
the space of all m € Mp(X, E') such that mp(As) — 0 for each net (As) of clopen subsets of
X which decreases to the empty set. Let

M- (X,E") = U M (X, E').
pEcs(E
Replacing nets by decreasing sequences of clopens sets, we get the spaces Mg ,(X, E’) and
M (X, E').

As in the proofs of Theorems 2.4 and 2.5, we get that, for m € M. ,(X, E'), um is Bp-
continuous and every ¢ € (Cy(X, E), 8,)" is of the form u, for some m € M, (X, E’). Thus,
we have the following

Theorem 2.7 a) For each p € cs(E), the map
Ty : Mrp(X,E') = (Co(X, E), Bp),m — upm,

is an algebraic isomorphism.

b) M- (X, E") is algebraically isomorphic to the dual space of (Co(X, E), ).

c) A subset H of M (X, E') is Bp-equicontinuous iff sup,ep mp(X) < 00 and sup,cg mp(4s) —
0 for each net (As) of clopen subsets of X which decreases to the empty set.
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We will show now that M. ,(X, E") = M; (X, E'). We need the following

Lemma 2.8 Let F be a family of clopen subsets of X and let m € M. ,(X,E’). If W is a
clopen subset of |J{A: A € F}, then there ezists A € F such that mp(W) < my(A).

Proof: Since, for clopen sets A, B, we have my(4 U B) = max{m,(A4), my(B)}, we may
assume that F is closed under finite unions. The family B={W\ A: A € F} is downwards
directed to the empty set. If my(W) > 0, there exists A € F with my(W \'A) < m,(W) and
$0 mp(W) = max{m,(W N A),mp(W \ A)} = mp(W N A) < mp(A), and the result follows.

The proof of the following Theorem is analogous to the proof of Theorem 7.6 in [16].

Theorem 2.9 Let m € M, (X, E') and let
Npnp: X = R, Npp(z) = inf{my(A) : z € A€ K(X)}.

Then: a) Np,p 5 upper semicontinuous.
b) For each € > 0, the set Xpmpe = {2 € X : N p(z) > €} is compact.

Proof: a) It suffices to show that, for each § > 0, the set W = {z € X : Ny, p(z) < 6} is

open. So let z € W. There exists a clopen neighborhood V' of z such that m,(V) < 6. Then
Vcw.
b) Let F be a clopen cover of X, .. Without loss of generality, we may assume that F
is closed under finite unions. The set M = X \ Xmp. is a union of clopen sets. Thus the
family V= {X\(VUW):V € F,W € K(X),W C M} is downwards directed to the empty
set. Thus, there exists V € F,W € K(X), W C M such that m,(X \ (VUW)) < e. Hence
Xmpe CVUW and so Xppe C V, which completes the proof.

Theorem 2.10 M, (X, E") = M;,(X, E).

Proof: Let m € M. p,(X,E’),e > 0 and A a clopen set disjoint from the compact set ¥ =
Xmpe Every z € A has a clopen neighborhood V,, with mp(Vz) < €. In view of Lemma 2.8,
we have that my,(A) < €, which proves that m is tight.

Conversely, assume that m is tight and let (As) be a net of clopen sets decreasing to the
empty set. Given € > 0, let Y be a compact subset of X such that m,(A) < ¢ if the clopen
set A is disjoint from Y. There exists some As which is disjoint from Y and so my(As) < €.
Hence the result follows.

Corollary 2.11 M. (X,E") = M(X, E').

Recall that a subset H of M (X, E') is called tight (see [7], Definition 3.5) if there exists
p € cs(E) such that: (1) sup,cg mp(X) < oo.
(2) For every € > 0, there exists a compact subset.Y of X such that my(A) < e for every
m € H and every clopen set A disjoint from Y.
By Theorem 3.6 in [7], a subset H of M;(X, E') is tight iff it is B,-equicontinuous.

Theorem 2.12 A subset H of M(X,E") is 3'-equicontinuous iff it is Bo-equicontinuous.
q
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Proof: Since B, is coarser than 3, it suffices to show that every §'-equicontinuous subset of
M (X, E") is By,-equicontinuous. So let H be such a set. Then H is B,-equicontinuous for
some p € cs(E). In view of Theorem 2.7, we have that sup,,cg mp(X) < co. Define

Nup: X — R, Npy(z) = inf{sup mp(V) :x € V € K(X)}.
meH

Using Theorem 2.7, we get (as in the proof of Theorem 2.9) that Ny, is upper-semicontinuous
and the set Yy = {x € X : Ngp(z) > €} is compact for every ¢ > 0. For each V € K(X)
disjoint from Yz . and each m € H, we have that m,(V) < e. This proves that H is tight
and so it is B,-equicontinuous. Hence the result follows.

Corollary 2.13 If E is a polar space, then (3, is the polar topology associated with 3.

Proof: When FE is polar, the space (Cy(X, E), Bo) is polar. Now the result follows from the
preceding Theorem.

Next we will look at the dual space of Cy(X, E) under the topologies 5 and 8] . We only
sketch the proof of the following Theorem since it is analogous to the corresponding proof
given in [16], p. 49, for the case £ =K.

Theorem 2.14 If X is N-replete and E metrizable, then f(X) has non-measurable cardinal
for every f € Cp(X, E).

Proof: Let d be an ultrametric on E generating its topology. For each positive integer n,
consider the equivalence relation ~=n~, on X defined by = ~ y iff d(f(z), f(y)) < 1/n. Let
B,, be a subset of X having only one point in common with each equivalence class. Since X
is N-replete, B, has non-measurable cardinal (see [16], Theorem 2.10). Let A, = f(Br). For
each z € f(X) choose a zZ € G = [] A, such that 2z, € A, and d(z, 2,). < 1/n for each n. In
this way we get a map ¢ : f(X) — G, #(z) = z. Since each A, has non-measurable cardinal,
it follows that G has non-measurable cardinal. The result now follows from the fact that ¢
is one-to-one.

Using an argument analogous to the one used in [16], Theorem 7.1, we get the following
Theorem 2.15 If X is N-replete, then My ,(X, E') = M7 p(X, E') for all p € cs(E).

Theorem 2.16 Assume that E is metrizable and let m € My(X,E'). If f € Cy(X,E) is
such that f(X) has non-measurable cardinal, then f is m-integrable.

Proof: The space f(X) is N-replete since it is ultraparacompact and has non-measurable
cardinal (see [16], Theorem 2.18). Hence, there exists a continuous extension f*° of f to all
of v, X. Let m¥ : K(v,X) — E',m¥(A) = m(ANX). Then m¥ € Mgp(v.X, E’). Since
voX is N-replete, we have that m¥s € M. (v,X,E’) (in view of the preceding Theorem).
Thus fv is mVe-integrable, from which it follows easily that f is m-integrable.

Theorem 2.17 For every [3|-continuous linear functional ¢ on Cy(X, E) there erists m €
My(X, E") such that ¢(f) = [ fdm for all f € Cre(X, E).
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Proof: Since 3} is coarser than T, there exists (by [6], Theorem 2.8) an m € M (X, E') such
that ¢(f) = [ fdm for all f € Cro(X,E). Also, there exists p € cs(E) such that the set
{f : |#(f)| € 1} is a (1 p-neighborhood of zero in Cy(X, E). Let now (A,) be a sequence of

clopen subsets of X, with A, | 0, and Q = ﬂffn'@"x. Let A € K, with |A| > 1, and let u be
a non-zero element of K. There exist a clopen subset B of X, with B%X N Q =0, and ¢ > 0
such that

{feC(X,E): |fllp <L |IfllBp < €} C{f: ()l <1}

Let n be such that BPX ﬂ@nﬁ"x = (. It follows now easily that m,(A,) < |Au| and hence
m € Mg p(X, E'). Thus the result follows.

Theorem 2.18 Let E be metrizable and assume that f(X) has non-measurable cardinal for
every f € Co(X,E). If m € My(X,E’), then the linear functional um, on Cy(X,E) is
By -continuous.

Proof: Let m € Mg p(X, E'). Under the hypotheses of the Theorem, every f € Cp(X, E) is
m-integrable. Let Q € ;. The exists a decreasing sequence (A,) of clopen subsets of X with

ﬂffnﬁ et Q. Let r > 0 and choose n such that m,(A,) < 1/r. If B is the complement of
A, in X, then B%X NQ =0 and

{f € Co(X,E): ||fllo < 7 [IfllBp £ 1/mp(X)} C{S : um () S 1} = W

Thus W is a 8¢ ,-neighborhood for every Q € Q; and so um, is B1 p-continuous. This completes
the proof.

Theorem 2.19 If ¢ € (Cy(X, E), B1)’, then there ezists a unique m € Mo (X, E') such that
&(f) = [ fdm for all f € CrelX, E).

Proof: Since B is coarser than 7, there exists a unique m € M (X, E’) such that ¢(f) =
[ fdm for all f € Cro(X,E). We neeed to show that m € M, (X, E’). So, let (4y) be a

sequence of clopen sets which decreases to the empty set. Then Q = NA,"* is in Q1. Since
¢ is By1-continuous, it is Bg p-continuous for some p € cs(E). Let h € Cg be such that

Wi={f € Co(X,E): |hfll <1} C {f : |¢()| £ 1}.

Taking a ¢ > p if necessary, we may assume that my(X) < 1. We will finish the proof by
showing that m,(A,) — 0. So, let A € K with |A| > 1 and let x be a non-zero element of K .
There exists n, such that

——BoX =
A%z e BoX : |RP(z)] < A}
It follows easily from this that m,(Ar,) < || and the result follows.

Theorem 2.20 Let m € M (X, E’") be such that every f € Cy(X, E) is m-integrable.” Then,
U, 18 B1-continuous iff m € My(X, E').

Poof: The necessity follows from the preceding Theorem. Conversely, assume that m €
M,(X,E") and let Q € Q;. There exists a decreasing sequence (Ay) of clopen subsets of X
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with Q = ﬂA—n’B"X. Let p € cs(E) be such that m,(X) < co and mp(A4n) — 0. Givenr >0,
choose n such that my(A4,) < 1/r. If B = X\ Ay, then BPf-X is disjoint from Q and

{f € C(X,E) : IFllp £ | fllBp < 1/mp(X)} C{S : [um(F)] < 1}

Thus the set W = {f € Co(X, E) : |um(f)| < 1} is a Bg neighborhood of zero, for each
Q € Q1, and so u,, is B1-continuous, which was to be proved.

If X,Y are Hausdorff zero-dimensional topological spaces, then every continuous function
h: X —Y induces a linear map T}, : Cp(Y, E) — Cp(X, E), f— foh.

Theorem 2.21 Ifh: X — Y is continuous, then the induced map Ty, is 8—8,51— 51,8 -8
and (3] — 8} continuous. In case E is polar, Ty, is 3, — B, continuous.

Proof: Let W be a convex S-neighborhood of zero in Cp(X, E) and let V = T}~ YW). Let
RPe : B,X — B,Y be the continuous extension of A. Given Q € Q(Y), there exists a decreasing
net (W) of clopen subsets of B,Y with NW; = Q. Let Vs = (h®)~1(Ws), H = NV;. Then
H € Q(X). Since W is a B-neighborhood of zero, it is a 8y p-neighborhood of zero for some
p € cs(E). Thus, given r > 0, there exist a clopen subset A of X, whose closure in 5, X is
disjoint from H, and € > 0 such that

{f €C(X,E) : ||fllp < I fllap < e} CW.

There exists a 6 such that A%X is disjoint from V. Theset B=Y \ W5 NY is clopen in ¥’
with BfY N Q = §. Moreover

{9 G, E):llglp <7 lgllBp S e} CV.

This (by Theorem 2.2) implies that V is a Sg-neighborhood of zero, which proves that T},
is 8 — B continuous. Since an absolutely convex subset of Cy(X, E) is a [#'-neighborhood of
zero iff it is a B,-neighgborhood for some p € cs(E), the proof of the 5. — ' continuity of T},
is analogous. Also the proofs for the cases of the topologies §; and (] are analogous since a
subset of 8,Y is a K-zero set iff it is the intersection of a decreasing sequence of clopen subsets
of B,Y. Finally, if E is polar, then 3, is the polar topology associated with §’. Now the
B, — B, continuity of T}, follows from the fact that , if T is a continuous linear map between
two locally convex spaces G1, Ga, then T is also continuous with respect to the corresponding
polar topologies on G1, Gs.

3 Supports of Members of M (X, E')

Recall that a subset Y of X is a support set for an m € M (X, E') if m(A) = 0 for each clopen
A disjoint from Y. Clearly Y is a support set for m iff ¥ is such a set. For an m € M (X, E'),
we define

supp(m) = [ {V € K(X) :m(4) =0 if Ae K(X),AnV =0}.

If m € M.(X,E"), then for each s € E the set function ms : K(X) — K, (ms)(A) = m(4)s
is in M,(X) and hence supp(m) is a suppoprt set for m by Theorem 3.5 in [6].

Let now m € Mpy(X,E’). For B a subset of X, we define m.p(B) = supinfomy(Vy),
where the supremum is taken over all decreasing sequences (V;,) of clopen sets with NV, C B.
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Theorem 3.1 Let X be ultraparacompact and m € M(X,E'). Then m € M, (X, E’) iff
mp(X) < 00, supp(m) is Lindeloff and my (X \ supp(m)) =

Proof: Assume that m € M, (X, E') and let (A,) be a decreasing sequence of clopen sets
with NA,, disjoint from supp(m). The family U = {V € K(X) : mp(X\V) = 0} is downwards
directed and [y, V = supp(m). Thus the family {4, NV :n € N,V € U} is downwards
directed to the empty set. Given € > 0, there exist n and V' € U such that my(4,) =
mp(An NV?) <¢, which proves that m,,(X"\ supp(m)) = 0. Next, let F be & clopen cover of
supp(m). Since X is ultraparacompact, there exists a clopen partition (A;);er of X which is
a refinement of the open cover F | J{X \ supp(m)} of X. Let I} = {i € I : A; Nsupp(m) = 0}
and I = I'\ I;. Then supp(m) C J;cz, Ai. For each finite subset J of I, let Dy = ;g7 A:.
Then D | @ and so my(Dy,) < € for some finite subset J, of I. Clearly my(A4;) < €if i & J,.
Thus the set M = {i € I : mp(A;) # 0} is countable, supp(m) C |J;cps Ai and M C I5. Since
each A;, for i € I, is contained in some member of F it is clea.r that supp(m) is covered by
a countable subfamily of F and so supp(m) is Lindeloff.

Conversely, assume that mp(X) < oo, supp(m) is Lindelsff and m. »(X \ supp(m)) = 0.
Let (Z,) be a net of clopen subsets of X decreasing to the empty set. There exists an
increasing sequence (ay,) such that supp(m) C |Une; X \ Za,. By our hypothesis, given € > 0,
there exists n such that mp(Za,) <e, Wthh clearly completes the proof.

Theorem 3.2 Let X be ultraparacompact and let m € Mgp(X, E'). Then m € M p(X, E')
iff supp(m) is Lindeloff and m(A) = 0 if the clopen set A is disjoint from supp(m).

Proof: Assume that the condition is satisfied and let (Z,) be a decreasing sequence of clopen
sets such that the set Z = NV}, does not meet supp(m). Since X is ultranormal, there exists
a clopen set V which contains Z and is disjoint from supp(m). Now Z, (X \ V) | 0 and
so, given € > 0, there exists n with my(Z,) = mp(Z, (X \ V)) < €. Now the result follows
from the preceding Theorem.

Theorem 3.3 Let X be ultraparacompact and m € M(X,E'). Then m € M. (X, E') iff
supp(m) is Lindeloff and, for each decreasing sequence (Ay) of clopen subsets of X with NA,
disjoint from supp(m), there ezists p € cs(E) such that my(A,) — 0.

Proof: Assume that m € M,(X,E’) and let (A,) be as in the Theorem. The family

={Ve KX): mA =0 if ANV = 0} is downwards directed and the family
{A.N(X\V):n €N,V € U} is downwards directed to the empty set. Since m € M- (X, E'),
there exists p € cs(E) such that limmy (A, (X \ V)) = 0. Thus, given € > 0, there exist n
and V € U such that mp(As) = mp(An (X \ V)) < € and so mp(As) — 0. Let now F be a
clopen cover of supp(m) and let (4;);cs be a clopen partition of X which is a refinement of
the cover F | J{X \ supp(m)}. For J C I finite, set Dy = (J;4; Ai. Then Dy | 0. Thus, there
exists ¢ € cs(E) with limmg(Dy) = 0. Given € > 0, there ex15ts J, finite with mq(D;,) < €.
Thus the set M = {7 € I : my(A;) # 0} is countable. For each ¢ € M, A; is contained in some
member of F. It follows from this that supp(m) is covered by some countable subfamily of 7
and so supp(m) is Lindelsff. Conversely, assume that the condition is satisfied and let (Z,)
be a net of clopen sets which decreases to the empty set. There exists an increasing sequence
(an) with supp(m) C |, X \ Za,. There exists p € cs(E) such that my(Za,) — 0, which
implies that lim my(Z,) = 0. Thus the result follows.
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4 The Topologies 5. and .

For d a continuous ultrapseudometric on X, we will denote by Xy the quotient space X/ ~,
where ~ is the equivalence relation defined by z ~ y iff d(z,y) = 0. If Z; is the equivalence
class of z, then X; becomes an ultrametric space under the metric d(Z4,74) = d(z,y). Let
ng : X — X4 be the quotient map. Since m; is continuous, we get a linear map Ty :
Cy(X4, E) — Co(X,E), Tyf = f o mqg. We define (Cyp(X, E), B.) to be the locally convex

11

inductive lirhit of the spaces (Cy(Xgy, E), ) with respect to the linear maps T, where d"

ranges over the family of all continuous ultrapseudometrics on X. Also, for p € cs(E), we
define (Cy(X, E), Bep) to be the locally convex inductive limit of the spaces (Cyp(Xq, E), Bp)
and B, = Upecs(p) Bep- Note that if p < g, then Bep < Beq- It is clear that 8 < Se.

Theorem 4.1 Let h : X — Y be a continuous function, where X,Y are zero-dimensional
Hausdorff spaces. Then the induced linear map Sy, : Cp(Y, E) — Cp(X, E), f +— foh, is fu—Lu
and 8], — B, continuous. Also, for p € cs(E), Sy is Bp — Bp and Bup — Pup continuous.

Proof: Let W be a convex B,-neighborhood of zero in Cy(X, E). If Q € Q,(Y), then there
exists a clopen partition (A;) of ¥ such that Eﬁ"y is disjoint from @ for each i. If B; =
h1(A;), then (B;) is a clopen partition of X and so the complement H in §,X of the set
UE'B X is in Qu(X). Let p € cs(E) be such that W is a By p-neighborhood of zero. Given
r > 0, there exist ¢ > 0 and a clopen subset B of X, with B%X N H = §, such that
{g € CG(X,E) : |lgllp £ 7 lgllBp < €} € W. Since BFX UE’G"X, there exists a finite

subset J of I such that BPX C UiEJEﬁ"X. If A=|J;csAi, then ABY N Q =0 and
{f € (¥, E): |Ifllp <7 1Ifllap < €} € STH(W).

This proves that S, L(W) is a Bg p-neighborhood of zero and the 8, — B3, continuity of Sp
follows. The proof of the 3, — /3., continuity is analogous. The proof of the 3, — 8, continuity
is similar to the proof of the 38— 3 continuity in Theorem 2.21 while the proof of the Sy, —Bup
continuity is analogous to the one of the 3, — 3, continuity. Hence the result follows.

Theorem 4.2 3, < 3. and B8, < .

Proof: For an ultrametrizable space Y we have that Q(Y) = Q,(Y) and so 8 = S, and
B, = Bup for each p € cs(E). In view of the preceding Theorem, for each continuous
ultrapseudometric d on X, Ty is 8 — B, continuous and so B, < B.. Also, Ty is Bp — Bup
continuous, which implies that 8], < ..

Theorem 4.3 Let h : X — Y be a continuous function, where X,Y are zero-dimensional
Hausdorff spaces. Then, the induced linear map Sy, is Be — Be and B, — B, continuous.

Proof: Let d be a continuous ultrapseudometric on Y and define d; on X x X by di(z,y) =
d(h(z),h{y)). Then d; is continuous. Let ¢ : Xg, — Yy,Zg, — h(z)g. Then 1 is well
defined and continuous. Let Sy : Cy(Yy, E) — Cy(X4,, E) be the induced linear map. Then
Ty, © Sy = Sp o Ty. Since Ty, is B — B is continuous and Sy 8 — B continuous, it follows that
S, 0Ty is B — e continuous. This clearly proves that Sj is 8. — B continuous. The proof of
the B — B3, continuity of S is analogous.
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Theorem 4.4 If E is metrizable, then B < B1, 5. < B and Bep < P1p for each p € cs(E).

Proof: Assume that there exists a convex (.-neighborhood W of zero and a @ € §; such
that W is not a Bg-neighborhood of zero. Let (p,) be an increasing sequence of continuous
seminorms on E generating its topology and let h € Cy.(X) be such that Q = {z € Bo
hPe(z) = 0} For each positive integer n, let A, = {z € X : |h(z)| > 1/n}. Then A7

{x € B,X : |hP(z)| > 1/n}. Since W is not a Bqp,-neighborhood of zero, there exists
r7 > 0'such that, for each clopen B, with BPfX disjoint from Q, and each > 0, there exists
f € Co(X, E) with || fllp. £ 7n, ||f||3pn <€, f ¢ W. Hence, for each positive integer k, there
exists fnr € Gb(X E) fnk ¢ W ”fnk”pn < T, ”fnk”Ak,pn < ]-/'IC Let oni > ma‘x{”f'tj”pn .
1<i<n,1<j<k} and define

pn(fzj(x) fij(y))] } o

r knank [1<z<n 1<i<k

d(ﬂc,y)=ma><{lh(:c) |h(y)l, I8

Then d is a continuous ultra-pseudometric on X and so T L(W) is a B-neighborhood of zero
in Cp(Xg4,E). The set H = Ti'd °(Q) is disjoint from Xj. In fact, assume that 73°(z) = 74(a)
for some a € X,z € Q. There exists a net (z;5) in X converging to z and so m4(zs) — 74(a),
ie. d(zs,a) — 0. Since h(a) # 0, there exists 8, such that d(zs,a) < |h(e)| and thus
|h(zs5)| = |k(a)|, which contradicts the fact that h(zs) — hP(z) = 0. So, H is disjoint
from Xg and therefore T 1(W) is a By p,-neighborhood of zero for some n. There are an
€ > 0 and a clopen subset A of Xy, with APXe N H = @, such that {g € Cp(X4, E) :

lgllpn < Tn,s ||gﬂ A,pn < e} ¢ T;Y(W). Let B = 737'(A). Then BP¥ is disjoint from Q and

hence B = 771(4) € U,{z : |h*(z)| > 1/n} = Un}fl_nﬁ"X. Choose k > 1/e such that
B=my (A) - A P-X  The function g: Xq— E,9(Z3) = farx(z) is well defined, continuous
and Ty9 = fok- Smce lgllo, < rn and |lgllap, = |IfekllBp. < 1/k < €, we have that

gET, 1(W) and so f.x € W, a contradiction. This proves that 8. < 3. Suppose next that
there exists a convex S, p-neighborhood W of zero which is not a 8g ,-neighborhood for some
Q € Q1. There exists » > 0 such that, for every clopen subset B of X , whose closure in 8, X is
disjoint from Q, and any € > 0, there exists f € Cp(X, E) with ||f|l, <7, ||fllBp S & f ¢ W.
Let h € C,o(X) be such that Q = {x € B, X : hP(z) = 0} and let A, = {z : |h(z)| > 1/n}.
For each n, there exists an f, € Co(X, E) with ||fallp < 7 | fallanp £ 1/, frn @ W. Let (pn)
be an increasing sequence of continuous seminorms on E generating its topology. Choose
an > max{|| frllp, : 1 <k < n} and define

d(z,3) = max { @) = h)l sup - 35 po(fule) ~ il )]}

1<k<

Then d is a continuous ultra-pseudometric on X and so T; (W) is a By-neighborhood of
zero. Since H = frg°(Q) is disjoint from Xy, there exist a clopen subset A of Xg, with
APoXa N H =@, and € > 0 such that

{9 € Co(Xa, E) : |lgllp £ 7 llgllap < €} € Ty (W).

Choose n > 1/e such that BPX C A_nﬁc’X, where B = 7;!(A) . The function g : X4 —
E,g(%4) = fa(z), is well defined and continuous. Since ||gll, = [|fally £ 7 and |lgllap, =
| frllzp < 1/n < € we have that f, = Tyg € W, a contradiction. This proves that Bep < Bips
for each p € cs(E), which implies that 8, < 4. This completes the proof.



Strict Topologies and Vector-Measures 13

Theorem 4.5 Assume that 3, is coarser than T, e.g. when E is metrizable. Then, on each
uniformly bounded equicontinuous subset H of Cy(X, E), (. coincides with the topology 7s of
poIniwise CONVETgeEnce.

Proof: We may assume that H is absolutely convex. Let W be a convex (.-neighborhood
of zero. Since 3. is coarser than 7, there exists p € cs(E) such that Wi = {f € (X, E) :
| fllp < 1} € W. Consider the continuous ultra-pseudometric d on X defined by d(z,y) =
supsepr p(f(z)— f(y)) and let (A;)icr be the clopen partition of X corresponding to the
equivalence relation z ~ y iff d(z,y) < 1. Let V = T; (W) and Q = BoX \ UiE‘,Z;’B"X.
Then D = wg" (Q) is disjoint from X4. Let ¢ € cs(E),q > p, be such that V is a 8p 4
neighborhood of zero. If r > supsey || fllg, then there exist e; > 0 and a clopen set B in
Xy, with BfXa n D = 0, such that {g € Co(X4, E) : |igllq < nllgllpg < &2} C V. If
A = 77'(B), then APX C U4 and so A%X  J,.; A;"* for some finite subset J of
I. Choose z; € A;, for each i € I, and let Wo = {f € Cp(X, E) : p(f(z:)) < e1 for i € J}
Then Wo N H ¢ W. Indeed, let f € WoN H and let f* = >, ;x4 f(z:). The function
h: Xy — E,h(Z4) = f*(z) is well defined, bounded, continuous and Tgh = f*. Moreover,
If*llg £ r. If Z4 € B, then z € A and so z € A;, for some i € J, which implies that
h(Z4) = f(z:). Thus ||k||B,q < €1 and therefore h € V, ie f* € W. Also ||f — f*|l, <1 and
so f— f* € W. Thus f € W. This proves that the topology induced on H by 7s is finer than
the one induced by 8. and the proof is complete since 7, is coarser that [e.

The proof of the following Theorem is analogous to the one of the preceding Theorem.

Theorem 4.6 For p € cs(E), let 7, be the topology on Cy(X, E) generated by the seminorm
l-llp- If Bep is coarser than 7, then on Tp-bounded p-equicontinuous subsets of Cp(X, E), Be,p
coincides with the topology generated by the seminorms f — p(f(z)),z € X.

Theorem 4.7 Assume that 7, is finer than 3. and let W be a convez (.-neighborhood of
zero. Then, for each f € Cy(X, E), there are pairwise disjoint clopen sets Ai,...An in X
and z), € Ay, such that f — ._; xa, f(zr) € W.

Proof: We may assume that W is convex. Since 7, is finer than S, , there exists p € cs(E)
such that W, = {g € Co(X,E) : |lgllp £ 1} C W. Let (A;)icr be the clopen partition
of X corresponding to the equivalence relation = ~ y iff p(f(z) — f(y)) < 1. Let h; =
XA Ti € Ai, f* = 3, crhif(zi). Then f — f* € W;. The ultra-pseudometric dlx i) =
sup; |hi(z)—hi(y)| is continuous and so V = T, * (W) is a -neighborhood of zero in Cy(Xg, E).
Let @ = B X\, Eﬁ X and D = wg"(Q). Then D is disjoint from X; and hence there exists
g € cs(E) such that V is a 8p g-neighborhood of zero. There are ¢ > 0 and a clopen subset
A of X, with APXan D = @, such that

{9 € Co(Xa, B) : llgllq < [Ifllg: llgllag < e} V.

If B = n;1(A), then BPX C |, ;%% and so Bf%X ¢ Lles ;"% for some finite subset .J
of I. Let g = 3, hif(z:), 01 = f* — g. The function g1 : X4 — E,§1(Za) = g1(z) is well
defined, continuous and Tygi; = gi1. Since ||gi]ly < [|fllq and g1 = 0 on A, it follows that
g1 € Vandso g € W. Finally, f — g = (f — f*) + g1 € W, which completes the proof.
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5 The Dual Spaces of (Cy(X, E), 8,) and (Cy(X, E), 3,,)

We will denote by M, (X, E') the space of all m € M (X, E’) with the following property: For

each decreasing net (As) of clopen subsets of X with [, ZE’B o ., there exists p € ¢s(E)
such that m,(X) < oo and m,(A4s) — 0.

Theorem 5.1 If m € M, (X, E'), then every f € Cp(X, E) is m-integrable and the linear
functional um (f) = [ fdm, f'€ Cy(X, E), is By-continuous.

Proof: There exists a p € cs(E) such that mp(X) < 1. Let f € Cy(X, E) and € > 0. Without
loss of generality, we may assume that ||f|l, < 1. Let (A;)icsr be the clopen partition of X
corresponding to the equivalence relation =z ~ y iff p(f(z) — f(y)) < e. For J C I finite,
set By = (J;¢;4i. Then (By) is a decreasing net of clopen sets with Q = ﬂB_fe"X =
BoX \ Uier E-'B X and hence Q € Q,. Thus, there exists ¢ € cs(E),¢ = p, such that
mg(By) — 0. We now finish the proof by using an argument analogous to the one used

in the proof of Theorem 2.4.
Argueing as in the proof of Theorem 2.5, we get the following

Theorem 5.2 The map m — U, from My(X,E") to (Cp(X, E), B.)’, is an algebraic iso-
morphism.

Next we will look at the dual space of (Cy(X, E), 3,). For p € cs(E), let My ,(X.E’) be
the space of all m € M, (X, E') with the following property: For each decreasing net (A4s) of

clopen subsets of X, with [; Eﬁ"x € Q,, we have that my(A4s) — 0. Let

MUX,E)= |] Mup(X.E).
pEcs(E)

Clearly M, (X,E" Cc M, (X, E’). Using arguments analogous to the ones used in the proofs
of Theorems 2.4 and 2.5, we get the following

Theorem 5.3 a) For each m € My p(X.E'), umm is Bup-continuous and the map m — Um,
from My p(X, E') to (Co(X, E), Bup)', is an algebraic isomorphism.
b) My(X, E') is algebraically isomorphic to (Cy(X, E),B,)" via the isomorphism m — un.

Theorem 5.4 Let m € M(X,E'). Then 1) m € My(X,E") iff the following condition is
satisfied: For each clopen partition (A;)icr of X, there exzists p € cs(E), with mp(X) < oo,
such that, for each € > 0, there erists a finite subset J of I with mp(Ui¢ i) S

2) m € Myy(X,E') iff mp(X) < oo and, for each clopen partition (A;)icr of X and each
€ > 0, there ezists a finite subset J of I such that mp(Ui?_gJ A;) <e.

Proof: 1) Assume that m € M, (X, E') and let (4;)ier be a clopen partition of X. For J C I
finite, set By = [J;¢; Ai. Then Q = ﬂB_Jﬁ"X € Q. and hence there exists p € cs(F), with
mp(X) < oo, such that my(By) — 0.

Conversely, assume that the condition is satisfied and let (Bs) be a decreasing net of clopen

sets with ﬂEﬁ L Q.. There exists a clopen partition (A;)ier of X such that
each Eﬁ"x is disjoint from D. Let p € ¢s(E) be as in the condition. Given € > 0, there
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exists J C I finite such that m,(Dy) < €, where Dy = in A;. If My = X\ Dy, then
Fﬁox _ﬁox =SB X . =B X TP X
7 = J;es Ai C UsBoX \ Bs " . There exists § such that M; C BX\Bs .

Thus -B_gﬁ"X = D_J’B"X and so my(Bs) < €, which proves 1).
2) The proof is analogous to that of 1).

Remark 5.5 In view of the preceding Theorem, M, (X, E') coincides with the space M, (X, E').
introduced in [3]. In the same paper it was shown that the dual space of (Cre(X, E), B,) is
M (X, E"). '

Theorem 5.6 For a subset H of My(X, E'), the following are equivalent:

(1) H is By-equicontinuous.

(2) For each decreasing net (As) of clopen subsets of X with (s -A_gﬁ"x € Q,, there ezists
p € cs(E) such that sup,,c mp(X) < oo and mp(As) — 0 uniformly for m € H.

(8) For each clopen partition (4;)ier of X, there ezists p € cs(E), with Sup,,c i mp(X) < 0o,
such that, for each € > 0, there ezists a finite subset J of I with mp(Uié 7 Ai) < € for all
m € H.

Proof: The equivalence of (2) and (3) can be proved using an argument analogous to the one
used in the proof of Theorem 5.4.

(1)= (2). Let H° be the polar of H in Cy(X,E). Since B, < 7y, there exists g € cs(E)
such that {f € Co(X, E) : ||fllq < 1} € H°. It follows from this that sup,,cz mq(X) < oo.

Let now (As) be a decreasing net of clopen sets with Q@ = [, A_gﬁ"x € Q,. Since H® is a
By-neighborhood of zero, there exist p € cs(E),p > ¢, and h € Cg such that Wy = {f €
Co(X,E) : ||hfllp £ 1} C H°. We will prove that lims m,(As) = 0 uniformly for m € H. So
let 4 be a non-zero element of K. The set D = {z € B, X : |h%(z)| < |u|} contains Q and
so it contains some ﬁf"x . If now A is a clopen subset of X contained in As and s € E with
p(s) < 1, then p~lxas € Wy and thus |m(A)s| < |u| for all m € H. If A € K, |A] > 1, then
mp(As) < |pA|, which proves that m,(As) — 0 uniformly for m € H.

(2)= (1). Let Q € Q. There exists a decreasing net (As) of clopen subsets of X such that
ﬂfi?"X = Q. Let p be as in (2) and let d > sup,,cgy mp(X). Given r > 0, there exists a ¢
such that m,(As) < 1/r for all m € H. If B = X \ As, then BfX is disjoint from Q and
{f € Cy(X,E): |Ifllo £ \IfllBp < 1/d} C H®, which proves that H is a 8g -neighborhood
of zero. It follows that H° is a (,-neighborhood and so H is (3,-equicontinuous.

The proof of the following Theorem is analogous to the one of the preceding Theorem.

Theorem 5.7 For a subset H of My (X, E’) and p € cs(E) the following are equivalent:
(1) H is By p-equicontinuous.

(2)  supey mp(X) < oo and for each decreasing net (As) of clopen subsets of X with
Ns A—53°X € Q,, we have that my(As) — 0 uniformly for m € H.

(8) sup,ecpymp(X) < oo and for each clopen partition (A;)ier of X and each € > 0, there
exists a finite subset J of I such that mp(Uiej A;) < e for eachm € H.
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6 The Dual Spaces of (Cy(X, E), 8.) and (Cy(X, E), B,)

Theorem 6.1 Assume that 8. is coarser than T, and let u be a (B¢-continuous linear form
on Cy(X,E). Let m € M(X,E') be such that u(f) = [ fdm for all f € Cro(X, E). For
f € Co(X,E) and A € K(X), set |m|s(A4) = sup{|m(B)f(z)| : z € X,B € K(X),B C A}.
If (A)ier is a clopen partition of X, then:

(1) Foreach g € Cy(X, E) of the formg = x4,5i, si € E, we have that u(g) = >, m(A;)s;.
(2) For'eache>0, theset  ={i€l: Em[f(Az) > e} is finite.

(3) If z; € A;, then the function f* =3, xa,f(z:) is m-integrable.

Proof: (1) TFor J C I finite, let hy = > ;-7xa;5. The set {hy : J finite} is uni-
formly bounded, equicontinuous and h; — g pointwise. By Theorem 4.5, we have that
Picg m(Ai)si = u(hy) — u(g)-

(2) For each %, there exist a clopen subset B; of A; and z; € X such that |m(B;)f(z:)| =
|m|s(4;)/2. The set B = U;B; is clopen. Using (1), we get that u(} ;x5 f(z:)) =
> icr ™(Bi)f(z;). There exists a finite subset J of I such that |m(B;)f(z;)| < e/2ifi & J.
For such i, we have |m|s(A4;) < € and soi ¢ L.

(3) Lete>0and D= U; 1, Ai Let {D1,...,Dn} be a clopen partition of X, which is a
refinement of {A4; : 4 € Ie}U{D}, and let y;, € Dk We may assume that [ J,_; Dr = U;cr. Ai-
Then > _; m(Di) f*(yk) = Ziel m(A;)f(z;). Let A be a clopen subset of D and z € A.
Using (1), we get that m(4) f*(2) = > ;7 m(ANA;)f*(2). But, for s ¢ I, |m(ANA;) f*(2)| <
|m|f(A;) < e. Thus |m(A)f*(z)| < € and so |Zk_r+1 m(Dy) f*(yr)| < €, which implies that
|ZkN=1 m(Dy) F*(yk) — Dier, M(Ai) f(z:)| < e. Tt clearly follows that f* is m-integrable.

Theorem 6.2 Assume that 3. is coarser than T, and let u and m be as in the preceding
Theorem. Then: (1) Every f € Cy(X, E) is m-integrable.

(2) If (Ai)ier is a clopen partition of X and (s;)ic; o bounded family in K, then for
9= xa,8, we have that [ gdm = u(g) = >, m(4;)s;.

(8) u(f)= [ fdm for each f € Cy(X, E).

Proof: (1) Let € > 0 and let p € cs(E) be such that my(X) < 1. Let (A;)ier be the clopen
partition of X which corresponds to the equivalence relation z ~ y iff p(f(z) — f(y)) < e
Let z; € A;, f* = . xa,f(z:). Since f* is m-integrable, there exists a clopen partition
{Z1,...,2Z,} of X and 2z € Zj such that, for each clopen partition {D1,... ,Dn} of X,
which is a refinement of {Zi,...,2,}, and any y; € Dj, we have | > p_; m(Zx)f*(2) —
Z?jzl m(D;) f*(y;)| < e. Since, for h = f — f*, we have |m(A)h(z)| < € for all A € K(X) and
all z € X, we have that | 2, m(D;) f(y;) — Sop_; m(Ze) f(2k)| < €, which proves that f is
m-integrable.

(2) Given € > 0, there exists a finite subset J, of I such that |m|q(4;) < eif i ¢ J,. If
the clopen set A is disjoint from D = [J;c; Ai, then [m(A4)g(z)| < e for all z € X. Also
there exists a finite subset J of I conta,ining J, such that |u(g) — > ;cym(4i)si| < e If
h =37 XASi; then | [ hdm| < € and so | [ gdm — 3 ,cym(Ai)s;i| < €, which implies that
| [gdm — u(g)| < e.

(3) Let f € Cyp(X,E) and € > 0. There exists p € cs(E) such that m,(X) < 1 and W7 =
{9 € Cy(X,E) : |lgllp < 1} C {g : |u(g)] £ 1}. Let (A;)icr be the clopen partition of
X corresponding to the equivalence relation =z ~ y iff p(f(z) — f(y)) < e. Choose z; €
A; and let f* = S xa,f(zi),h = f — f*. There exists a finite subset J of I such that
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lu(F*) =3 ey m(A) f(z:)] < eand |m|;(4;) < eifi ¢ J. If D = J;c; Ai and Z = X\ D, then
| [z f*dm| < e and [, f*dm = 3=, ;m(A;) f(z:) and so |ff*dm Y ierm(A) flx:)| £ e
Thus | [ f*dm — u(f*)| < e. If |A| > 1, then |u(h)| < €|A| and | [ hdm| < €. It follows that
| [ fdm — u(f)| < €|A|, which clearly completes the proof.

By the above Theorem, we have the following

Theorem 6.3 If 8. is coarser than T,, then there ezists a subspace Me(X, E') of M(X,E’)
such that every f € Cy(X, E) is m-integrable for every m € Me(X, E') and the map m — U,
from M.(X,E’) to (Co(X, E), B)', is an algebraic isomorphism.

Conjecture 6.4 If 8. is coarser than T, then M (X, E") = M, (X, E').

For p € ¢s(E), d a continuous ultra-pseudometric on X and A a d-clopen subset of X, we
define
|m|gp(A) = sup {% p(s)£0,BC A, B d— clopen}
Also, for Y C X, we define |m[] (Y) to be the infimum of all sup, mqgp(An), where the
infimum is taken over all sequences (A,) of d-clopen sets which cover Y. We will need the
following

Theorem 6.5 Let (Z,d) be an ultrametric space and assume that E has the countable neigh-
borhood property. If m € M.(Z,E'), then there ezists p € es(E), with mp(Z) < oo, and a
d-closed, d-separable subset G of Z such that |m|j,(Z\ G) = 0.

Proof: For Y C Z finite and € > 0, set N(Y,¢) = {z € Z : d(z,Y) < ¢}. The family
{Z\N(Y,¢): Y finite} is downwards directed to the empty set. Since m € M,(Z, E’), there
exists ¢ € cs(E), with mg(Z) < oo, such that limy |m|q4(Z \ N(Y,¢) = 0. Hence, there
exists an increasing sequence (p,) in cs(E) such that limy |m/|qp, (Z\ N(Y,1/n) = 0 for all n.
Since E has the countable neighborhood property, there exist p € cs(E) and a sequence (i)
of non-zero elements of K such that p > |un|pa for all n. For each k, choose an increasing
sequence (Yjn)n of finite subsets of Z such that |m|gp, (Z \ N(Yin, 1/k)) < |pk|/n for all n.
Let Dp = Up(Z \ N(Yin,1/k)),M =, Z\ Dy and G = M. We have

Imlap(Z \ NV 1/K)) < el 7 Imlap, (2 \ N(Yin, 1/K)) < 1/n.

Thus |m[},(Z\ G) = 0. Also, G is d-separable. Indeed, let x € G and € > 0. There exists
yeM w1th d(z,y) < €. Let n be such that y ¢ D,. Choose k > 1/e. Since y € N(Yin,1/k),
there exists z € Yy, with d(z,y) < 1/k < € and so d(z,z) < €. It follows that G is contained
in L, where L = |,  Yin- Since L is separable, its subspace G is also separable. This
completes the proof.

Let M, (X, E') be the space of all m € M (X, E’) with the following property: For each
continuous ultra-pseudometric d. on. X, .there exist p € c¢s(E), with my(X) < co , and a
d-closed, d-separable subset G of X such that |m[} (Z\G) =0.

Theorem 6.6 If . is coarser than 7, and E has the countable neighborhhod property, then
every m € M.(X, E') is in Ms(X, E").

17
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Proof: Let d be a given continuous ultra-pseudometric on X. Since up, is Be-continuous, T tm,
is B-continuous on Cy(Xg4, E). Thus, there is 4 € M, (X4, E') such that [ gdu = [(Tyg)dm
for all g € Cp(Xg, E). By the preceding Theorem, there exists a d-closed, d-separable subset
Z of X4 such that |,u|2-’p(Xd \ Z) = 0. The set G = 7;'(Z) is d-closed, d-separable and

mlgp(X \G) = 0.

We will look next at the dual space of (Cy(X, E),B.). For p € cs(E), we denote by
M p(X, E') the space of all m € M, ,(X, E’) with the following property: For each continu-
ous ultra-pseudometric d on X, there exists a d-closed, d-separable subset G of X such that
m[3,(X \ G) = 0. Let M, (X, E’) UM (X, E'). For the proof of the following theorem
we may use an argument analogous to the one used in the proof of Theorem 6.5. Note that in
the next Theorem we don’t need to assume that F has the countable neighborhood property.

Theorem 6.7 Let (Z,d) be an ultrametric space and let p € cs(E) and m € M. ,(Z,E').
Then there ezists a d-closed, d-separable subset G of Z such that |m[} (Z\ G) =0

Theorem 6.8 If E is metrizable, then M (X, E') is algebraically isomorphic to the dual
space of (Cb(X7 E): ﬁe,p)‘

Proof: Let u be in the dual space of (Cy(X, E), Bep). By Theorem 6.3, there exists m €
M.(X,E’) such that u(f) = [ fdm for all f € Co(X,E). Since fep < P1p, m is in
Mqsp(X,E') (see Theorem 2.17). We will show that m € M;,(X,E’). So, let d be a
continuous ultra-pseudometric on X. Since Ty is B, — B, continuous, Tju is Sp-continuous
on Cy(Xg4,E) and so there exists p € M. p(Xg, E') such that fgd,u =< Tyg,u > for all
g € Cy(Xg4, E). In view of the preceding Theorem, there exists a d-closed, d-separable sub-
set Z of Xy with |,uu[* (Xd \ Z) = 0. The set G = 7;(Z) is d-closed, d-separable and

Im[3,(X\ G) =0, which proves that m € M ,(X, E'). Conversely, let m € M,,(X, E')
and let d be a continuous ultra-pseudometric on X. Define p = pg : K (Xd) — E' pu(A4) =
m(r7'(A)). Then p € Mgp(Xa, E') since m € My p(X, E').
Claim I p € Mrp(Xg4, E'). Indeed, let (V) be a net of clopen subsets of Xy which de-
creases to the empty set. By our hypothesis, there is a d-closed, d-separable subset G of X
such that |m|; (Z\ G) = 0. Given € > 0, there is an increasing sequence (Z,) of d-clopen
subsets of X covering X \ G and such that |m|qp(Z,) < € for all n. If M = m4(G) and
An = m4(Zy), then M is closed and separable in X4 and X4\ M C |J An. Moreover, each
Ap is clopen in Xy and |p|j,(An) < €. Since M is separable, there exists an increasing
sequence (6,) such that M C U;2;(Xa\ Vs,). Now Vs, (Xa\ Ar) | @ and hence there
exists n with |u|z,(Vs, N (Xa\An)) < ¢, which, together with the |u|;,(An) < ¢, implies that
|| 5 dp (Vs,) <e. ThlS proves our claim.
Let now d,d; be continuous ultra-pseudometrics on X, with d < d;, and let f € Cy(X, E)
be d-continuous. The functions h,hy : Xqg — E,h(Z4) = f(z) = h1(Z) are well defined and
continuous. Morerover [ hdug = f hidug,. Indeed, let ¢ : Xy, — Xg4,Zq, = Z4. Then ¢ is
continuous and 7y = gomy,. Let S : Cp(Xg, E) — Cb(Xdl,E) be the induced linear map.
Then S is B, — 3, continuous. Let vy : Cp(Xag, E) — K, va(g = [gdug and vg, : Cp(Xgq,, E) —
K, v4,(g) = [ gdpa,. Then S*vg, = vg. Since < S*vg,, h > < Vg, Sh >=< vq;, b1 >, we get
that vg(h) = vg, (R1)-
Let d, be an ultrametric on E generating its topology. If f € Cy(X, E), then we have a con-
tinuous ultra-pseudometric on X defined by d(z,y) = do(f(z), f(y)) and f is d-continuous.
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If h: Xy — E,h(Z4) = f(z), then h is well defined continuous and Tzh = f. Now we define
um on Cy(X, E) as follows: For f € Cy(X, E), choose a continuous ultra-pseudometric d on
X such that f = Tyg for some g € Cy(Xg4, E). Define un,(f) = [ gdug. As we have shown
above, u,, is well defined and linear.

Claim II: u, is Bep-continuous. In fact, let W = {f € Co(X, E) : |um(f)| < 1} and let d
be a continuous ultra-pseudometric on X. Then V = {g € Cp(Xy, E) : | [ gdpq| < 1} is a
Bp-neighborhood of zero in Cy(X4, E) and Ty(V) C W, which proves our claim.

Now there exists m; € Mgy ,(X, E') such that un,(f) = [ fdm; for each f € Cp(X,E) It
is easy to see that mi(A)s = m(A)s for each clopen subset A of X and each s € E and so
m = m,. It follows that every f € Cy(X, E) is m-integrable and u,,(f) = [ fdm and so un,
is B, p-continuous. This completes the proof.

From the preceding Theorem we get

Theorem 6.9 If E is metrizable, then Ms(X, E') is algebraically isomorphic with the dual
space of (Cy(X, E), B.) via the isomorphism m — Um.

Theorem 6.10 Assume that E is metrizable and let m € My p(X, E’). Then:

(1) If (A))ser s a clopen partition of X, then, for each € > 0, the set I = {i € I : mp(4;) > €}
is finite. Moreover, m € M, (X, E’).

(2) Mop(X,E') = Myp(X, E').

Proof: (1) let A € K,|A\| > 1. For each ¢, there exist a clopen subset B; of A; and s; €
E,p(s; < 1, such that |m(B;)si| > (2|A])"Imy(A;). For J C I finite, set g7 = > ;c 7 XB,5:-
If g =3 ,c7 XB;Si, then g5 — g pointwise. The family {g; : J finite} is 7-bounded and
p-equicontinuous. In view of Theorem 4.6, we have that [ gdm =lim; [ gsdm = 3, m(B;)s;.
Given now € > 0, there exists a finite subset J of I such that |m(B;)s;| < oy for @ ¢ J, and
hence I, C J.

Let now B be a clopen subset of | J;4;, A;. Foreach s € E, we have m(B)s = 341, m(AiNB)s.
Since, for i ¢ I, and p(s) < 1, we have |m(A; N B)s| < ep(s), it follows that my(D) < e. By
Theorem 5.5, m € My p(X, E').

(2) If u € Myp(X, E'), then the map u,, is By p-continuous and hence B p-continuous, which
implies that u € M,,(X, E).

Corollary 6.11 If E is metrizable, then Ms(X, E") = M (X, E') is the common dual space
of Cy(X, E) under the topologies ., and [,,.

Theorem 6.12 Let E be metrizable and let H be a subset of Ms(X,E’). Then H is 3,-
equicontinuous iff it s B.-equicontinuous.

Proof: Assume that H B.-equicontinuous. Then there exists p € cs(E) such that H is [ p-
equicontinuous. Since Bep < Tp, it follows that sup,,cgmp(X) > oo. Let now G € Q,

and let (A;);er be a clopen partition of X such that every }Lﬁ X i disjoint from G. For
each.i, there exist a clopen subset. B; of A; and s; € E,p(s;) < 1, such that |m(B;)s;| >
(2IA]) " sup,er mp(A;) (where [A| > 1). For J C I finite, set hy = > ;. ;XB,;Si- The net
(hy)s is Tp-bounded and p-equicontinuous. Moreover hy — h = } ..; xB,s; pointwise. Let
1 be a non-zero element of K. There exists a finite subset J, of I such that h —hy € uH®
if Jo € J. It follows that sup,egy mp(4i) < 2[pA] if i € Jo. If D = ;¢ , Ai, then we get

19
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that m,(D) < 2|u)| for all m € H. If now 7 > 0, then there exists J C I finite such that
mp(D) < 1/r, for all m € H, where D = Uiy A;. The set A = | ;o7 A; is clopen and its
closure in ,X is disjoint from G. Moreover {f € Co(X, E) : ||fllp < 7 | fllap < 1/a} C H®,
where o > sup,,cg mp(X). This proves that H° is a B¢ -neighborhood of zero and so it is
(3. -equicontinuous. Since 3., is coarser than 3;, the result follows.
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Abstract

In this paper, we shall establish sufficient conditions for the controllability of
second order delay integrodifferential inclusions in Banach spaces, with nonlocal
conditions. By using suitable fixed point theorems we study the case when the
multivalued map has convex as well nonconvex values.

Key words and phrases: Controllability, mild solution, contraction multivalued

map, nonlocal condition, fixed point.
AMS (MOS) Subject Classifications: 93B05.

1 Introduction

In this paper, we shall establish sufficient conditions for the controllability of second
order delay integrodifferential inclusions in Banach spaces, with nonlocal initial condi-
tions. More precisely we consider the following semilinear system of the form

Y — Ay € fo "K(t, ) F(s,u(o(s)))ds + (Bu)(z), te€J=10,b] (1)

y(0) + f(y) = vo, ¥'(0) =, (2)

where F' : J x E — P(E) is a multivalued map, ¢ : J — J is a continuous function
such that o(t) < t,Vt € J, K : D — IR, D = {(t,s) € I xJ : t = s}, [
C(J,E) — E is a continuous given function, A is a linear infinitesimal generator
of a strongly continuous cosine family {C(¢) : ¢ € IR} in a separable Banach space
E = (E,|-|),y0,n € E. Also the control function u(-) is given in L?(J,U), a Banach
space of admissible control functions with U as a Banach space. Finally B is a bounded
linear operator from U to E.
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The pioneering work on nonlocal evolution Cauchy problems is due to Byszewski.
As pointed out by Byszewski [12], [11] the study of initial value problems with nonlocal
conditions is of significance since they have applications in problems in physics and
other areas of applied mathematics. In fact, more authors have paid attention to the
research of initial value problems with nonlocal conditions, in the few past years. We
refer to Balachandran and Chandrasekaran [2], Byszewski [11], [12], Ntouyas [26] and
Ntouyas and Tsamatos [24], [25].

Initial value problems for second order semilinear equations with nonlocal condi-
tions, were studied in Ntouyas and Tsamatos [25] and Ntouyas [26].

Recently, the authors in [4] studied the controllability of second order differential
inclusions in Banach spaces with nonlocal conditions, in the case where the multival-
ued map has bounded, closed and convex values, by using the fixed point theorem of
Martelli [23]. In this paper, we extend the results of [4] to second order delay integrodif-
ferential inclusions in Banach spaces with nonlocal conditions, when the multivalued F
has convex or nonconvex values. In the first case a fixed point theorem due to Martelli
is used and in the later a fixed point theorem for contraction multivalued maps, due
to Covitz and Nadler [15].

For other recent controllability results for first and second order differential and
integrodifferential inclusions in Banach spaces with nonlocal conditions see [5]-[10].

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multi-
valued analysis which are used throughout this paper.
C(J, E) is the Banach space of continuous functions from J into £ normed by

lylleo = sup{|y(t)| : t € J}.

B(E) denotes the Banach space of bounded linear operators from E into E.

A measurable function y : J — E is Bochner integrable if and only if |y| is
Lebesgue integrable. (For properties of the Bochner integral see Yosida [29]).

L*(J, E) denotes the Banach space of measurable functions y : J — E which are
Bochner integrable normed by

b
||y||L:=_/(; ly(t)|dt for all y e L(J, E).

Let (X,]|-|) be a Banach space. A multivalued map G : X — P(E) is convex (closed)

valued if G(z) is convex (closed) for all z € X. G is bounded on bounded sets if

G(B) = UgepG(z) is bounded in X for any bounded set B of X, that is sup{sup{|ly|| :
zeB

y € G(z)}} < co. G is called upper semicontinuous (u.s.c.) on X if, for each zo € X,
the set G(zo) is a nonempty, closed subset of X, and if, for each open set V' of X
containing G(2¢), there exists an open neighbourhood U of zo such that G(U) C V.
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G is said to be completely continuous if G(B) is relatively compact for every bounded
subset B C X. If the multivalued map G is completely continuous with nonempty
compact values, then G is u.s.c. if and only if G has a closed graph (i.e. z, —
Zo, Un — Yo, Un € G(zn) imply yo € G(zp)). G has a fized point if there is x € X
such that z € G(z).

PX)={Y e P(X):Y #0}, Pu(X)={Y € P(X):Y closed}, PFy(X) =
{Y € P(X):Y bounded}, and F.(X) = {Y € P(X) : Y convex}. A multivalued -map
G : J — Py(X) is said to be measurable if for each z € X the functionY : J — IR,
defined by

Y (t) =d(z,G() = inf{|z — 2| : z € G(1)},

is measurable. For more details on multivalued maps we refer to the books of Deimling
[16], Gorniewicz [19] and Hu and Papageorgiou [21].

An upper semi-continuous map G : X — P(X) is said to be condensing if for
any subset B C X with a(B) # 0, we have a(G(B)) < «(B), where a denotes the
Kuratowski measure of noncompacteness. For properties of the Kuratowski measure,
we refer to Banas and Goebel [3]. We remark that a completely continuous multivalued
map is the easiest example of a condensing map.

We say that a family {C(t) : t € IR} of operators in B(FE) is a strongly continuous
cosine family if
(i) C(0) = I (I is the identity operator in E),
(ii) C(t+s) + C(t — s) = 2C(t)C(s) for all s,t € IR,
(iii) the map t — C(t)y is strongly continuous for each y € E;

The strongly continuous sine family {S(t) : t € IR}, associated to the given strongly
continuous cosine family {C(¢) : t € IR}, is defined by

L
Sty = [0 C(s)yds, y€ E, teR.

The infinitesimal generator A : E — E of a cosine family {C(¢) : t € IR} is defined
by
d2
Ay = Efc(t)ylt=o'
For more details on strongly continuous cosine and sine families, we refer the reader
to the book of Goldstein [18], Heikkila and Lakshmikantham [20], Fattorini [17] and to

the papers of Travis and Webb [27], [28].
3 Existence result: The convex case
Assume in this section that F : J x E — P(FE) is a bounded, closed and convex valued

multivalued map.
We will need the following assumptions:
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(H1) A isthe infinitesimal generator of a given strongly continuous and bounded cosine
family {C(t) : t € J} with M = sup{|C(t)|;t € J};

(H2) F: JxE — Byu.(E);(t,y) — F(t,y) is measurable with respect to ¢ for each

y € E, u.s.c. with respect to y for each t € J and for each fixed y € C(J, E) the
set

Sry=1{9 € L}LE): g(t) € F(t.y(o(?))) forae. t € J}

is nonempty;
(H3) there exists a constant L such that

|f(w)| < L, foreach ye C(J,E);

(H4) for each t € J, K(t,s) is measurable on [0,¢] and
K(t) = ess sup{|K(t,s)], 0<s<t},
is bounded on J;
(H5) the map t — K; is continuous from J to L®(J, IR); here K;(s) = K (¢, s);
(H6) o : J — J is a continuous function, such that o(t) <t,Vte J

(H7) The linear operator W : L*(J,U) — E, defined by
b
Wu = f S(b — s)Bu(s) ds,
0

has an invertible operator W~ which takes values in L*(J,U)/kerW and there
exist positive constants M; and M, such that |B| < M; and W~ < M.

(H8) ||F(t,v)|| := sup{|v| : v € F(t,4)} < p(t)u(|y|) for almost allt € J and all y € E,
where p € L}(J,IR.) and ¢ : IR, — (0, 00) is continuous and increasing with

b o du
Mbst,IEJIJ)K(t)/Op(s)ds< ] m:

where ¢ = M (|yo| + L + Mb|n| + My) and

My = bMyMy[|zi|+ L + Mlyo| + ML +bM]n|.

+bMsup K(2) [ pls)9(ly(s))ds]

teJ
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(H9) For each bounded set D C C(J, E), and ¢t € J the set

t s
{Ct)wo — 1@)) + S+ [ St—s) [  K(s,wg(u)duds : g € Sro}
0 0
is relatively compact in E, where Spp = U{SF, : y € D}.

Remark 3.1 (i) If dimE < oo, then for each y € C(J, E) the set Sgy is nonempty
(see Lasota and Opial [22]).
(ii) If dimE = oo and y € C(J, E) the set Spy is nonempty if and only if the function
Y :J — IR defined by

Y(t) :=inf{|v| : v € F(t,y)}
belongs to L'(J,IR) (see Hu and Papageorgiou [21]).
(iti) Ezamples with W : L*(J,U) — E such that W™ ezists and is bounded are dis-
cussed in [13].
(iv) If we assume that C(t), t > 0 is completely continuous then (H9) is satisfied.

Definition 3.1 A function y € C(J, E) is said to be a mild solution of (1)-(2) on
J if there ezists a function v € L*(J, E) such that v(t) € F(t,y(o(t))) a.e. on J

y(0) + f(y) = o, and

y(®) = Clhwo—CWF() +Shn+ [ St —s)(Bu)(s)ds
+Lt8(t ) /OS K(s,m)v(r)drds.

Definition 3.2 The system (1)-(2) is said to be nonlocally controllable on the interval
J, if for every yo,n,z1 € E, there exists a control u € L*(J,U), such that the mild

solution y(t) of (1)-(2) satisfies y(b) + f(y) = z1.

The following lemmas are crucial in the proof of our main theorem.

Lemma 3.1 [22] Let I be a compact real interval and X be a Banach space. Let F

be o multivalued map satisfying (H2) and let T’ be a linear continuous mapping from
LYMI,X) to C(I,X), then the operator

FoSp:C(I,X)— BulC(, X)), y— (T'oSr)(y) :=T(Sky)
is a closed graph operator in C(I,X) x C(I,X).

Lemma 3.2 [23]. Let X be a Banach space and N : X — PBya.(X) an u.s.c.
condensing map. If the set

Q:={yeX: ye N(y) for some A>1}

18 bounded, then N has a fized point.
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Theorem 3.1 Let f : C(J, E) — E be a continuous function. Assume that hypothe-

ses (H1)-(H9) are satisfied. Then the problem (1)-(2) is nonlocally controllable on
J.

Proof. Using hypothesis (H7) for an arbirtary function y(-) define the control
u(t) = Wz — f(y) — CB)wo + C(B)f(y) — S(B)n
b s !
— ['5t-s) [ K(s,m)g(r)drds](®),
0 0

where
g€ Spy={g€ L'(J,E): g(t) € F(t,y(o(2))) forae. te€ I}

We shall now show that when using this control, the operator N : C(J,E) —
P(C(J, E)) defined by

N@)={heCULE):ht)) = Cl)wo—F@)+5On+ [ SE—s)(Buy)(s)ds
+ /Dt S(t—s) /OSK(S,T)Q(T) drds: g € Sﬂy}

has a fixed point. This fixed point is then a solution of the system (1)-(2).
Clearly z1 — f(y) € N(y)(b)-

We shall show that N satisfies the assumtions of Lemma 3.2. The proof will be
given in several steps.

Step 1: N(y) is convex for each y € C(J, E).

Indeed, if A1, hy belong to N(y), then there exist g1, g2 € Sry such that for each
t € J we have

h(t) = C)wo— Fw) + S+ [ S(t—)(Buy)(s)ds
+f: St —s) [ K(sma(r)drds, i=1,2
Let 0 < o < 1. Then for each t € J we have
(b + (- a)h)(®) = C(0)(wo— Fu)+ SO+ [ St = 5)(Buy)(s)ds
+ [ “St—s) [ (s Dlags(r) + (1 - @)ga(r)ldrds
Since Sp, is convex (because F has convex values) then

ah1 + (1 = O!)hg S N(y)
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Step 2: N is bounded on bounded sets of C(J, E).

Indeed, it is enough to show that there exists a positive constant [ such that for
each h € N(y),y € B, = {y € C(J,E) : ||yl < 7} one has ||h||c <. If h € N(y),
then there exists g € Sgy such that

WD) = O~ fW)+ S5O0+ [ St s)(Bu)(s)ds

—i—/tS(t—s)sz(s T)g(r)drds, te J
0 0 bl 3
By (H3)-(HT7) we have for each t € J that

AOl < 101l + ICOIFW]+ SOl + | [ St - 9)(Bu)(e) ds

+

/ ‘St —s) | * K(s,7)g(r)drds

M |yo| + ML + Mb|n|

AN

DM M Ms||zy| + L+ Mlyo| + ML + bM|n|

+Mbstg? K(t)lpl s igw(ly(t)l)]

¢ [ [ 15 (s, 0lpwb (oo (w))duds

Myo| + ML + bln|

IA

+b MM, My[|z1| + L+ Mlyo| + ML + bM|n|

+Mbsup K (t)||pl| 2t sup ¥ (|y(t)])]
teJ teJ

+Mbsup K (t)|p| 2 sup ¥(|y(¢)])-
teJ teJ

Then for each h € N(y) we have
[Plleo < Mlyo| + ML+ bln| + MMo + Mbsup K (£)][p]|z» sup ¥ (jy(£)])]

+Mbsup K (t)|p|r: sup ¥ (|y(t)]) == 1.
teJ teJ

Step 3: N sends bounded sets of C(J, E) into equicontinuous sets.

Let t1,ts € J,t; < ty and B, be a bounded set of C(J, E). For each y € B, and
h € N(y), there exists g € Sg, such that

AD) = ClH)w— F) + SO0+ [ St = 9)(Bu,)(s)ds
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+ /: S(t—s) fos K(s,7)g(r)drds, te€ J
Thus
[R(t2) = h(t1)] < [(C(te) = C(t1))yol + LIC(t2) — Ct1)| + |S(E2) — S(E)|Iml

fotz [S(ta—s) — S(t1 — s)] BW™ [ — f(y) — C(b)yo

|
+OOS@) SO0 ~ [ 50-9) [[ ks, mr)ards|(n)in

[ 5t~ 9)BW 1 — £(y) = COYyo + CBI ) = S

t1

+

+[)b S(b—s) fos K(S,T)Q(T)drds] (”ﬁ)d’f?‘

/Otz[S(tg—s L‘l—-s]/ T)drds

“|

ftz S(t; —s) fos K(s,r)g(r)dfdsH

t1

|C(t2) = Clta)llyol + LIC(t2) — C(ta)] + [S(t2) — S(t)lIn|

_|_

IA

+ [ 15 — ) = S(t = )| MuMa[Jes| + L+ Mo
b

+ML+bMn| + Mbsup K (1) [ p(s)(ly(s)])ds] (n)a

+/ S(ts — )| My My[|ar] + L+ Mlyo| + ML+ bM]n|

b
+Mbsup K (2) [ p(s)u(ly(s)))ds] (m)an

teJ

/:2 [S(t2 — s) —s ]f T)drds

+ sup K(t)
teJ

+M sup K (t)(ts — t1) / llg(s)|lds.
teJ
As t, — t; the right-hand side of the above inequality tends to zero.

As a consequence of Step 2, Step 3 and (H9), together with the Arzela-Ascoli
theorem, we can conclude that N is completely continuous, and therefore, a condensing
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multivalued map.
Step 4: N has a closed graph.

Let yp, — Yx, hn € N(yn), and h, — h.. We shall prove that h. € N(y.).
h, € N(y,) means that there exists g, € Spy, such that

halt) = C(eho— COF(gn) + Sa+ [ S(t = 5)(Buy,)(s)ds
+f0t S(t — s) /0 K(s,7)gn(r)drds, t€J,
where
U (t) = Wi[n = f(v) — C(B)yo + C(b)f(yn) — S(b)n
~ ['st-9) [ K(s.m)an(r) drds] 1)

We must prove that there exists g. € Sgy, such that

hi(t) = Cltlo— C)f(w) + St + [ St 5)(Buy)(s)ds
+ [[St-s) [ K(s.r)g.(r)rds, e,
where

uy (£) = Wln— f(y.) — CO)yo + C(0)f(w) — S(b)n

_/ObS(b— ) fos K(s,7)gx(T) des] (2).

Set
T, (8) = Wi — £(y) — C()wo + C(b)f(y) — S®))-

Since f, W~! are continuous, then u,, (t) — T.(t) for t € J.
Clearly we have that

(1 = Clewo + @) (w) = SCer— [ St = 5)(B,,)(5)ds)

= (h— COo+ CO)F (@) = St - [ S(t = 2)(BT)(5)ds)], O

as n — oo.
Consider the operator
I:LYJ,E)— C(J.E)
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g—T(g)(t) = fot S(t—s) [BW‘I(/b S(b—s) []S K(s,T)g(T)des) (s)]ds

0

t s
+ /0 S(t— s) / K(s,7)g(7)drds.
0
Clearly, I is linear and continuous. Indeed one has

[Tollee < VM sup K () 0MM:Ms + 1)lgles.

;From Lemma 3.2, it follows that I" o Sr is a closed graph operator.
Moreover, we have that

n(®) = C(8) + C()(wa) ~ S0 = [ (¢ — )(BT,)(s)ds € T(Sky).

Since Y, — ¥x, it follows from Lemma 3.2 that

ha(t) ~ Clt)yo + CW)F(w) — SO — [ S(t = 9)(BT,)(e)ds

/ (t—s) {BW 1 bSb——s /0 Kz rio drds)(s)]ds

0

+ /0 (t—s) / K(s,7)gu(T)drds

0

for some g, € Sry..

Step 5: The set
Q:={yeC(J,E): \y € N(y), for some A>1}

is bounded.

Let y € Q. Then Ay € N(y) for some A > 1. Thus there exists g € Sry such that
y(t) = AC(E)yo— ATICE)Fy) + AT S ()

37 [ 8(t = 9)BW [o1 = 1) — C(blao + COIFB) + St
— /Ob S(b—s) /ﬂs K(s,7)g(T) d’rds] (m)dn

t 5
-1 .
4k [0 S(t - s) /0 K(s,7)g(r)drds, t € J.
This implies by (H3)-(H8) that for each ¢ € J we have
() < Mlyo| + ML+ bM|n|
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+bM My My ||| + L + Mlyo| + ML + bM]n|
b
+oMsup K (2) [ plsy(ly(o(s))])ds]
teJ 0

+M /Ot /OS K(s,7)g(7)drds

M|yo| + ML + bM|n|

IA

+bM My My ||z | + L+ Mlyo| + ML+ bM|n|

oM sup K@) [ pl)b(ly(o(s)])ds]

teJ
+Mbsup K (1) [ pls)b(ly(o(s))ds.
teJ 0

Let us take the right-hand side of the above inequality as v(t), then we have
v(0) = Mlyo| + ML + MM,, |y(t)] <v(t), t € J,

and

v'(t) = Mbsup K (t)p(t)(ly(a(®))]), t € J.

teJ
Using the nondecreasing character of ¢ and the fact that o(t) <¢,Vt € J we get

v'(t) < Mb su?K(t)p(t)w(v(t)), ted.

This implies for each t € J that

v(t) du B ®©  du
—— < Mbsu Kt/ sds<[ —_
j«,(o} ¥ (u) et 0 0 pls) v(0) P(w)
This inequality implies that there exists a constant d such that v(t) < d, ¢t € J, and
hence ||y||oc < d where d depends only on the functions p and +. This shows that (2 is
bounded.

Set X := C(J,E). As a consequence of Lemma 3.2 we deduce that N has a fixed
point and thus the system (1)-(2) is nonlocally controllable on J. N

4 Existence Result: The nonconvex case

In this section we consider the problems (1)-(2), with a nonconvex valued right hand
side.
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Let (X, d) be the metric space induced from the normed space (X, |- ).
Consider Hy : P(X) x P(X) — IR; U {co}, given by

Hy(A, B) = max {sup d(a, B),supd(A, b)} ;
a€A beB
where d(A,b) = '11€1£ d(a,b), d(a,B) = gg d(a,b).
Then (P (X), Hy) is a metric space and (P (X), Hg) is a generalized metric space.
Definition 4.1 A multivalued operator N : X — P,(X) is called

a) ~y-Lipschitz if and only if there exists v > 0 such that

Hy(N(z),N(y)) < vd(z,y), foreachz, y€ X,

b) contraction if and only if it is y-Lipschitz with v < 1.

¢) N has a fixed point if there is ¢ € X such that z € N(z). The fized point set of
the multivalued operator N will be denoted by FizN.

Our considerations are based on the following fixed point theorem for contraction
multivalued operators given by Covitz and Nadler in 1970 [15] (see also Deimling, [16]
Theorem 11.1).

Lemma 4.1 Let (X,d) be a complete metric space. If N : X — Py(X) is a contrac-
tion, then FizN # (.

We will need the following assumptions:

(A1) F:[0,b] x E — P,(E) is integrably bounded and has the property that F(-,y) :
[0,b] — Pu4(F) is measurable for each y € E.

(A2) Hy(F(t,y), F(t,5)) <(t)|ly—7l||, for almost each ¢ € [0,b] and y,7 € E, where
l € LY([0,8],IR).

(A3) [If(y) — f@)|| < eclly—Fll, for each t € [0,8] and 3,7 € C([0,b], E), where c'is a
nonnegative constant.

Now we are able to state and prove our main result for this section.

Theorem 4.1 Assume that hypotheses (H1), (H4)-(H7) and (A1)-(A3) are satisfied.
Then the problem (1)-(2) is nonlocally controllable on J, provided

M2M; Myb? sup K (t)

Mec + MM; Msbe + M?M, Mybe + = te] o g <1,
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Proof. Using hypothesis (H7) for an arbirtary function y(-) define the control
uy(t) = Wz — f(y) — C(b)yo + C(b)f(y) — S(B)n
b s
- /0 S(b— s) fo K (s, 7)g(r) drds|(2),
where g € Spy.

Remark 4.1 For eachy € C([0,b], E), the set Sgy is nonempty, since by (A1), F' has
a measurable selection (see [14], Theorem IIL.6).

We shall now show that, when using this control, the operator N : C(J,E) —
P(C(J, E)) defined by

N(y) := {h e C(J,E):h(t) = C)(wo— fly))+ S(t)n—i—fotS(t — 5)(Buy)(s) ds

4 /: S(t—s) /os K(s,T)g(T)drds : g € SF,y}

has a fixed point. This fixed point is then a solution of the system (1)-(2).
Clearly z; — f(y) € N(y)(b).

We shall show that N satisfies the assumptions of Lemma 4.1. The proof will be
given in two steps.

Step 1: N(y) € Py(C([0,b], E)) for eachy € C([0,b], E).

Indeed, let (¥n)nzo € N(y) such that y, — § in C([0,8], E). Then § € C([0,1], E)
and ’

n(t) €W~ 7))+ SO0+ [ St = 9)(Buy)(s)ds
4 fot S(t—s) /OS K(s,7)F(r,y(o(r)))drds, t € J.
Using (A1) one can easily show by standard argument that
[ st=s) [ Kls,F(ry(otr)drds
is closed for each t € [0,5]. Then
ualt) — () € CW(wo— F) + 5@+ [ S(t— )(Buy)(s) ds
+f t—s)/ (s,7)F(r,y(o(r)))drds, t € J

So § € N(y).
Step 2: Hy(N(n), N(y2)) < vllys — val| for each y1,y2 € C([0, 8], E) (where v < 1).
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Let y1,49 € C([0,0], E) and hy € N(y1). Then there exists g1(¢) € F(t,v1(c(t)))
such that

m(t) = C(0)(wo~ Fun)) + S+ [ S(t— )(Bu,)(s)ds
+f (t=5) [ gu(r)drds, te J
From (H3) it follows that

Hy(F(t,3(0(2), F(t,12(0(2)) < i®)llva(o(2)) = v2(a (@)l

!
L)l (t) — w2(@)]l, t € J

IAIA

Hence there is w € F(t,y2(c(t))) such that
91(t) — wll < UO)Nwa(®) — w2, €.
Consider U : [0,b] — P(E), given by
Ut) ={w € E: |lg:1(t) —wll < I®)wn(®) = w2(B)][}-

Since the multivalued operator V() = U(t) N F(t,y2(c(t))) is measurable (see Proposi-
tion I11.4 in [14]) there exists g, (¢) a measurable selection for V. So, go(t) € F(t,y2(co(t)))
and

lg1 () — g2l < Ut)lwa(t) — y2(t)]|; for each ¢ € J.
Let us define for each t € J

ha(t) = O(0)(wo— F(u) + Sn+ [ (= 9)(Bu)(s) ds

+/ t—s/ T)drds.

Then we have

[hat) = o)l < MILFGn) = )+ MM [ i, (5) = waa(s)ds

+5 | “g1(s) — ga(s)]l ds

IA

Ml — yall + MMM, [ [15as) - Fwo)

+M| f(y1) — f(g2)| + b7 sup K()M||g1(s) — g2(s)llds

+Mb ]Ot llg1(s) — g2(s)llds
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< Mec|lyy — o] + MM Ms[bellyr — yol| + bMcllyr — 2|

Hotea Utz(s)nyl(sJ — ya(s)[|ds]

v [ “15) s (5) — va(s)l1ds

= Mce™ |y, — pollz + M My Mabee™®||y; — ys| 5

+ M2 M; Mobee™ @y — w2l

t
MMM sup K (1) [ 1(e)e ™0 ys(5) — a(s) s

teJ

£
+M [ Us)e I g (s) ~ a(s)lds

Mee™Ollys — ol 5 + MM Mobee™ |y — 4|5

IA

+M? My Mabce™ |y — vo|l5
1
+ MMy Mob* sup K (t)||yn — val| 5=+
ted T

1
+M|jy1 — yz“B;:eTL(t),

where L(t) = JE1(s)ds, and || - ||5 is the Bielecki-type norm on C([0, ], E) defined by
— —7L(t)
lylle = max{lly(t)lle™™}-

Then
M?2M, Myb? sup K (t)

M
lh1—he|ls < {Mc+MM1Mgbc+M2M1Mgbc+ - =4 i 1 —2]| -

By the analogous relation, obtained by interchanging the roles of y; and ys, it follows
that

Hy(N(y1), N(y2)) <
M?M; Myb? sup K (t)

teJ

Mc + M M, Mabc + MM, Mabe + lyy — v2ll5-

M
+_
T T

Then N is a contraction and thus, by Lemma 4.1, it has a fixed point y, which is a
mild solution to (1)-(2). |
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5 An Example
Consider the following partial integrodifferential equation of the form

2ultt) — 2(t0) = [ Klt5)als,2(5,4(s = 1) ds

+Bu(t), 0<y<m teJ

(3)

z(t,0) = z(t,m) = 0,
2(0,y) + 2(1,y) = 20(y), (4)

z(0,7) = z1(y)

where ¢ : J x E — E, is continuous.
Let E = L?0, 7] and define A: E — E by Aw = w" with domain

D(A)={w € E,w,w’ are absolutely continuous, w” € E,w(0) = w(r) = 0}.

Then -
Aw =" n*(w,w,)w,, w € D(A)
n=1
where w,(s) = \/g sinns, n = 1,2,... is the orthogonal set of eigenvectors in A. It

is easily shown that A is the infinitesimal generator of a strongly continuous cosine
family C(¢),t € IR in E given by

Cltyw =) cosnt(w, wn)wWpn, wEE

n=1

and that the associated sine family is given by

=
St)w =Y —sinnt(w,w,)ws, w € E.

f=]1

Assume that the operator B : U — Y,U C J, is a bounded linear operator and the
operator

Wu = /D " S(b— s)Bu(s)ds

has a bounded invertible operator W~ which takes values in L?(J, U)\kerW.
Assume that there exists an integrable function p : J — [0, 00) such that

lg(t, w(t))| < p(t)v(jwl)

where 1 : [0, 00) — (0, 00) is continuous and nondecreasing with

b < ds
Mbstg?K(t)fo P(t)dt</c ¥(s)
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where c is a constant.

Then the problem (1)-(2) is an abstract formulation of (3)-(4). Since all the con-
ditions of Theorem 4.1 are satisfied, the problem (3)-(4) is nonlocally controllable on
sl
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ABSTRACT

This paper is concerned with the oscillatory behavior of first-order delay
differential equations of the form

Z'(t) + p(t)z(r(¢)) =0, =10, 1)
where p, 7 € C ([to,0),R"),R* = [0,00), 7 (t) is non-decreasing, 7 (t) < t for
t > tg and lim;—o 7 (t) = co. Let the numbers k and L be defined by

¢ t
k = liminf p(s)ds and L = limsup/ p(s)ds.
t—oo

o0 Jr() (t)

It is proved here that when L < 1 and 0 < k < L all solutions of Eq. (1)
oscillate in several cases in which the condition

InA; —14++/5—=2X +2k)
AL

L>

holds, where A; is the smaller root of the equation A = ¢
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1 Introduction

The problem of establishing sufficient conditions for the oscillation of all solu-
tions of the differential equation

(@) +p)z(r(8) =0, t=ty, (1)

where the functions p, 7 € C([to,00), R¥)(here R™ = [0,00)), 7(¢) is nondecreas-
ing, 7(t) <t for t > t and limy—eo 7(t) = 00, has been the subject of many
investigations. See, for example, [1-27] and the references cited therein.

By a solution of Eq. (1) we understand a continuously differentiable function
defined on [7(7p), o0) for some Ty > tp and such that (1) is satisfied for ¢t > Tp.
Such a solution is called oscillatory if it has arbitrarily large zeros, and otherwise
it is called nonoscillatory.

The first systematic study for the oscillation of all solutions of Eq. (1) was
made by Myshkis. In 1950 [24] he proved that every solution of Eq. (1) oscillates
if

limsuplt — 7(8)] < o, Liminf[t — 7(¢)] - liminfp(t) > é (1)
t—oo —+00 —o0

In 1972, Ladas, Lakshmikantham and Papadakis [19] proved that the same
conclusion holds if

1
lirmleins f pls)da> 1. (Cs)
t—eo Jr(2)

In 1979 Ladas [18] and in 1982 Koplatadze and Chanturija [14] improved
(C1) to

t

liming | p(e)ds > % . (Ca)

e Jr(r)

Concerning the constant % in (Cj3), it is to be pointed out that if the in-

equality
¢
[ ws)as <
(t)

holds eventually, then, according to a result in [14], (1) has a non-oscillatory
solution.

In 1982 Ladas, Sficas and Stavroulakis [20] and in 1984 Fukagai and Kusano
[10] established oscillation criteria (of the type of conditions (Cz)and (C3)) for
Eq. (1) with oscillating coefficient p ().

It is obvious that there is a gap between the conditions (C2) and (C3) when
the limit

@ |

t
lim p(s)ds

t—oo 'r(t)



does not exist. How to fill this gap is an interesting problem which has been
recently investigated by several authors.

In 1988, Erbe and Zhang [9] developed new oscillation criteria by employing
the upper bound of the ratio z(7(¢))/z(t) for possible nonoscillatory solutions
z(t) of Eq. (1). Their result, when formulated in terms of the numbers k& and
L defined by

i 1
k = liminf p(s)ds and L= limsup/ p(s)ds,

= Jr tooo Jr(2)

says that all the solutions of Eq (1) are oscillatory, if 0 < k£ < 1 and

k2
L>1- I (04)

Since then several authors tried to obtain better results by improving the upper
bound for z(7(¢))/z(¢). In 1991 Jian Chao [2] derived the condition

2

L>1-gr—p,

(Cs)

while in 1992 Yu and Wang [26] and Yu, Wang, Zhang and Qian [27] obtained
the condition

TR ) iy
. .

In 1990 Elbert and Stavroulakis [7] and in 1991 Kwong [17], using different
techniques, improved (Cy), in the case where 0 < k < 1, to the conditions

Isg— (Cs)

1:
L>1—-(1-—=)? C
and
InA;+1
oy bt (Cs)
A1
respectively, where A;is the smaller root of the equation
A=, (2)

In 1994 Koplatadze and Kvinikadze [14] improved (Cs), while in 1998 Philos
and Sficas [25] , in 1999 Jaro$ and Stavroulakis [11] and in 2000 Kon, Sficas and
Stavroulakis [12] derived the conditions

k2 k2

L>1-sa-% "7

A1, (Co)

L> (CIO)‘

Inh+1 1-k—+vI-2k—k2
M 2



and

2
L>2k+— -1, (C11)
A1
respectively, where ); is the smaller root of Eq. (2).
Following this historical (and chronological) review we also mention that in
the case where

£ 1 5 1
p(s)ds > — and lim p(s)ds = =
[f(ﬂ() : tim [ s =
this problem has been studied in 1993 by Elbert and Stavroulakis [§] and in
1995 by Kozakiewicz [16], Li [22], [23] and by Domshlak and Stavroulakis [5].
The purpose of this paper is to improve the methods previously used to show
that the conditions (C2) and (Cy)-(C11) may be weakened to

InA; —144/5—=2X + 2k

L> .

(C12)

where )\ is the smaller root of the equation A = "

It is to be noted that as k — 0, then all conditions (C4)-(C11) reduce to the
condition (C3), i.e

Li> 1.
However our condition (Ci2) leads to
L>+3-1~0.732

which is an essential improvement. Moreover (Ci2) improves all the above
conditions when 0 < k£ < % as well. For illustrative purpose, we give the values
of the lower bound on L under these conditions when k = 2

(C3):  1.000000000
(Cs):  0.966166179
(Cs):  0.892951367
(Cs):  0.863457014
(C7):  0.845181878
(Cs):  0.735758882
(Co):  0.709011646

(Cro):  0.599215896
(Ci1):  0.471517764
(Ci2):  0.459987065

We see that our condition (Cis) essentially improves all the known results
in the literature.



2 Main Results

In what follows we will denote by k and L the lower and upper limits of the
average f:( 5 p(s)ds as t — coc, respectively, i.e.

t
kE = liminf p(s)ds
t—oo ‘r(t)
and
i
L= hmsup] p(s)ds.
7(t)
Set

We begin with the preliminary analysis of asymptotic behavior of the function
w(t) for a possible nonoscillatory solution z(t) of Eq. (1) in the case that & < 1.
For this purpose, assume that (1) has a solution z(t) which is positive for all
large t. Dividing first Eq. (1) by z(t) and then integrating it from 7(¢) to ¢
leads to the integral equality

w(t) = exp / o Pe)ds (3)

which holds for all sufficiently large ¢.
For the next lemmata see [12].

Lemma 1 Suppose that k > 0 and Eg. (1) has an eventually positive solution
z(t). Thenk < 1/e and

M < htrgé%fw(t) < Ag,

where \; is the smaller and )y the greater root of the equation X = e"*.
Lemma 2 Let 0 < k < 1/e and let z(t) be an eventually positive solution of
Egq. (1). Assume that 7(t) is continuously differentiable and that there exists
w > 0 such that

p(r(t)7'(t) > wp(?) (4)
eventually for allt. Then
2
lim t) < ,
t-.ilipw( IE 1-k—+/(1—k)?—44

where A is given by

ek _ Mwk =1
(Mw)?

A=



Remark 1 It is easy to see that (4) implies that
i

()
[ p(s)ds > wf p(s)ds  forall 7(t) u <t 4"
7(w)

u

Indeed, the function
(1) ¢
v(u) = f © p(s)ds —w/ p(s)ds, T(@)<u<t,

(u) u

satisfies the condition
v(t) =0,

and

V' (u) = —p(r(w))7'(u) + wp(w) < 0.
If p(t) > 0 eventually for all t and

hmmft“mm =wp > 0,

p(t)
then w can be any number satisfying 0 < w < wg. Besides the case p(t) =p > 0,
T(t) =t —T or the case T(t) =t —T and p(t) is T — periodic, there exists a class
of functions which satisfy (4). Such a function is given in the Example below.

Lemma 8 Let 0 < k < L and let z(t) be an eventually positive solution of
Eq.(1). Assume that condition ({) is satisfied. Then

ImA;  —-14++1+2w—2wA\M
<
L - Al B l'-d/\]_ ! (6)

where \; is the smaller root of the equation A = eF* and M = lim inf-=%

Fime ECT(E))"

Proof. Let 6 be any number in (1/X; 1). From Lemma 1 and the definition
of M, there is a T3 > T such that

%)_)w,\l, LT, ™
and
x(t)
=) >6M, t>Ti. (8)

Now let ¢ > T3. Since the function g(s) = z(7(t))/z(s) is continuous, g(7(t)) =
1 < 6)q, and g(t) > 60X, there is t* = ¢*(¢) € (7(¢),t) such that

=(r(t) _
G = 9)



Dividing (1) by z(t), integrating from 7(t) to t* and taking into account (7),
yields

i 1 Y 2/(s) In(8X)
ds < —— ds = 10
/;(t} p(S) e 9A1 7(t) .’L‘(S) s 6/\1 ( )

Next we try to find an analogous inequality for

A= /: p(s)ds.

Integrating (1) from 7(s) to 7(¢), we have
7(¢)
alo ey b= / sl e £F
7(s)
Thus, integrating (1) from ¢* to ¢ and using (4'), we obtain

t

o(t") ~2(t) = | ple)a(r(e))ds =

t 7(2)
= [ oot + [ pw)ariu)duds

s

¢ t (%)
2 2(r0) [ ple)ds +2(7O) [ pe)( [ pt)du)as
> o(r(t) | pleds+we(r?®) [ o) [ pluhds

—o(r(t) [ pledds+ G [ pledds)

= Az(7(t)) + %Azx(”r2(t)),

where 72(t) = 7(7(t)). Therefore
A2 o(r2(0) _ o) _ _=(t)

220 ®) T () =)
(and taking into account (9) and (8))

1
< — —6M.
< M

A+

Since, by (7).

2(72(t)
2(@) O
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we obtain

A 1
A 6
+ —wb) < 9A1 — M
or
Az‘”gz’\‘ + A+ (OM - —) <0,
which leads to
~1+4/1-200(6M ~ 5%) 14 /T3 20— 20870 M
A< — :
- (.JJBA]_ [.LJG)\]_
since the other root is negative. Adding (10) and the last inequality, we obtain
t m(8X) . =1+ +/1+2%— 2w.92A1M
<
[-(t) BlAie s 21 i WA

Letting ¢ — 1 completes the proof. m

Theorem. Consider the differential equation (1) and let L <1,0<k <1
and there ezxists w > 0 such that ({) be satisfied. Assume that

InA;  —-14++/1+2w—-2whB
+ ;
A1 w)\1

L> (11)

kA

where A1 is the smaller root of the equation A = e and

1-k—/A-k2Z—
2

where A is given by (5). Then all solutions of Eq. (1) oscillate. ®

Proof. Assume, for the sake of contradiction, that z(t) is an eventually
positive solution of Eq. (1). Then, by Lemma 3, we obtain (6) which, in view
of Lemma 2, contradicts (11). The proof is complete. m -

B =

Remark 2 It is clear that in the above Theorem w can be replaced by wq, where
wq is given in Remark 1.

Remark 3 Observe that when w =1, then (11) reduces to

g~ 1445 — 28 F0kA

2
Lt - (12)
since from [12] it follows that
1
B=1—-k- x
In the case that k = 1, then Ay = e and (12) leads to
VT—2
L > Y= ~0.459987065.



Example. Consider the delay differential equation

(T el a ke 512) ) (13)

where p > 0, @ > 0 and pa = 0.46 — -i- Then

g 1 1
k=1lim inf [ . pds =1m. inf p(asinzx/f-i—._‘—-)._—_.‘-

t—oo T{t) t—o0 pe e
and

! _
1
L = lim sup pds=]jmsupp(asin2\/f+i)=pa+-é—=0.46.

t—oo 7(t) t—o0

Thus, according to Remark 2, all solutions of Eq. (13) oscillate. Observe that
none of the results mentioned in the introduction apply to this equation. m
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A VERSION OF GT GRAMMAR FOR MODERN GREEK LANGUAGE
PROCESSING
PROPOSED AS A MODERN GREEK LANGUAGE CALL METHOD DEVELOPER

S.D. Baldzis S.A. Kolalas Ch.N. Savranidis

Abstract

In this paper, we put forward a version of a Generative Transformational Grammar (GTG),
for the Modern Greek Language (MGL) Processing, which is used for the development of a
Computer-Assisted Modern Greek Language Learning (CAMGLL) Method. This suggested
Grammar, composes of the Template Grammars (TG’s-generative dimension), the Basic
Modern Greek Computational Multilexicon (BMGMLX) with its algorithms (transformational
dimension). The model of this suggested Grammar is based on the structure and function of the
MGL System, that is, MGL components, relations and functions of which it comprises. Thus,
the teaching of the Grammar Code of the MGL is approached by the modern linguistic and
communicative perception (Holistic Approach) with which morphology and syntax, forms and
functions are inseparable. Furthermore, the suggested Grammar is able to parse and generate
Modern Greek Sentences', in the framework of an Open Educational Environment where
learning is experimental, creative and cooperative. The contents of the computational lexicons
of the BMGMLx and the production rules of the TG’s are suitably selected and enriched in
order to use, firstly, words of themes and meanings from communicative areas, secondly,
their dominant semantic combinations and thirdly, the commonly used morphological and
syntactical rules. All these contents are functional for the basic forms of the communicative
written MGL (Communicative Language Teaching Method). The Computer-Assisted Modern
Greek Language Learning method based on the suggested Grammar can be used either in a

classroom at school or by Internet correspondence, for teaching MGL as a native or foreign

language.

1. Introduction

The reason for analyzing a Modern Greek Sentence, as it occurs in a sentence in every natural
language, is understanding its contents, which means, identifying various actions, as well as
the attributes that characterize the agents, the actions, and the recipients of these actions, for
further use, for example in language teaching. Thus Modern Greek text processing
presupposes: (a) the formalization of the MGL data, which are the vocabulary of the
language, the syntax rules, the morphology rules and the semantic rules, i.e., the components,
the relations and the functions that compose the structure and function of the MGL System,
(b) Modern Greek text syntactic analysis or parsing, whereby each Modern Greek Sentence of

! When referring in this paper to the Modern Greek Sentences, we mean the whole (axéporeg=akerees)
and main (k0pieg=kyries) sentences,



the text is “delinearized”, i.e., a tree structure is extracted from the words which make up the
sentence. This tree structure describes the role of each word in the Modern Greek Sentence. In
parsing, the central role is played by the Grammar which is a device for giving the
specifications of Modern Greek Sentences. However, the mechanisms of the structure and
function of the MGL System lead to form this procedure for the MGL. In fact, the referred
mechanisms form the required Grammar since it is a system which describes the ways of

forming acceptable Modern Greek Sentences [1,4].

The MGL mechanisms are generative, that is, its application leads to the generation ..

and the parsing of the syntactic structure of Modern Greek Sentences, which are classified” as
simple, compound, amplified and compound-amplified [1,2,3,4,5]. These mechanisms are
transformational whereby from every syntactic structure arises an infinite number of Modern
Greek Sentences, using the appropriate sets of words and transformational rules each time.
Applying the transformations to each word of the constructing sentence, the words form® the
appropriate morphological type according to their syntactic role and comply with the rules of
their semantic agreement. There are many and composite transformations as the MGL is an
inflectional language. Similarly, in parsing a Modern Greek Sentence, the syntactic role of its

words is found, i.e., Modern Greek Sentence syntactic structure.

In inflectional languages, the grammatical relations are expressed by declension, i.e.,
word suffixes, rather than the syntagmatic order of words or by the prepositions, as it occurs
in the non-inflectional or in the semi-inflectional languages, like the English Language (EL)
[1,4,21]. For example , in the EL a sentence which consists of a subject, a verb and an object
can be expressed correctly, without having its meaning changed, only according to the pattern
SVO; however in MGL, this sentence can be expressed correctly, having its meaning
unchanged, according to the following six patterns: SVO, VSO, OVS, SOV, VOS and OSV.
Thus the basic feature of MGL is that the syntactic relations are indicated by the case (see
footnote 3). However, the semantic agreements which are held between the lexical items
correspond to the semantic relations held between Subject-Verb, Verb-Object, and so on, in a
sentence [1,4,5]. Hence, the semantic relations in MGL indicate the interdependence of
syntax, semantics and morphology. Moreover, we note that specific word class or word

classes are provided for each syntactic role.

Many schemes have been proposed for the natural language processing, which

displayed certain inadequacies. It should be noted that such inadequacies were observed and

? As provided by the Modern Greek Syntax as it is taught at the Secondary Education Level .

* This in the Modern Greek Syntax, is expressed as follows: “the words irrespective of order found in a
sentence and according to their syntactic role form their appropriate morphological type”; evidently
complying with the rules of their semantic agreement.



recorded primarily in the case of the EL, which differs considerably from MGL, as mentioned

above [14,15,16,17,20,21].

In recent years, a certain amount of research has appeared in the MGL processing.
This research is usually orientated towards certain ranges of MGL processing [13,18,19,22,
23,24,26].

A method which addresses the full range of MGL processing, from the lexical level to
the semantic one is a version of GTG’s, whose model is composed of the Template Gram-
mars (TG’s-generative dimension), the Basic Modern Gréek Cornputational Multilexicon

(BMGMLx) with its algorithms (transformational dimension) [1,2,3,4,5,6,7].

Template Grammar is a modified version of the Grammar of Chomsky’s hierarchy.
This modification requires that by definition the production rules, which are finally syntactic
structure rules, be grouped to templates of rules, producing the syntactic structure of the
Modern Greek Sentences. The production rules are internationally established as phrase
structure rules, mainly used for the English language processing. The syntactic categories of
the inflectional MGL designate grammatical functions, which are inherent relation notions,
rather than grammatical categories and express the interdependence of syntax, morphology
and semantics [4,5]. In addition, results in the production and parsing an intermediate,
abstract language of syntactical categories of MGL. This language is free of morphological
rules and meanings having the same structure as Modern Greek Sentences and defines a
Pattern Language, that is the Language of Syntactic Categories of MGL. Pattern Language is
a formal language simply processed. The Template Grammars take on a special importance as
an efficient tool for parsing and generating Pattern Language Sentences with the introduction
of characteristic exponents. The characteristic exponents characterize the structure of the
Pattern Language Sentences and map them to the corresponding templates of grammar rules
which generate them. The characteristic exponents are strings of integers which are easily
extracted and recognized. The characteristic exponents allow to find directly the template of
generation of the Pattern Language Sentence which is proposed and hence the category of
sentences where the individual sentence belongs avoiding the time consuming searching

methods [1,2,3,4].

The Basic Modern Greek Computational Multilexicon (BMGMLX) is a system of
computational and interconnecting lexicons which consists of recorded data concerning the
vocabulary, the syntax, the morphology and the semantics of MGL. The BMGMLx for every
word it contains and by means of its algorithms, can recognize or give any information about
the word morphology and the word semantic agreement with other words in accordance with

its syntactic role each time. This information is utilized by the algorithms of BMGMLx which



describe “what has to be done” so that: (a) given the syntactic structure and chosen words to
be transformed into an acceptable Modern Greek Sentence and (b) given a Modern Greek
Sentence, the syntactic roles of its words and structure are pinpointed. In other words, the
generative and transformational MGL mechanisms are finite rules which are expressed by
algorithms. These algorithms recognize Modern Greek words, generate and parse their forms

and their semantic combinations as well as Modern Greek Sentences [1,4].

According to the suggested Grammar, a Modern Greek Sentence is converted to the
corresponding. Pattern Language Sentence by means of the BMGMLX, its algorithms and .
Template Grammars (TG’s). The resulting Pattern Language Sentence is expressed in the
normal order of its syntactic categories as the Modern Greek Syntax deﬁnes; irrespective of

its corresponding position of words in a given Modern Greek Sentence [1,4].

The proposed GTG as it is based on the structure and function of the MGL System
continues the uniform perception of the GTG’s of Noam Chomsky, where his model
composes the morphological structure and the syntactic function of the language due to the
semantic agreements of the words of the sentence [8]. Furthermore, the possibilities which
derive from the realization and application of the suggested GTG in the teaching of the MGL
guide the teaching of the Grammar Code of the MGL according to the modern linguistic and
communicative perception. Based on these perceptions, morphology and syntax, form and

function are inseparable; these principles are expressed by the Holistic Approach [12,28].

Moreover, the teaching of the morphology and syntax assisted by computer
technology and the proposed Grammar is done without the pressure of rules and complex
phrasing. Hence, the morphological and syntactic rules are presented in a simplified way
through the emphasis on the production and parsing of commonly used Modern Greek
Sentences of themes and meanings from communicative areas, in an Open Educational
Environment. Thus the Communicative Language Teaching Method is followed. The
BMGMLx with information it provides and is available at any time, makes the learning result
more effective and efficient since it minimizes the metalanguage of morphological, syntactic
and semantic rules of the MGL. In addition, the BMGMLXx provides the necessary self-
sufficiency for the user not to resort to other means of electronic or printed matter when

finding language phenomena.

We note that, the proposed GTG is principled, computationally efficient, descriptively
adequate. for our purposes and introducing a. MGL learning/teaching method. development.
Thus, the proposed GTG constitutes a Grammar Framework which allows for an accurate
computational implementation and may form the syntactic component (Expert Module) of an
Intelligent Computer-Assisted Modern Greek Language Learning (ICAMGLL) Method [9].



2. A Modified Version of GT Grammars for MGL Processing

2.1 Template Grammars and Characteristic Exponents — Generative Dimension

The application of Template Grammars in MGL processing led to the TG, TG,, TG; ko
TG, with which the syntactic structures of the simple, the compound, the amplified and the

compound-amplified sentences correspondingly are produced and parsed [1,2,3,4].

For example the TG, is defined as: TG=(Vm1,V11,P1,S), where: Vy1={S,A,B,C},
Vle{a,b,C,g}, PI:{PI,I: p1,2}: Wlth pl,l:{s_)AB: A_>ae B“')b}and pl,2:{s_>ABs A_)a:
B—gC, C—c} [1,2,3.4].

We note that:
e S=<<simple_sentence>>,A=<<simple_subject>>B=<<simple_predicative>>,C=<<simple

_predicate>>, a=<subject>, b=<predicative_verb>, c=<predicate>, g=<conjunctive verb>,

® p;; and p;, are the templates of production rules which produce the syntactic structures of

the simple sentences,

e The production rules of p;; and p;, are the formalized syntactic rules, by means of the
metalanguage BNF [1,2,3,]. Thus:
<<sentence>>:=<<simple_sentence>>,
<<simple_sentence>>::=<<simple_subject>><<simple predicative>>,
<<simple_subject>>::=<subject>,
<<simple predicative>>::=<predicative verb> |
<conjunctive_verb><<simple predicate>>,

<<simple predicate>>::=<predicate>.

The TG, produces the language L(G,}={ab, agc}. The Pattern Language Sentences ab

and agc are the patterns for an infinite number of Modern Greek Sentences.

Similarly TG, TG; and TG, are defined. We note that the templates of P; are twenty.
However the templates of P; and P, are many because of the great variety of the MGL
modifiers and their combinations. In our research, the commonly used types of amplified and
compound-amplified sentences are included. These have a high rate of frequency in the
Modern Greek texts. P; and P, are extended in the course of the research and the application

of the proposed method [1,4].

The formalization of the syntactic structure rules of Modern Greek Sentences for

processing led to [1,2,3,4]:

¢ Although one TG could be defined describing all the Modern Greek Sentences syntactic structures,
we introduce four distinct TG’s each for every Modern Greek Sentences category so it achieves a small
number of variables for each TG and greater transparency of the Pattern Language Sentences produced
by the same template.



1. the substitution of the categories NP (Noun Phrase), VP (Verb Phrase), Art (Article), N
(Noun), etc., of the phrase structure rules with the MGL syntactic categories <subject>,
<predicate >, <predicative_verb>, <conjunctive_verb>, etc. of the MGL syntactic rules. The
syntactic categories of the inflectional MGL simplify MGL processing since they are
grammatical functions and express the interdependence of syntax, morphology and semantics.
Thus, these functions in every syntactic category correspond to semantic’ acceptable word in
its acceptable morphological type and vice versa. On the contrary, the grammatical categories
are insufficient for MGL processing since the syntactic roles of words which are provided
depending on their order in a sentence do not consist in any case of sufficient condition

detected in the syntactic roles in Modern Greek Sentences.

2. the generation and parsing of an intermediate and abstract Pattern Language, called
Language of the Syntactic Categories. Pattern Language Sentences having the same structure
as Modern Greek Sentences define Modern Greek Sentences deep structure, i.e. deep
structure of Modern Greek Sentences is identical to the syntactic structure of Modern Greek

Sentences and free of meanings.

3. two different Modern Greek Sentences that is two different surface structures as we define
can have either the same deep structure, if having the same syntactic structure, or different
deep structure, if having different syntactic structure. Pattern Language has formal language
features and behavior which is easily programmed. These affect the acceleration of Modern
Greek Sentences processing since they simplify the formalization, the generation and parsing
of the Pattern Language Sentences, detecting directly the template of its production rules by
means of the characteristic exponents. The characteristic exponents are strings of integers
which are easily extracted and recognized. The characteristic exponents characterize the
structure of the Pattern Language Sentences and map them to the corresponding templates of

which generate them avoiding the time consuming searching methods.

For example (see Table 1) :

a) The characteristic exponents of the Pattern Language Sentence ab is the string k,p;,p2 =
0,1,0, and the characteristic exponents of Pattern Language Sentence agc is the string K,p1,p2,A
=0,0,1,0.

b) The template p;, generates the unique Pattern Language Sentence agc.

c) The template p,;s={S—AB, A—aAvalAua, B—>gec, C—Cuc}, is one of the templates

which generates the syntactic structures of the compound sentences. p, s generates the class

5 The interdependence of syntax and semantics is indicated by the semantic relations between Subject-
Verb, Verb-Object, and so on. We note that, similar to the semantic relations between the syntactic
categories in Pattern Language Sentences (deep structure), the semantic agreement is defined between
the lexical items in the corresponding Modern Greek Sentences (surface structure) [1,2,3,4,5,6,7].



of Pattern Language Sentences a(v'a)u'a'gc(vic)*u'c’, where i=0,1 and k, A >o, that is, p, s
generates more than one Pattern Language Sentence, e.g.,

for ®,1,-,J,K,P1,P2,M1,-4,A = 1,1,-,1,1,0,1,1,1,-,1,1 the corresponding Pattern Language Sentence
is avauagcvcucs,

for K,i,-,j.K,P1,02:M 15510 = 2,1,-,1,1,0,1,2,1,-,1,1 the corresponding Pattern Language Sentence

is avavauagcveveue, and so on..

Structures of
Teraplates Syntectic
of Ca.t:g;nes Characteristic Exponents
Symtactic Classes of
Structures of
Rokes Symtactic
Categories L I 6 8 L 6 o o L - TR - Y o S g R 6 4 O IR 51
P ab 0 1 0
Pz agc ] (R I S
Pux ' | afveuaigetvicruic | =0 {01 |- [1]1 0|1 |=0|0on|-|1]|1
Pin’ | abe; 0 1|0 1
Pan’ | adi(ved)ui(ed)b |sofon|-{1|1]1]0o

Teble 1: 1. p,=0]1, Oindicetes that the verb is not a predicative verbb, while 1 indicatesthat theverb is a predicative verb b.
p==0]1,70 0 indicates that the verb is not & conjunctive verb g while 1 indicates that the verb is a conjunctive verb g.
x=0,1,2,3, ... indicates that there is 1, 2,3, .. . times the subject a.

%==0,1,23,...indicates that there is 1, 2,3, . . . tirnes the pairad..

A=0,1,2,3, ... indicates that there is 1, 2, 3, . . . times the predicate-c.

1=0,1,23, .. indicates thatthere is 1, 2,3, . . . times the object ¢..

1= 0|1, sirailarly if the punctuation *," ie.v is omitted or nat.

j=0l1, sirnilarly if'the conjunctive, e.g. “and”, Le u is.omitted ornot.

in case that one of iorjdoesn’t belong to the syntactic stracture the dash "-" is corresponded to the CEiorj.

The conesponding templates in details are:

pe= {5+ ABA > dhvaAne, B s ge, C Cuc},

pa={S >AB,A 58 B3bE,E e, },

Pi={5 > AB, A = aD|JAD:vaD |ADuaD,, B =5, D; -d. }.

® (0 0 Mo R Wb

It is proven that in each template corresponds to a unique combination of
characteristic exponents. Also Pattern Language Sentences which belong to the same class of
syntactic structures correspond to unique values of the unique combination of characteristic

exponents [1,2,3,4].

2.2 Basic Modern Greek Multilexicon and its Algorithms -Transformational Dimension

In the proposed model in order to transform the abstract Modern Greek Sentences deep
structure to surface structures, i.e., Modern Greek Sentences, we insert meanings into the deep
structures, following prescribed rules [1,2,3,4,5]. That is, based on semantic specifications,
we attach words to the syntactic categories of a Pattern Language Sentence, converting it in the

beginning into a sentence form with meanings (transformation level of semantic synthesis).

¢ H Exprivn, 1 Zopia Kot 0 Anuritpng eival ppovipor, emuehsic Kot evyevikol
I Irini, i Sofia ke o Dimitris ine fronimi epimelis ke evgeniki
Irini, Sofia and Dimitris are sensible, diligent and polite
is one of the infinite Modern Greek Sentences (surface structure) which corresponds to the Pattern
Language Senetence or deep structure avauagcvcuc.



Then according to the Modern Greek morphological rules, the appropriate types of words in
the sentence form with meanings are formed (transformation level of morphological
formation). Thus, the surface structure or the acceptable Modern Greek Sentence results.

Similarly Modern Greek Sentences are transformed to their corresponding deep structures.

The information which is used in the two transformation levels (obligatory
transformations) is the information which every word is given in Modern Greek Sentences; it
is morphological, syntactical information of the semantically accepted matching, depending
each time on the syntactic roles.of the words in a sentence. This. information which is
formalized, codified and filed define the Basic Modern Greek Computational Multilexicon
(BMGMLx) which is used by its algorithms, as they describe “what should be done” in order
to transform a deep structure sentence into a surface structure and vice versa detecting the

syntactic roles of the words in Modern Greek Sentence.

The BMGMLXx is a system of computational and interconnecting lexicons made up of
four - unit - lexicons of MGL. Every unit-lexicon of this system corresponds to one of the

four different dimensions of the information content, thus [1,4,5]:

1. The Modern Greek Computational Lexicon (MGCLX) contains, in alphabetical order, all
the words that the proposed system recognizes and processes. The contents of MGCLX is

enriched in the course of the research and the application of the proposed method.

2. The Logical Computational Lexicon of Basic Meanings (LCLxBM) and the
Computational Lexicon of Context of MGL (CLxCMGL): The items of these lexicons are
entries of the Modern Greek Computational Lexicon, whereby in the former they are ordered
in a strict succession of meanings of its contents and in the latter are formed in semantic rules.
LCLxBM gives the synonyms and antonyms of words, phrases and idioms of the words of
Modern Greek Computational Lexicon. CLxCMGL produces and recognizes the dominant

semantic combinations of its items according to their semantic relations and agreement.

3. The Modern Greek Morphology Computational Lexicon (MGMCLX) contains all kinds of
morphological information which every word of Modern Greek Computational Lexicon may

hold in order to formulate an accepted morphological type of word or to detect its type.

4. The Modern Greek Syntax Computational Lexicon (MGSCLx), are the prescriptions of
Modern Greek Syntax which provide the agreement of the morphological types of the

sentence terms according to their syntactic role in the sentence.

The morphological formation is the most mechanical phase of the obligatory
transformations, requiring knowledge of Modern Greek Morphology, appropriate recording of

data as well as appropriate codification of its mechanisms and mechanisms of its



interdependencies of Modern Greek Syntax and the items of the Modemm Greek
Computational Lexicon [1,4].

On the contrary, the semantic synthesis is the most difficult phase of the
transformation procedure, mainly concerning the definition, the designing and the
formalization of the semantic rules [5]. The required semantic information is not recorded in a
similar way as the syntactic information, with which the Modern Greek Sentence deep
structures are described. Thus a procedure similar to that of syntax is proposed to be
formulated, whereby from a finite number of dominant semantic rules or semantic criteria of.
matching words, a direct semantic manipulation of an infinite set of words occurs, that is, the
generation or parsing an infinite number of Modern Greek Sentences. Simultaneously, it
provides the ability from the same procedure to minimize the possibility of non-manipulation
of ambiguous meanings, conversely maximizing the possibility of recording and controlling
the possible meanings of words or idioms or common phrases, their synonyms and antonyms.
Generally speaking, the possibility of usage of lexicon provides “the entire lexicon” and its

direct further enrichments.

1.GENERAL 2. SPECIFIC
1.ABSTRACT 2. CONCFETE 3 MATERIAL 4 IMMATERTAL
| | YIAPRH (HYPARXI) 8XGPOL (CHOROS) | 13ANOPTANE YAH 15NOYE (NOUS)
EXISTENCE | SPACE (ANORGANIHYLD) MIND
2. TXETH (SCHESI) 9.ALATTATH (DIASTASD) ﬁgﬁ%ﬁc 16 BOY AHTH (VOULISI)
RELATION DIMENSION | : MIND
3. ENOTHTA (ENOTHTA) | 10. TXHMA (SCHIMA) M?c?ﬁéﬁ“m%%ﬁn 17.PATE (DRAST)
UNIT FORM ORGANIC MATERIAL ACTION
4 TARH (TAXD) 11 ENEPTEIA (ENERGIA) 18 ASIFT, (AXIES)
ORDER ENERGY VALUES
5 TIOROTHTA |2 KINHTH (KINIST) 19 FYN ATOHM A
(POSOTITA) MOTION (SYNESTHIMA)
QUANTITA FEELING
6.AFIOMOL, (ARITHMOS) 20 HBOT (THOS)
NUMBER ETHOS
7 XPONOE (CHRONOS) 21.8EOX (THEOS)
TIME GOD

Table 2: The 21 Broader Basic Units of Meanings-Chapters (BBULI-Ch’s) which aré classified
into 4 sub-categories of BBUM-Ch are also divided into 2 categories of BEUM-Ch.

Thus, to formalize the dominant semantic rules, we adopt the model of the Logical
Lexicon [5]. The material of the Logical Computational Lexicon of Basic Meanings
(LCLxBM) are the items of the Modern Greek Computational Lexicon (MGCLx ) which are
codified with a strict succession of the general meanings and grouped to their partial
meanings including the synonyms, related words and language expressions. Every word

belongs to one of the 21 Broader Basic Units of Meanings-Chapters (BBUM-Ch’s) of Table 2.



Every Broader Basic Units of Meanings-Chapter (BBUM-Ch) includes its general
meanings by which are named Meanings-Chapters (M-Ch’s). For example, the BBUM-Ch
“Yropén” (Hyparxi=Existence) contains 7 M-Ch’s of Table 3.

1 Vropn (Hypard) 2. Avomuplia (Anhyparia)
Existence Mon-Exstence
3 Kordoroon (Katastasi)
Situation
4 Iepiomeon (Peristasi)
Occasion

| 5 Eowmpiodg Kéopog (Esoterikos Kosmos) 6. Efwpuddic Koopog (Exoterikos Kosmos)
Inner World Outer World

7.Eyd (Ego)
Egp

Table 3: The BBUM-Ch“1_YIIAPEH” (HYPARXI=EXISTENCE) contains 7 M-Ch’s.

For every one of its 1500 Meanings-Chapters (M-Ch’s), the words, idioms or
common phrases, which by meaning belong to the same general meaning, are included, and
are classified in corresponding paragraphs. That is, every M-Ch consists of as many
paragraphs as there is of inflected and uninflected words, idioms or common phrases which
appear in the same general meaning. For example the M-Ch “Ynap&n” (Hyparxi=Existence)
contains only the 5 paragraphs of Table 4.

po Paragraphs Words belongs to BMGLx

Bropln (h;rpan_d—‘-e:dé_teme}, vimd oo (hypostasi=

1 xl_noun subsistence), 1o efve (to ine=being), ete.

vy (hyparcho=exist), efjo (ime=be),

2. | «3_intransitive_verb vipioepet (hyfistame=exist), etc.

&ibw vrioreom (dido 'h}rpostasi=lead to existence),

3 | x4 transitive wverb Surnpeh (diatiro=rmaintain), stc.

vmipyEt (hyparchi=there is), zévos (ine=it is),

4 | ¥ impersonal veto Bpirketod (vriskete=it is found), etc.

DROPRTOE (h;iparktcs=eﬁstent), dpyu (hyparchon=exstent),

5 | wb6_adjective vgiotipevog (hyfistamenos=being), etc.

Table 4: The M-Ch “l_Ywopéy” (Hyparxi=Existence) contains only 5 paragraphs,
whete p.o means paragraph order. :

In every paragraph, words are grouped according to the partial meanings where-by

they are recorded and cited directly after the corresponding synonyms and related words. For
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example, we give some of these groupings according to the partial meanings of the words
where the paragraph “noun” of the M-Ch “Ynap&n” (Hyparxi=Existence) contains the 11
groups of Table 5

pmw.o Words / nouns belongs to BWMGLx

tmpén (hypand=e xistence), vmd oo (hypostasi=subsistence},
{70} etven (to ine=being), ovtdmnoe (ondotita=entity),

onBomapin {aﬁhypan:i&=se]f-existerice), oo A (aftotelia=self-sufficient),
entofut {aftozoi=self-being) , cvmofwin (aftozoia=self-exstence),

3. wpobnepé (prohyparxi=pre-existence), mpoiimd smeom (prohypostasi=pre-subsistence],

4. cwwbmapln (synhypard=coe xistence),

3, ewimupé (enhypand=in-e xstence),

é. SwerAprion (diatirisi=preservation), mopeyov (paramoni=stay),

7 Sukowon (diasosi=salvage), mepicwom (perisosi=save), emPiwor (epiviosi=survival),

8. | 6v(on=being), ovoimoe (ondotita=entity), Adope (plasma=creature),

dmopo (atomo=mdividual), mpdowmo (prosopo=person), wuy (psyhi=soul),
9. xoweig (kanis=anyone), xowéve (kanena=anybody), o1 (tis=somebodsy),
Evayg (enas=soraeone), timoiog (kapios=some),

awtikEipevo (andikimeno=object), mpdy o (pragma=thing),

10- | eim (kati=sorething), 1imo7= (tipote=ansthing),

11. | ovwmwdoyiz (ondologie=ontology).

Table 5: The 11 groups according to the partial meanings of the words (pmw) which the
paragraph “1.noun” of the M-Ch*l_¥Ymap&n™ (Hyparxi=Existence) contains, where pmw.o
means partial meaning word order. ;

For instance the verb “pehetd”’ (meleto=study) is the first verb of paragraph “x2.17,
i,e, “2.verb(transitive-intransitive)” of the 828 M-Ch “Mdfnon” (Mathisi=Learning) of
15_BBUM-Ch “Notc” (Nous=Mind). This verb and all its synonyms and its relations, which
belong to the same paragraph, are accepted semantically as subject of any word of paragraph
“k.1” i,e, “l.noun” belongs to one or more M-Ch’s having further the semantic feature
“avBpdmvo_6v” (anthropino_on=human_being). We define as semantic category of the MGL
all the words that belong to the same paragraph of one or more M-Ch’s and, in turn, each time
can substitute a specific syntactic category with a specific combination of words in a sentence

form with meanings [1,4,5].

We note that the semantic categories may be defined, apart from the grouping of

words of the same paragraph, also by groupings of semantic categories always being based on

7 this verb has multiple meanings, this example refers to one of these meanings, similarly this applies to
the other meanings as well.
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a common semantic feature which acts as a semantic prescription of substitution of the
specific syntactic category from the pool of words of the paragraph which they belong to.
These groupings concern all types of paragraphs of the M-Ch [1,4,5].

The semantic category is represented by the unaccentuated Greek word, which
specifies the common feature that groups words, in the pair <...>. There are no specific rules
but only principles that lead to the definition of semantic categories. A sample of noun
paragraph grouping belonging to a multiple M-Ch, as shown in the grouping of Table 6,
shows the.way, this procedure is defined [1,4,5].

sco ‘Seraantic Cate gories
LEYVY v <gvBpwrmw_ov>= [<fw_ows [SIETEn_ovw [Syapt ovE [SevTop_ov= [SEpIET_ov=,

1. | <empsychon> <anthropin_on> <zo_or= <petin_on> <psari on® <entom_on™> <erpet_on>
<animate> <hurnan= |=animal> j<bird= [<fish= |<insect=  |<reptile>,
<qwBpomty_ov= <ovBpomog>| ... [ <8iBaskadoc™ | ... | <moAzpome> | .. | <ovrypugEac | .. ,

5. | <anthropin_on= <anthropos™>  <didaskalos> <polemdstis> < eas™
<human= <man= | o] <teachers | ..|<wamior= |..|<writer=] ..,
<gwBpwmog> dvBpwmog | erdyovos Tov Ak | Aoyid v | evBpwmix| ...,

3. | <anthropos= . | anthiopes apogonos toufdam  logiko on - anthropaki
<man>= man | descendant of Adam | logical being | little man] ... ,
<GibooKAog> Bibaowiog | Sdovhog | emmapoys | . | By .

4 | <didaskalos> .. | dideskalos ~daskalos nipiagogos kathigitis
<teacher= teacher | school master | kindergarten teacher | ... | professor] ... ,
<oLYypepEAL> ovyypepéos | Sommpetoypdgog | ... | Smpocwypdgog| ...

5. | <syngrafeas> .= | Syngrafeas  diigimatografos dimosiografos
<writer> writer | writer of short stonies | ... | journalist [z
<nole juomg> mole oG | aywvionic | spemg | movemg | ... .

6 | <polemistis> e | polemistis agonistis stratiotis  pejonaftis
<warrors warrior |fighter  |soldier | marine [

Table 6: & sample of semantic category deﬁrﬁtim, where s.c.0 means semantic category order .

Semantic rules are the acceptable and the dominant semantic combinations between
the words of a paragraph or the words of the same type of paragraphs of different M-Ch’s
with words of other similar types of paragraphs of different M-Ch. This is achieved by the
dominant semantic combinations which are based on the meanings of the words as well as the
semantic relations between the words as required by the corresponding syntactic roles. The
semantic rules are procedures which are described by means of the syntactic categories
[1,4,5]. For example, the expression:

UMOKEEVO (LEAETD): :=<avOpOTIV_OV> or

¥ i.e., subject.
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vrokelpevo(15.0828.x2.1)::=14.0543.x1.1/15.0831.x1.2{17.1111.x1.3|15.0956 .x1.1|...,
(see Tables 2-7, screen 1) comprises a semantic rule which defines the subjects of the

verb“peierd” (meleto=study).

LCLxBM
MGLx WIGHWILx CLxCMGL
BBUM-Ch .1M-Ch . Paragraph . w0

ORGANIC MATERIAL. Man . voun . w.0 N 003 <owBpumog=

i e 14.0543 .11 . wo 003 | <pyam>
3 MIND . Teacher. noun . w.0 <HBaoxmhog>
LS 15.0831. 11 2. wo MNOOE | psehars
MIND. Learning . verb . w0 <o Bpwmopebnon=
15.0828 .2 . wo <hurman_leaming=
MIND . Examination . vetb . w.o <meponpmoT_sbrmon=
2 s 15.0845 .«3 . wo <gxamination observation=
W.0. PEAE Tt RM.105 55 I
MIND . Iemory . verb . w.0 <wBpwmovELr>
15.0918 .«3 .wo <human_memory=
WILL . Purpose . veb . w0 <OROMOG>
16.1010 .3 . wo <purpose>
: ACTION . Warrior . noun . w.0 <TMOAE HOTG™
|0 owpariony, 171111 ¥l 3 wo MHOLT | parridr

MIND . Writer. noun . w.o

- <ovyypageas™
| w-o- cuyypogées 15.0956 1 1. wo MN.056

<writer=

Table 7: & sample of codification of the words of the BMGMLz. When a word has multiple
meanings, it belongs to the cotresponding paragraphs as many M-Ch as there are meanings,
whete w.0. means word order.

The variety of the semantic rules or the combinations of the semantic categories are
Jjust as many as there are the variety of the syntactic categories and the semantic relations
between them, as seen in the Modern Greek Syntax. Moreover, with a finite number of
semantic rules, an infinite number of lexicon entries may be combined defining the semantic
structures. The set of the MGL semantic rules, the set of the MGL semantic categories and the
MGL semantic structures constitute the semantic basis of MGL [1,4,5].

3. The Proposed Modern Greek Sentences Generators and Parsers the Key-stones of a
CAMGLL Method Development

It can be taken for granted that a Natural Language does not simply comprise a set of words
expressing simple meanings, but a set of words put into use communicatively and interrelated
with morphological rules and syntactic structures in speech. Therefore, composite meanings
and concepts can be expressed. For the user, the aim of a Computer-Assisted Modern Greek
Language Learning (CAMGLL) method without using the overload of rules and extensive
phrasing can be made aware of the mechanisms of the language (profound knowledge) and

the acquisition of the ability to produce, comprehend and process written and spoken texts
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(ability of use). The degree by which a CAMGLL method can provide efficiency with the
response to the pursuit of a CAMGLL aim mainly depends on the efficiency of its design
[6,7,9,25,27], (see Screens 1,2).

Thus, the efficiency of the proposed Grammar for the development of the CAMGLL
method can be shown by the steps of parsing the Modern Greek Sentences concerning the

processing of components, relations and functions of the MGL System.

1G> ocimert! - Mciesot | Nsiné Prct Shog o {[TTTBonet Neoetwes. | BB 12120
Screen 1: The computational lexicons of the BMGMLx interconnected with Microsoft Programs or not, have the efficiency
recognize and give information of morphological, syntactic and the semantic combination in general or specific for every word
they contain, if the word belongs to a particular sentence

Step1  The keying of the parsing sentence (surface structure)

Step2  Lexical and Morphological recognition of the words of the sentence by means of:

1. the Modern Greek Computational Lexicon (MGCLx) and

2. the Modern Greek Morphology Computational Lexicon (MGMCLx)which are
Unit-Lexicons of the Basic Modern Greek Computational Multilexicon
(BMGMLx)
e Checks if the words of the parsing sentence belong to the MGCLx.
e Returns information for the part of speech for each word of the parsing

sentence and information for its morphological type if flectional.

e Possibility of analytically showing the morphological types of any word in

the parsing sentence.
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e Possibility showing any Related Morphological Rule.
e Possibility of pinpointing a non-morphological type of any word of the
parsing sentence and its error correction (corrector).

e Possibility of interconnections with commonly-used Microsoft Programs.

B oxvordyod NipoTdacue

©0 pafneig peend v wrtople

wmptu. mympwﬂm oo Pauatog pelinie - gehend

%mmmmawm.
o Evepreiont, Zodeyl 2n
R T s @Ww :@mamm. Aptpbg Evche
{pbawxo 1e

T

;:'“"wmxé ?m?wymré me;mé e Nmtnnleﬁg e

r.}e m‘;x.g "1; ﬁpcwmgamwmmv

"‘qmaﬁmxﬁ Ymeté Ax&xé me Nao;mmxﬁg e

ivxmvo: m&at.'..o - : o pafyic axobond veossieve tos wAsu
! <=Wmmmamw ehend £ 2: mm“ : i‘:- v totopa axobocsd avoievo ton pekesd’
| {Ravnmogevor Ty onepln e 3
eH zi;som Sew n.w-.zwmmmcﬁm #H [Tpéroon mve Srpaciaioyuc ARIODoT -:.,m-' ot i
§ *H A.pwwﬁ wﬁmm&m
#H Anobecrh Tipéraon sivax ®4 0 pBrig pEAS TV wtopla
Qempeg T S g Evar  Ernondnubm
H Soveexnu Aoy oo stvas ULV <KDY ORI _pTun > SavTmeLe 3
On Ravéve; TTapayayhc mg "ngiﬂum Hmmczi>> «<m€vg.mmmmm»«w&|mmmmm» ﬁ 4
Bl SoptC MR e Sty KaTTyopTIRD i< <R SRS TOTHOPORa STHETI,
& G g 3

Screen 2: The Parser oIMGm’sv as with the Generator, of!hempwedmﬁhod, whether intercomected witkmims
programs or not, gives the pupil the opportunity of writing in MS Word for example the ability to parse any MGMS orits
words. In the case of written mistakes of morphology, syntax or semantics, the system detects, gives the opportunity of
explanation to the ignored rules and corrects those mistakes, as in the example of the screen sbove,

Step 3 Recognition of syntactical role of words of sentences by means of the Modern
Greek Syntax Computational (MGSCLx).

e Possibility of pinpointing of non-morphological type relating to the
syntactic role of any word of the parsing sentence (corrector)
e Possibility of showing any related syntactic rule.

e Possibility of interconnections with commonly-used Microsoft Programs.

Step 4 Recognition of semantic combination of words of the sentence by means of the The

Logical Computational Lexicon of Basic Meanings (LCLxBM) and the
Computational Lexicon of Context of MGL (CLxCMGL):

e Possibility of pinpointing unacceptable semantic combination relating to the
syntactic role of any word of the parsing sentence.

e Substitution of any word in the parsing sentence with their synonyms and

antonyms.
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e Possibility of showing for any word of the parsing sentence, its possible
semantic combination of words of the MGCLX in accordance with its
syntactic role each time.

e Possibility of interconnections with commonly-used Microsoft Programs.

Step 5 Following Steps of 1,2,3 and 4 there is the appearance of the corresponding Pattern
Language (deep structure) of the parsing sentence, the category of the parsing

sentence and the template of rules which are produced.

It can be noted that the Modern 'Greek Sentences generators follow similar steps with similar

efficiencies for further use.

The effectiveness of the tools for the Modern Greek Sentences processing which have
Jjust been described for the development of the Computer-Assisted Modern Greek Language
Learning (CAMGLL) Method is marked by the structure, function and content of these tools,
i.e. the tools’ general effectiveness, which lend linguistic and acquisitional perspicuity as well
as computational effectiveness to the CAMGLL Method as well as to an Intelligent
Computer-Assisted Modern Greek Language Learning (ICAMGLL) Method, where the
proposed GTG may form its Expert Module [6,7,9]. Thus, in this proposed framework, the
examples where the pupil has the possibility of creating or exercising underline the use and
appliéation of the morphology and syntax rules in practice through continual revision in every
unit; avoiding long, monotonous theoretical and in many cases tiresome ineffective phrasing.
Cooperative learning is promoted through the realization of the Modern Greek Sentences
processing in an open experimental and creative environment from the pupil for written
Modern Greek Sentences by means of pedagogical methods [10,11,25]. Given simultaneous
emphasis on the language practice which is an element of the modern language teaching
[12,28]

Another example promoted by the proposed grammar is the independent use of the
computational lexicons of the Basic Modern Greek Computational Multilexicon (BMGMLXx)
through which each word they contain are able to recognize and give information for its
morphology, syntax and semantic combination in general or specific if the word belongs to a
particular sentence. The BMGMLx with information it provides and is available at any time,
makes the learning result more effective and efficient since it minimizes the metalanguage of
morphological, syntactic and semantic rules of the MGL. In addition, the BMGMLx provides
the necessary self-sufficiency for the user not to resort to other means of electronic or printed

matter when finding language phenomena.

The realization of the CAMGLL Method works in the commonly used Windows’95,
’98, 2000 and XP.
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4. Conclusions

The goal of this study was to apply a version of a GTG for the MGL Processing, in order to
use it in the development of a Computer-Assisted Modern Greek Language Learning
(CAMGLL) Method. The suggested GTG is composed of the Template Grammars -
generative dimension and the Basic Modern Greek Computational Multilexicon (BMGMLx)

with its algorithms - transformational dimension.

Template Grammars are a version of GTG of the Chomsky hierarchy, with the
additional . property .to group the production .rules, which generate the strings of the
corresponding language. Template Grammars generate the Pattern Language of MGL. Pattern
Language Sentences are free of morphological forms and meanings,‘ but with the same
syntactic structure as the corresponding Modern Greek Sentences. Characteristic exponents,
which are also introduced, characterize Pattern Language Sentences structure and
automatically map them to the corresponding templates of rules, from which they were

generated and vice versa, avoiding time consuming search methods.

Basic Modern Greek Computational Multilexicon (BMGMLx) is a system of
computational and interconnecting lexicons which consists of recorded data concerning the
vocabulary, the syntax, the morphology and the semantics of MGL. BMGMLx algorithms
describe the finite rules, which express the generative and transformational MGL mechanisms
and recognize Modern Greek words, generate and parse their forms and their semantic
combinations as well as Modern Greek Sentences. For this, the Semantic Basis of MGL is

also introduced.

This GTG model is based on the structure and function of the MGL System. Thus, the
teaching of the Grammar Code of the MGL is based on the Holistic Approach. Furthermore, the
suggested GTG is able to parse and generate Modern Greek Sentences, in the framework of an

Open Educational Environment where learning is experimental, creative and cooperative.

The contents of the computational lexicons of the BMGMLx and the production rules
of the Template Grammars are suitably selected and enriched in order to use, firstly, words of
themes and meanings from communicative areas, secondly, their dominant semantic
combinations and thirdly, the commonly used morphological and syntactical rules. All these
contents, interconnected with Microsoft Programs or not, are functional for a Communicative
MGL Teaching Method, based on the written Modemn Greek Sentences, avoiding long,
monotonous theoretical and in many cases tiresome ineffective phrasing. Also, BMGMLx.
provides the necessary self-sufficiency for the user not to resort to other means of electronic

or printed matter when finding language phenomena.
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The CAMGLL method based on the suggested GTG can be used either in a classroom

at school or by Internet correspondence, for teaching MGL as a native or foreign language.

Moreover, the suggested GTG, on the one hand constitutes a Grammar Framework
which may form the Expert module of an ICAMGLL Method, on the other hand describing
the structure and function of other Natural Language Systems may introduce a CALL Method
as well as the Expert modules of an ICALL Method, for the corresponding Languages.
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