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ABSTRACT

This paper is concerned with the oscillatory behavior of first-order delay
differential equations of the form

Z'(t) + p(t)z(r(¢)) =0, =10, 1)
where p, 7 € C ([to,0),R"),R* = [0,00), 7 (t) is non-decreasing, 7 (t) < t for
t > tg and lim;—o 7 (t) = co. Let the numbers k and L be defined by

¢ t
k = liminf p(s)ds and L = limsup/ p(s)ds.
t—oo

o0 Jr() (t)

It is proved here that when L < 1 and 0 < k < L all solutions of Eq. (1)
oscillate in several cases in which the condition

InA; —14++/5—=2X +2k)
AL

L>

holds, where A; is the smaller root of the equation A = ¢

0Key Words: Oscillation; delay differential equations.
1991 Mathematics Subject Classification: Primary 34K15; Secondary 34C10



1 Introduction

The problem of establishing sufficient conditions for the oscillation of all solu-
tions of the differential equation

(@) +p)z(r(8) =0, t=ty, (1)

where the functions p, 7 € C([to,00), R¥)(here R™ = [0,00)), 7(¢) is nondecreas-
ing, 7(t) <t for t > t and limy—eo 7(t) = 00, has been the subject of many
investigations. See, for example, [1-27] and the references cited therein.

By a solution of Eq. (1) we understand a continuously differentiable function
defined on [7(7p), o0) for some Ty > tp and such that (1) is satisfied for ¢t > Tp.
Such a solution is called oscillatory if it has arbitrarily large zeros, and otherwise
it is called nonoscillatory.

The first systematic study for the oscillation of all solutions of Eq. (1) was
made by Myshkis. In 1950 [24] he proved that every solution of Eq. (1) oscillates
if

limsuplt — 7(8)] < o, Liminf[t — 7(¢)] - liminfp(t) > é (1)
t—oo —+00 —o0

In 1972, Ladas, Lakshmikantham and Papadakis [19] proved that the same
conclusion holds if

1
lirmleins f pls)da> 1. (Cs)
t—eo Jr(2)

In 1979 Ladas [18] and in 1982 Koplatadze and Chanturija [14] improved
(C1) to

t

liming | p(e)ds > % . (Ca)

e Jr(r)

Concerning the constant % in (Cj3), it is to be pointed out that if the in-

equality
¢
[ ws)as <
(t)

holds eventually, then, according to a result in [14], (1) has a non-oscillatory
solution.

In 1982 Ladas, Sficas and Stavroulakis [20] and in 1984 Fukagai and Kusano
[10] established oscillation criteria (of the type of conditions (Cz)and (C3)) for
Eq. (1) with oscillating coefficient p ().

It is obvious that there is a gap between the conditions (C2) and (C3) when
the limit

@ |

t
lim p(s)ds

t—oo 'r(t)



does not exist. How to fill this gap is an interesting problem which has been
recently investigated by several authors.

In 1988, Erbe and Zhang [9] developed new oscillation criteria by employing
the upper bound of the ratio z(7(¢))/z(t) for possible nonoscillatory solutions
z(t) of Eq. (1). Their result, when formulated in terms of the numbers k& and
L defined by

i 1
k = liminf p(s)ds and L= limsup/ p(s)ds,

= Jr tooo Jr(2)

says that all the solutions of Eq (1) are oscillatory, if 0 < k£ < 1 and

k2
L>1- I (04)

Since then several authors tried to obtain better results by improving the upper
bound for z(7(¢))/z(¢). In 1991 Jian Chao [2] derived the condition

2

L>1-gr—p,

(Cs)

while in 1992 Yu and Wang [26] and Yu, Wang, Zhang and Qian [27] obtained
the condition

TR ) iy
. .

In 1990 Elbert and Stavroulakis [7] and in 1991 Kwong [17], using different
techniques, improved (Cy), in the case where 0 < k < 1, to the conditions

Isg— (Cs)

1:
L>1—-(1-—=)? C
and
InA;+1
oy bt (Cs)
A1
respectively, where A;is the smaller root of the equation
A=, (2)

In 1994 Koplatadze and Kvinikadze [14] improved (Cs), while in 1998 Philos
and Sficas [25] , in 1999 Jaro$ and Stavroulakis [11] and in 2000 Kon, Sficas and
Stavroulakis [12] derived the conditions

k2 k2

L>1-sa-% "7

A1, (Co)

L> (CIO)‘

Inh+1 1-k—+vI-2k—k2
M 2



and

2
L>2k+— -1, (C11)
A1
respectively, where ); is the smaller root of Eq. (2).
Following this historical (and chronological) review we also mention that in
the case where

£ 1 5 1
p(s)ds > — and lim p(s)ds = =
[f(ﬂ() : tim [ s =
this problem has been studied in 1993 by Elbert and Stavroulakis [§] and in
1995 by Kozakiewicz [16], Li [22], [23] and by Domshlak and Stavroulakis [5].
The purpose of this paper is to improve the methods previously used to show
that the conditions (C2) and (Cy)-(C11) may be weakened to

InA; —144/5—=2X + 2k

L> .

(C12)

where )\ is the smaller root of the equation A = "

It is to be noted that as k — 0, then all conditions (C4)-(C11) reduce to the
condition (C3), i.e

Li> 1.
However our condition (Ci2) leads to
L>+3-1~0.732

which is an essential improvement. Moreover (Ci2) improves all the above
conditions when 0 < k£ < % as well. For illustrative purpose, we give the values
of the lower bound on L under these conditions when k = 2

(C3):  1.000000000
(Cs):  0.966166179
(Cs):  0.892951367
(Cs):  0.863457014
(C7):  0.845181878
(Cs):  0.735758882
(Co):  0.709011646

(Cro):  0.599215896
(Ci1):  0.471517764
(Ci2):  0.459987065

We see that our condition (Cis) essentially improves all the known results
in the literature.



2 Main Results

In what follows we will denote by k and L the lower and upper limits of the
average f:( 5 p(s)ds as t — coc, respectively, i.e.

t
kE = liminf p(s)ds
t—oo ‘r(t)
and
i
L= hmsup] p(s)ds.
7(t)
Set

We begin with the preliminary analysis of asymptotic behavior of the function
w(t) for a possible nonoscillatory solution z(t) of Eq. (1) in the case that & < 1.
For this purpose, assume that (1) has a solution z(t) which is positive for all
large t. Dividing first Eq. (1) by z(t) and then integrating it from 7(¢) to ¢
leads to the integral equality

w(t) = exp / o Pe)ds (3)

which holds for all sufficiently large ¢.
For the next lemmata see [12].

Lemma 1 Suppose that k > 0 and Eg. (1) has an eventually positive solution
z(t). Thenk < 1/e and

M < htrgé%fw(t) < Ag,

where \; is the smaller and )y the greater root of the equation X = e"*.
Lemma 2 Let 0 < k < 1/e and let z(t) be an eventually positive solution of
Egq. (1). Assume that 7(t) is continuously differentiable and that there exists
w > 0 such that

p(r(t)7'(t) > wp(?) (4)
eventually for allt. Then
2
lim t) < ,
t-.ilipw( IE 1-k—+/(1—k)?—44

where A is given by

ek _ Mwk =1
(Mw)?

A=



Remark 1 It is easy to see that (4) implies that
i

()
[ p(s)ds > wf p(s)ds  forall 7(t) u <t 4"
7(w)

u

Indeed, the function
(1) ¢
v(u) = f © p(s)ds —w/ p(s)ds, T(@)<u<t,

(u) u

satisfies the condition
v(t) =0,

and

V' (u) = —p(r(w))7'(u) + wp(w) < 0.
If p(t) > 0 eventually for all t and

hmmft“mm =wp > 0,

p(t)
then w can be any number satisfying 0 < w < wg. Besides the case p(t) =p > 0,
T(t) =t —T or the case T(t) =t —T and p(t) is T — periodic, there exists a class
of functions which satisfy (4). Such a function is given in the Example below.

Lemma 8 Let 0 < k < L and let z(t) be an eventually positive solution of
Eq.(1). Assume that condition ({) is satisfied. Then

ImA;  —-14++1+2w—2wA\M
<
L - Al B l'-d/\]_ ! (6)

where \; is the smaller root of the equation A = eF* and M = lim inf-=%

Fime ECT(E))"

Proof. Let 6 be any number in (1/X; 1). From Lemma 1 and the definition
of M, there is a T3 > T such that

%)_)w,\l, LT, ™
and
x(t)
=) >6M, t>Ti. (8)

Now let ¢ > T3. Since the function g(s) = z(7(t))/z(s) is continuous, g(7(t)) =
1 < 6)q, and g(t) > 60X, there is t* = ¢*(¢) € (7(¢),t) such that

=(r(t) _
G = 9)



Dividing (1) by z(t), integrating from 7(t) to t* and taking into account (7),
yields

i 1 Y 2/(s) In(8X)
ds < —— ds = 10
/;(t} p(S) e 9A1 7(t) .’L‘(S) s 6/\1 ( )

Next we try to find an analogous inequality for

A= /: p(s)ds.

Integrating (1) from 7(s) to 7(¢), we have
7(¢)
alo ey b= / sl e £F
7(s)
Thus, integrating (1) from ¢* to ¢ and using (4'), we obtain

t

o(t") ~2(t) = | ple)a(r(e))ds =

t 7(2)
= [ oot + [ pw)ariu)duds

s

¢ t (%)
2 2(r0) [ ple)ds +2(7O) [ pe)( [ pt)du)as
> o(r(t) | pleds+we(r?®) [ o) [ pluhds

—o(r(t) [ pledds+ G [ pledds)

= Az(7(t)) + %Azx(”r2(t)),

where 72(t) = 7(7(t)). Therefore
A2 o(r2(0) _ o) _ _=(t)

220 ®) T () =)
(and taking into account (9) and (8))

1
< — —6M.
< M

A+

Since, by (7).

2(72(t)
2(@) O

7



we obtain

A 1
A 6
+ —wb) < 9A1 — M
or
Az‘”gz’\‘ + A+ (OM - —) <0,
which leads to
~1+4/1-200(6M ~ 5%) 14 /T3 20— 20870 M
A< — :
- (.JJBA]_ [.LJG)\]_
since the other root is negative. Adding (10) and the last inequality, we obtain
t m(8X) . =1+ +/1+2%— 2w.92A1M
<
[-(t) BlAie s 21 i WA

Letting ¢ — 1 completes the proof. m

Theorem. Consider the differential equation (1) and let L <1,0<k <1
and there ezxists w > 0 such that ({) be satisfied. Assume that

InA;  —-14++/1+2w—-2whB
+ ;
A1 w)\1

L> (11)

kA

where A1 is the smaller root of the equation A = e and

1-k—/A-k2Z—
2

where A is given by (5). Then all solutions of Eq. (1) oscillate. ®

Proof. Assume, for the sake of contradiction, that z(t) is an eventually
positive solution of Eq. (1). Then, by Lemma 3, we obtain (6) which, in view
of Lemma 2, contradicts (11). The proof is complete. m -

B =

Remark 2 It is clear that in the above Theorem w can be replaced by wq, where
wq is given in Remark 1.

Remark 3 Observe that when w =1, then (11) reduces to

g~ 1445 — 28 F0kA

2
Lt - (12)
since from [12] it follows that
1
B=1—-k- x
In the case that k = 1, then Ay = e and (12) leads to
VT—2
L > Y= ~0.459987065.



Example. Consider the delay differential equation

(T el a ke 512) ) (13)

where p > 0, @ > 0 and pa = 0.46 — -i- Then

g 1 1
k=1lim inf [ . pds =1m. inf p(asinzx/f-i—._‘—-)._—_.‘-

t—oo T{t) t—o0 pe e
and

! _
1
L = lim sup pds=]jmsupp(asin2\/f+i)=pa+-é—=0.46.

t—oo 7(t) t—o0

Thus, according to Remark 2, all solutions of Eq. (13) oscillate. Observe that
none of the results mentioned in the introduction apply to this equation. m
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