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Abstract

In this paper, we shall establish sufficient conditions for the controllability of
second order delay integrodifferential inclusions in Banach spaces, with nonlocal
conditions. By using suitable fixed point theorems we study the case when the
multivalued map has convex as well nonconvex values.
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1 Introduction

In this paper, we shall establish sufficient conditions for the controllability of second
order delay integrodifferential inclusions in Banach spaces, with nonlocal initial condi-
tions. More precisely we consider the following semilinear system of the form

Y — Ay € fo "K(t, ) F(s,u(o(s)))ds + (Bu)(z), te€J=10,b] (1)

y(0) + f(y) = vo, ¥'(0) =, (2)

where F' : J x E — P(E) is a multivalued map, ¢ : J — J is a continuous function
such that o(t) < t,Vt € J, K : D — IR, D = {(t,s) € I xJ : t = s}, [
C(J,E) — E is a continuous given function, A is a linear infinitesimal generator
of a strongly continuous cosine family {C(¢) : ¢ € IR} in a separable Banach space
E = (E,|-|),y0,n € E. Also the control function u(-) is given in L?(J,U), a Banach
space of admissible control functions with U as a Banach space. Finally B is a bounded
linear operator from U to E.
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The pioneering work on nonlocal evolution Cauchy problems is due to Byszewski.
As pointed out by Byszewski [12], [11] the study of initial value problems with nonlocal
conditions is of significance since they have applications in problems in physics and
other areas of applied mathematics. In fact, more authors have paid attention to the
research of initial value problems with nonlocal conditions, in the few past years. We
refer to Balachandran and Chandrasekaran [2], Byszewski [11], [12], Ntouyas [26] and
Ntouyas and Tsamatos [24], [25].

Initial value problems for second order semilinear equations with nonlocal condi-
tions, were studied in Ntouyas and Tsamatos [25] and Ntouyas [26].

Recently, the authors in [4] studied the controllability of second order differential
inclusions in Banach spaces with nonlocal conditions, in the case where the multival-
ued map has bounded, closed and convex values, by using the fixed point theorem of
Martelli [23]. In this paper, we extend the results of [4] to second order delay integrodif-
ferential inclusions in Banach spaces with nonlocal conditions, when the multivalued F
has convex or nonconvex values. In the first case a fixed point theorem due to Martelli
is used and in the later a fixed point theorem for contraction multivalued maps, due
to Covitz and Nadler [15].

For other recent controllability results for first and second order differential and
integrodifferential inclusions in Banach spaces with nonlocal conditions see [5]-[10].

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multi-
valued analysis which are used throughout this paper.
C(J, E) is the Banach space of continuous functions from J into £ normed by

lylleo = sup{|y(t)| : t € J}.

B(E) denotes the Banach space of bounded linear operators from E into E.

A measurable function y : J — E is Bochner integrable if and only if |y| is
Lebesgue integrable. (For properties of the Bochner integral see Yosida [29]).

L*(J, E) denotes the Banach space of measurable functions y : J — E which are
Bochner integrable normed by

b
||y||L:=_/(; ly(t)|dt for all y e L(J, E).

Let (X,]|-|) be a Banach space. A multivalued map G : X — P(E) is convex (closed)

valued if G(z) is convex (closed) for all z € X. G is bounded on bounded sets if

G(B) = UgepG(z) is bounded in X for any bounded set B of X, that is sup{sup{|ly|| :
zeB

y € G(z)}} < co. G is called upper semicontinuous (u.s.c.) on X if, for each zo € X,
the set G(zo) is a nonempty, closed subset of X, and if, for each open set V' of X
containing G(2¢), there exists an open neighbourhood U of zo such that G(U) C V.
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G is said to be completely continuous if G(B) is relatively compact for every bounded
subset B C X. If the multivalued map G is completely continuous with nonempty
compact values, then G is u.s.c. if and only if G has a closed graph (i.e. z, —
Zo, Un — Yo, Un € G(zn) imply yo € G(zp)). G has a fized point if there is x € X
such that z € G(z).

PX)={Y e P(X):Y #0}, Pu(X)={Y € P(X):Y closed}, PFy(X) =
{Y € P(X):Y bounded}, and F.(X) = {Y € P(X) : Y convex}. A multivalued -map
G : J — Py(X) is said to be measurable if for each z € X the functionY : J — IR,
defined by

Y (t) =d(z,G() = inf{|z — 2| : z € G(1)},

is measurable. For more details on multivalued maps we refer to the books of Deimling
[16], Gorniewicz [19] and Hu and Papageorgiou [21].

An upper semi-continuous map G : X — P(X) is said to be condensing if for
any subset B C X with a(B) # 0, we have a(G(B)) < «(B), where a denotes the
Kuratowski measure of noncompacteness. For properties of the Kuratowski measure,
we refer to Banas and Goebel [3]. We remark that a completely continuous multivalued
map is the easiest example of a condensing map.

We say that a family {C(t) : t € IR} of operators in B(FE) is a strongly continuous
cosine family if
(i) C(0) = I (I is the identity operator in E),
(ii) C(t+s) + C(t — s) = 2C(t)C(s) for all s,t € IR,
(iii) the map t — C(t)y is strongly continuous for each y € E;

The strongly continuous sine family {S(t) : t € IR}, associated to the given strongly
continuous cosine family {C(¢) : t € IR}, is defined by

L
Sty = [0 C(s)yds, y€ E, teR.

The infinitesimal generator A : E — E of a cosine family {C(¢) : t € IR} is defined
by
d2
Ay = Efc(t)ylt=o'
For more details on strongly continuous cosine and sine families, we refer the reader
to the book of Goldstein [18], Heikkila and Lakshmikantham [20], Fattorini [17] and to

the papers of Travis and Webb [27], [28].
3 Existence result: The convex case
Assume in this section that F : J x E — P(FE) is a bounded, closed and convex valued

multivalued map.
We will need the following assumptions:
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(H1) A isthe infinitesimal generator of a given strongly continuous and bounded cosine
family {C(t) : t € J} with M = sup{|C(t)|;t € J};

(H2) F: JxE — Byu.(E);(t,y) — F(t,y) is measurable with respect to ¢ for each

y € E, u.s.c. with respect to y for each t € J and for each fixed y € C(J, E) the
set

Sry=1{9 € L}LE): g(t) € F(t.y(o(?))) forae. t € J}

is nonempty;
(H3) there exists a constant L such that

|f(w)| < L, foreach ye C(J,E);

(H4) for each t € J, K(t,s) is measurable on [0,¢] and
K(t) = ess sup{|K(t,s)], 0<s<t},
is bounded on J;
(H5) the map t — K; is continuous from J to L®(J, IR); here K;(s) = K (¢, s);
(H6) o : J — J is a continuous function, such that o(t) <t,Vte J

(H7) The linear operator W : L*(J,U) — E, defined by
b
Wu = f S(b — s)Bu(s) ds,
0

has an invertible operator W~ which takes values in L*(J,U)/kerW and there
exist positive constants M; and M, such that |B| < M; and W~ < M.

(H8) ||F(t,v)|| := sup{|v| : v € F(t,4)} < p(t)u(|y|) for almost allt € J and all y € E,
where p € L}(J,IR.) and ¢ : IR, — (0, 00) is continuous and increasing with

b o du
Mbst,IEJIJ)K(t)/Op(s)ds< ] m:

where ¢ = M (|yo| + L + Mb|n| + My) and

My = bMyMy[|zi|+ L + Mlyo| + ML +bM]n|.

+bMsup K(2) [ pls)9(ly(s))ds]

teJ
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(H9) For each bounded set D C C(J, E), and ¢t € J the set

t s
{Ct)wo — 1@)) + S+ [ St—s) [  K(s,wg(u)duds : g € Sro}
0 0
is relatively compact in E, where Spp = U{SF, : y € D}.

Remark 3.1 (i) If dimE < oo, then for each y € C(J, E) the set Sgy is nonempty
(see Lasota and Opial [22]).
(ii) If dimE = oo and y € C(J, E) the set Spy is nonempty if and only if the function
Y :J — IR defined by

Y(t) :=inf{|v| : v € F(t,y)}
belongs to L'(J,IR) (see Hu and Papageorgiou [21]).
(iti) Ezamples with W : L*(J,U) — E such that W™ ezists and is bounded are dis-
cussed in [13].
(iv) If we assume that C(t), t > 0 is completely continuous then (H9) is satisfied.

Definition 3.1 A function y € C(J, E) is said to be a mild solution of (1)-(2) on
J if there ezists a function v € L*(J, E) such that v(t) € F(t,y(o(t))) a.e. on J

y(0) + f(y) = o, and

y(®) = Clhwo—CWF() +Shn+ [ St —s)(Bu)(s)ds
+Lt8(t ) /OS K(s,m)v(r)drds.

Definition 3.2 The system (1)-(2) is said to be nonlocally controllable on the interval
J, if for every yo,n,z1 € E, there exists a control u € L*(J,U), such that the mild

solution y(t) of (1)-(2) satisfies y(b) + f(y) = z1.

The following lemmas are crucial in the proof of our main theorem.

Lemma 3.1 [22] Let I be a compact real interval and X be a Banach space. Let F

be o multivalued map satisfying (H2) and let T’ be a linear continuous mapping from
LYMI,X) to C(I,X), then the operator

FoSp:C(I,X)— BulC(, X)), y— (T'oSr)(y) :=T(Sky)
is a closed graph operator in C(I,X) x C(I,X).

Lemma 3.2 [23]. Let X be a Banach space and N : X — PBya.(X) an u.s.c.
condensing map. If the set

Q:={yeX: ye N(y) for some A>1}

18 bounded, then N has a fized point.
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Theorem 3.1 Let f : C(J, E) — E be a continuous function. Assume that hypothe-

ses (H1)-(H9) are satisfied. Then the problem (1)-(2) is nonlocally controllable on
J.

Proof. Using hypothesis (H7) for an arbirtary function y(-) define the control
u(t) = Wz — f(y) — CB)wo + C(B)f(y) — S(B)n
b s !
— ['5t-s) [ K(s,m)g(r)drds](®),
0 0

where
g€ Spy={g€ L'(J,E): g(t) € F(t,y(o(2))) forae. te€ I}

We shall now show that when using this control, the operator N : C(J,E) —
P(C(J, E)) defined by

N@)={heCULE):ht)) = Cl)wo—F@)+5On+ [ SE—s)(Buy)(s)ds
+ /Dt S(t—s) /OSK(S,T)Q(T) drds: g € Sﬂy}

has a fixed point. This fixed point is then a solution of the system (1)-(2).
Clearly z1 — f(y) € N(y)(b)-

We shall show that N satisfies the assumtions of Lemma 3.2. The proof will be
given in several steps.

Step 1: N(y) is convex for each y € C(J, E).

Indeed, if A1, hy belong to N(y), then there exist g1, g2 € Sry such that for each
t € J we have

h(t) = C)wo— Fw) + S+ [ S(t—)(Buy)(s)ds
+f: St —s) [ K(sma(r)drds, i=1,2
Let 0 < o < 1. Then for each t € J we have
(b + (- a)h)(®) = C(0)(wo— Fu)+ SO+ [ St = 5)(Buy)(s)ds
+ [ “St—s) [ (s Dlags(r) + (1 - @)ga(r)ldrds
Since Sp, is convex (because F has convex values) then

ah1 + (1 = O!)hg S N(y)
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Step 2: N is bounded on bounded sets of C(J, E).

Indeed, it is enough to show that there exists a positive constant [ such that for
each h € N(y),y € B, = {y € C(J,E) : ||yl < 7} one has ||h||c <. If h € N(y),
then there exists g € Sgy such that

WD) = O~ fW)+ S5O0+ [ St s)(Bu)(s)ds

—i—/tS(t—s)sz(s T)g(r)drds, te J
0 0 bl 3
By (H3)-(HT7) we have for each t € J that

AOl < 101l + ICOIFW]+ SOl + | [ St - 9)(Bu)(e) ds

+

/ ‘St —s) | * K(s,7)g(r)drds

M |yo| + ML + Mb|n|

AN

DM M Ms||zy| + L+ Mlyo| + ML + bM|n|

+Mbstg? K(t)lpl s igw(ly(t)l)]

¢ [ [ 15 (s, 0lpwb (oo (w))duds

Myo| + ML + bln|

IA

+b MM, My[|z1| + L+ Mlyo| + ML + bM|n|

+Mbsup K (t)||pl| 2t sup ¥ (|y(t)])]
teJ teJ

+Mbsup K (t)|p| 2 sup ¥(|y(¢)])-
teJ teJ

Then for each h € N(y) we have
[Plleo < Mlyo| + ML+ bln| + MMo + Mbsup K (£)][p]|z» sup ¥ (jy(£)])]

+Mbsup K (t)|p|r: sup ¥ (|y(t)]) == 1.
teJ teJ

Step 3: N sends bounded sets of C(J, E) into equicontinuous sets.

Let t1,ts € J,t; < ty and B, be a bounded set of C(J, E). For each y € B, and
h € N(y), there exists g € Sg, such that

AD) = ClH)w— F) + SO0+ [ St = 9)(Bu,)(s)ds
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+ /: S(t—s) fos K(s,7)g(r)drds, te€ J
Thus
[R(t2) = h(t1)] < [(C(te) = C(t1))yol + LIC(t2) — Ct1)| + |S(E2) — S(E)|Iml

fotz [S(ta—s) — S(t1 — s)] BW™ [ — f(y) — C(b)yo

|
+OOS@) SO0 ~ [ 50-9) [[ ks, mr)ards|(n)in

[ 5t~ 9)BW 1 — £(y) = COYyo + CBI ) = S

t1

+

+[)b S(b—s) fos K(S,T)Q(T)drds] (”ﬁ)d’f?‘

/Otz[S(tg—s L‘l—-s]/ T)drds

“|

ftz S(t; —s) fos K(s,r)g(r)dfdsH

t1

|C(t2) = Clta)llyol + LIC(t2) — C(ta)] + [S(t2) — S(t)lIn|

_|_

IA

+ [ 15 — ) = S(t = )| MuMa[Jes| + L+ Mo
b

+ML+bMn| + Mbsup K (1) [ p(s)(ly(s)])ds] (n)a

+/ S(ts — )| My My[|ar] + L+ Mlyo| + ML+ bM]n|

b
+Mbsup K (2) [ p(s)u(ly(s)))ds] (m)an

teJ

/:2 [S(t2 — s) —s ]f T)drds

+ sup K(t)
teJ

+M sup K (t)(ts — t1) / llg(s)|lds.
teJ
As t, — t; the right-hand side of the above inequality tends to zero.

As a consequence of Step 2, Step 3 and (H9), together with the Arzela-Ascoli
theorem, we can conclude that N is completely continuous, and therefore, a condensing
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multivalued map.
Step 4: N has a closed graph.

Let yp, — Yx, hn € N(yn), and h, — h.. We shall prove that h. € N(y.).
h, € N(y,) means that there exists g, € Spy, such that

halt) = C(eho— COF(gn) + Sa+ [ S(t = 5)(Buy,)(s)ds
+f0t S(t — s) /0 K(s,7)gn(r)drds, t€J,
where
U (t) = Wi[n = f(v) — C(B)yo + C(b)f(yn) — S(b)n
~ ['st-9) [ K(s.m)an(r) drds] 1)

We must prove that there exists g. € Sgy, such that

hi(t) = Cltlo— C)f(w) + St + [ St 5)(Buy)(s)ds
+ [[St-s) [ K(s.r)g.(r)rds, e,
where

uy (£) = Wln— f(y.) — CO)yo + C(0)f(w) — S(b)n

_/ObS(b— ) fos K(s,7)gx(T) des] (2).

Set
T, (8) = Wi — £(y) — C()wo + C(b)f(y) — S®))-

Since f, W~! are continuous, then u,, (t) — T.(t) for t € J.
Clearly we have that

(1 = Clewo + @) (w) = SCer— [ St = 5)(B,,)(5)ds)

= (h— COo+ CO)F (@) = St - [ S(t = 2)(BT)(5)ds)], O

as n — oo.
Consider the operator
I:LYJ,E)— C(J.E)
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g—T(g)(t) = fot S(t—s) [BW‘I(/b S(b—s) []S K(s,T)g(T)des) (s)]ds

0

t s
+ /0 S(t— s) / K(s,7)g(7)drds.
0
Clearly, I is linear and continuous. Indeed one has

[Tollee < VM sup K () 0MM:Ms + 1)lgles.

;From Lemma 3.2, it follows that I" o Sr is a closed graph operator.
Moreover, we have that

n(®) = C(8) + C()(wa) ~ S0 = [ (¢ — )(BT,)(s)ds € T(Sky).

Since Y, — ¥x, it follows from Lemma 3.2 that

ha(t) ~ Clt)yo + CW)F(w) — SO — [ S(t = 9)(BT,)(e)ds

/ (t—s) {BW 1 bSb——s /0 Kz rio drds)(s)]ds

0

+ /0 (t—s) / K(s,7)gu(T)drds

0

for some g, € Sry..

Step 5: The set
Q:={yeC(J,E): \y € N(y), for some A>1}

is bounded.

Let y € Q. Then Ay € N(y) for some A > 1. Thus there exists g € Sry such that
y(t) = AC(E)yo— ATICE)Fy) + AT S ()

37 [ 8(t = 9)BW [o1 = 1) — C(blao + COIFB) + St
— /Ob S(b—s) /ﬂs K(s,7)g(T) d’rds] (m)dn

t 5
-1 .
4k [0 S(t - s) /0 K(s,7)g(r)drds, t € J.
This implies by (H3)-(H8) that for each ¢ € J we have
() < Mlyo| + ML+ bM|n|
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+bM My My ||| + L + Mlyo| + ML + bM]n|
b
+oMsup K (2) [ plsy(ly(o(s))])ds]
teJ 0

+M /Ot /OS K(s,7)g(7)drds

M|yo| + ML + bM|n|

IA

+bM My My ||z | + L+ Mlyo| + ML+ bM|n|

oM sup K@) [ pl)b(ly(o(s)])ds]

teJ
+Mbsup K (1) [ pls)b(ly(o(s))ds.
teJ 0

Let us take the right-hand side of the above inequality as v(t), then we have
v(0) = Mlyo| + ML + MM,, |y(t)] <v(t), t € J,

and

v'(t) = Mbsup K (t)p(t)(ly(a(®))]), t € J.

teJ
Using the nondecreasing character of ¢ and the fact that o(t) <¢,Vt € J we get

v'(t) < Mb su?K(t)p(t)w(v(t)), ted.

This implies for each t € J that

v(t) du B ®©  du
—— < Mbsu Kt/ sds<[ —_
j«,(o} ¥ (u) et 0 0 pls) v(0) P(w)
This inequality implies that there exists a constant d such that v(t) < d, ¢t € J, and
hence ||y||oc < d where d depends only on the functions p and +. This shows that (2 is
bounded.

Set X := C(J,E). As a consequence of Lemma 3.2 we deduce that N has a fixed
point and thus the system (1)-(2) is nonlocally controllable on J. N

4 Existence Result: The nonconvex case

In this section we consider the problems (1)-(2), with a nonconvex valued right hand
side.
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Let (X, d) be the metric space induced from the normed space (X, |- ).
Consider Hy : P(X) x P(X) — IR; U {co}, given by

Hy(A, B) = max {sup d(a, B),supd(A, b)} ;
a€A beB
where d(A,b) = '11€1£ d(a,b), d(a,B) = gg d(a,b).
Then (P (X), Hy) is a metric space and (P (X), Hg) is a generalized metric space.
Definition 4.1 A multivalued operator N : X — P,(X) is called

a) ~y-Lipschitz if and only if there exists v > 0 such that

Hy(N(z),N(y)) < vd(z,y), foreachz, y€ X,

b) contraction if and only if it is y-Lipschitz with v < 1.

¢) N has a fixed point if there is ¢ € X such that z € N(z). The fized point set of
the multivalued operator N will be denoted by FizN.

Our considerations are based on the following fixed point theorem for contraction
multivalued operators given by Covitz and Nadler in 1970 [15] (see also Deimling, [16]
Theorem 11.1).

Lemma 4.1 Let (X,d) be a complete metric space. If N : X — Py(X) is a contrac-
tion, then FizN # (.

We will need the following assumptions:

(A1) F:[0,b] x E — P,(E) is integrably bounded and has the property that F(-,y) :
[0,b] — Pu4(F) is measurable for each y € E.

(A2) Hy(F(t,y), F(t,5)) <(t)|ly—7l||, for almost each ¢ € [0,b] and y,7 € E, where
l € LY([0,8],IR).

(A3) [If(y) — f@)|| < eclly—Fll, for each t € [0,8] and 3,7 € C([0,b], E), where c'is a
nonnegative constant.

Now we are able to state and prove our main result for this section.

Theorem 4.1 Assume that hypotheses (H1), (H4)-(H7) and (A1)-(A3) are satisfied.
Then the problem (1)-(2) is nonlocally controllable on J, provided

M2M; Myb? sup K (t)

Mec + MM; Msbe + M?M, Mybe + = te] o g <1,
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Proof. Using hypothesis (H7) for an arbirtary function y(-) define the control
uy(t) = Wz — f(y) — C(b)yo + C(b)f(y) — S(B)n
b s
- /0 S(b— s) fo K (s, 7)g(r) drds|(2),
where g € Spy.

Remark 4.1 For eachy € C([0,b], E), the set Sgy is nonempty, since by (A1), F' has
a measurable selection (see [14], Theorem IIL.6).

We shall now show that, when using this control, the operator N : C(J,E) —
P(C(J, E)) defined by

N(y) := {h e C(J,E):h(t) = C)(wo— fly))+ S(t)n—i—fotS(t — 5)(Buy)(s) ds

4 /: S(t—s) /os K(s,T)g(T)drds : g € SF,y}

has a fixed point. This fixed point is then a solution of the system (1)-(2).
Clearly z; — f(y) € N(y)(b).

We shall show that N satisfies the assumptions of Lemma 4.1. The proof will be
given in two steps.

Step 1: N(y) € Py(C([0,b], E)) for eachy € C([0,b], E).

Indeed, let (¥n)nzo € N(y) such that y, — § in C([0,8], E). Then § € C([0,1], E)
and ’

n(t) €W~ 7))+ SO0+ [ St = 9)(Buy)(s)ds
4 fot S(t—s) /OS K(s,7)F(r,y(o(r)))drds, t € J.
Using (A1) one can easily show by standard argument that
[ st=s) [ Kls,F(ry(otr)drds
is closed for each t € [0,5]. Then
ualt) — () € CW(wo— F) + 5@+ [ S(t— )(Buy)(s) ds
+f t—s)/ (s,7)F(r,y(o(r)))drds, t € J

So § € N(y).
Step 2: Hy(N(n), N(y2)) < vllys — val| for each y1,y2 € C([0, 8], E) (where v < 1).
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Let y1,49 € C([0,0], E) and hy € N(y1). Then there exists g1(¢) € F(t,v1(c(t)))
such that

m(t) = C(0)(wo~ Fun)) + S+ [ S(t— )(Bu,)(s)ds
+f (t=5) [ gu(r)drds, te J
From (H3) it follows that

Hy(F(t,3(0(2), F(t,12(0(2)) < i®)llva(o(2)) = v2(a (@)l

!
L)l (t) — w2(@)]l, t € J

IAIA

Hence there is w € F(t,y2(c(t))) such that
91(t) — wll < UO)Nwa(®) — w2, €.
Consider U : [0,b] — P(E), given by
Ut) ={w € E: |lg:1(t) —wll < I®)wn(®) = w2(B)][}-

Since the multivalued operator V() = U(t) N F(t,y2(c(t))) is measurable (see Proposi-
tion I11.4 in [14]) there exists g, (¢) a measurable selection for V. So, go(t) € F(t,y2(co(t)))
and

lg1 () — g2l < Ut)lwa(t) — y2(t)]|; for each ¢ € J.
Let us define for each t € J

ha(t) = O(0)(wo— F(u) + Sn+ [ (= 9)(Bu)(s) ds

+/ t—s/ T)drds.

Then we have

[hat) = o)l < MILFGn) = )+ MM [ i, (5) = waa(s)ds

+5 | “g1(s) — ga(s)]l ds

IA

Ml — yall + MMM, [ [15as) - Fwo)

+M| f(y1) — f(g2)| + b7 sup K()M||g1(s) — g2(s)llds

+Mb ]Ot llg1(s) — g2(s)llds
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< Mec|lyy — o] + MM Ms[bellyr — yol| + bMcllyr — 2|

Hotea Utz(s)nyl(sJ — ya(s)[|ds]

v [ “15) s (5) — va(s)l1ds

= Mce™ |y, — pollz + M My Mabee™®||y; — ys| 5

+ M2 M; Mobee™ @y — w2l

t
MMM sup K (1) [ 1(e)e ™0 ys(5) — a(s) s

teJ

£
+M [ Us)e I g (s) ~ a(s)lds

Mee™Ollys — ol 5 + MM Mobee™ |y — 4|5

IA

+M? My Mabce™ |y — vo|l5
1
+ MMy Mob* sup K (t)||yn — val| 5=+
ted T

1
+M|jy1 — yz“B;:eTL(t),

where L(t) = JE1(s)ds, and || - ||5 is the Bielecki-type norm on C([0, ], E) defined by
— —7L(t)
lylle = max{lly(t)lle™™}-

Then
M?2M, Myb? sup K (t)

M
lh1—he|ls < {Mc+MM1Mgbc+M2M1Mgbc+ - =4 i 1 —2]| -

By the analogous relation, obtained by interchanging the roles of y; and ys, it follows
that

Hy(N(y1), N(y2)) <
M?M; Myb? sup K (t)

teJ

Mc + M M, Mabc + MM, Mabe + lyy — v2ll5-

M
+_
T T

Then N is a contraction and thus, by Lemma 4.1, it has a fixed point y, which is a
mild solution to (1)-(2). |
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5 An Example
Consider the following partial integrodifferential equation of the form

2ultt) — 2(t0) = [ Klt5)als,2(5,4(s = 1) ds

+Bu(t), 0<y<m teJ

(3)

z(t,0) = z(t,m) = 0,
2(0,y) + 2(1,y) = 20(y), (4)

z(0,7) = z1(y)

where ¢ : J x E — E, is continuous.
Let E = L?0, 7] and define A: E — E by Aw = w" with domain

D(A)={w € E,w,w’ are absolutely continuous, w” € E,w(0) = w(r) = 0}.

Then -
Aw =" n*(w,w,)w,, w € D(A)
n=1
where w,(s) = \/g sinns, n = 1,2,... is the orthogonal set of eigenvectors in A. It

is easily shown that A is the infinitesimal generator of a strongly continuous cosine
family C(¢),t € IR in E given by

Cltyw =) cosnt(w, wn)wWpn, wEE

n=1

and that the associated sine family is given by

=
St)w =Y —sinnt(w,w,)ws, w € E.

f=]1

Assume that the operator B : U — Y,U C J, is a bounded linear operator and the
operator

Wu = /D " S(b— s)Bu(s)ds

has a bounded invertible operator W~ which takes values in L?(J, U)\kerW.
Assume that there exists an integrable function p : J — [0, 00) such that

lg(t, w(t))| < p(t)v(jwl)

where 1 : [0, 00) — (0, 00) is continuous and nondecreasing with

b < ds
Mbstg?K(t)fo P(t)dt</c ¥(s)
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where c is a constant.

Then the problem (1)-(2) is an abstract formulation of (3)-(4). Since all the con-
ditions of Theorem 4.1 are satisfied, the problem (3)-(4) is nonlocally controllable on
sl
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