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Introduction

Let Cy(X, E) be the space of all bounded continuous functions from a zero-dimensional Haus-
dorff topological space X to a non-Archimedean Hausdorff locally convex space E. In section
2 of this paper, we look at some of the properties of the locally convex topologies 3, &, 51
and 3] on Cy(X, E), introduced by the author in [8], and we show that the corresponding
dual spaces are certain subspaces of a space M (X, E’) of finitely-additive E’-valued measures
on the algebra of all clopen subsets of X introduced in [6]. In case E is a polar space, it
is proved that the strict topology 3., which was defined by the author in [7], coincides with
the polar topology associated with . In section 3 we look at the supports of members of
M(X,E") and in section 4 we introduce the topologies S and §;. In case E is metrizable,
it is shown that 3. is coarser than $; and coincides with the topology of simple convergence
on uniformly bounded equicontinuous subsets of Cy(X, E). In section 5 we look at the dual
spaces of Cy(X, E) under the topologies 3, and (3;, which were defined in [1] and [3], respec-
tively, while in section 6 we investigate the dual spaces for the topologies 3. and §,. When
E is metrizable, it is proved that 3. yields as dual space the space of the so called separable
members of M (X, E') and that the same does 3;,. Moreover the two topologies have the same
equicontinuous sets in their common dual space.

1 Preliminaries

Throughout this paper, K stands for a complete non-Archimedean valued field whose valua-
tion is non-trivial. By a seminorm, on a vector space E over K, we mean a non-Archimedean
seminorm. Similarly, by a locally convex space we mean a non-Archimedean locally convex
space over K, For E a locally convex space, we. denote by cs(E) the collection of all continuous
seminorms on E and by E’ its dual space.

Let now X be a zero-dimensional Hausdorff topological space and E a Hausdorff locally
convex space. We will denote by 3,X the Banaschewski compactification of X (see [4]) and by
v,X the N-repletion of X (N is the set of natural numbers), i.e. the subspace of 8,X consisting
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of all z € 3,X with the following property: For each sequence (V;,) of neighborhoods of z in
B,X we have that (| V,NX # 0. The space X is called N-replete if X = v,X. We will denote
by Cy(X, E) the space of all bounded continuous E-valued functions on X and by Cr.(X, E)
the space of all f € Cy(X, E) for which f(X) is relatively compact in E. In case E = K, we
will simply write Cy(X) and Cr.(X) respectively. For A C X, we denote by x4 the K-valued
characteristic function of A in X and by A%X the closure of A4 in BoX. Every f € Cro(X,E)
has a unique continuous extension f% to all of 3,X. For f an E-valued function on X, p a
seminorm on E and A C X, we define

1 fllp = sup p(f(2)), lIflla,p = supp(f(z))-
zeX zEA

The strict topology 3, on Cy(X, E) (see [7]) is the locally convex topology generated by
the seminorms f — ||hf||p, where p € cs(E) and h is in the space B,(X) of all bounded
K-valued functions on X which vanish at infinity, i.e. for each € > 0 there exists a compact
subset ¥ of X such that |h(z)| < € if z is not in Y. As it is shown in [7], B, has the same
bounded sets with the topology 7, of uniform convergence, i.e. the topology generated by the
seminorms |.||p,p € cs(E). Also 3, coincides with the topology 7% of compact convergence
on Ty-bounded subsets of Cp(X, E).

Let now K(X) be the algebra of all clopen, (i.e. closed and open) subsets of X. We denote
by M (X, E’) (see [6]) the space of all finitely-additive E’-valued measures m on K(X) for
which m(K (X)) is an equicontinuous subset of E’. For each m in M (X, E’) there exists
p € cs(E) with my(X) < oo, where, for A € K(X),

myp(A) = sup{|m(B)s|/p(s) : p(s) # 0, A > B € K(X)}.

The space of all m € M (X, E') with m,(X) < oo is denoted by M, (X, E'). Next, we recall the
definition of the integral of an E-valued function f on X with respect to an m € M (X, E').
For A€ K(X),A # 0, let D4 denote the family of all @ = {A;1,...,An : 21,... ,Zpn}, Where
{A1,...,A,} is a clopen partition of A and z; € A;. We make D4 a directed set by defining
a1 > ao iff the partition of A in «; is a refinement of the one in ay. For f € EX,m €
M(X,E) and @ = {A;,... ,An : 21,... ,Tn}, We define wo(f, m) = 3 iy m(Ai) f(z:). If the
limg we(f, m) exists in K, we will say that f is m-integrable over A and denote this limit by
/ 4y fdm. We define the integral over the empty set to be 0. For A = X, we write simply
[ fdm. 1t is easy to see that if f is m-integrable over X, then it is m-integrable over every
A€ K(X) and [, fdm = [xafdm. Every m € M(X, E') defines a 7y-continuous linear
functional on Crc(X, E) by f — [ fdm (see [6]). Also every ¢ € (Cre(X, E), 7u)’ is given in
this way by a unique m.

For p € cs(E), we denote by M, ,(X, E') the space of all m € M,(X, E') for which m,, is
tight, i.e. for every e > 0, there exists a compact subset ¥ of X such that m,(4) < eif Ais
disjoint from Y. We define

M(X,E= ] Mp(X,E).
pees(B)

As it is shown in [7], every m € My(X, E') defines a [B,-continuous linear form on Cy(X, E)
by um(f) = [ fdm. Moreover the map m — up, from M;(X, E’) to (Co(X, E), B,)’, is an
algebraic isomorphism. Finally we recall that a locally convex space E has the countable
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neighborhood property if, for each sequence (p,) of continuous seminorms on E, there exist
ap € cs(E) and a sequence (o) of positive numbers such that p > anp, for all n. For all
unexplained terms on locally convex spaces, we refer to [15] and [16].

Throughout the paper, X is a zero-dimensional Hausdorff topological space and E a
Hausdorff locally convex space.

2 On the Topologies 3,5, 51,5,

We recall the definitions of the locally convex topologies 3, 3, 51 and 81 on Cp(X, E) intro-
duced by the author in [8]. Let 2 = (X be the family of all compact subsets of 5, X which
are disjoint from X. For H € Q, let Cy be the space of all h € C;.(X) whose the continuous
extension kP> vanishes on H. For p € cs(E), let Bu, denote the locally convex topology
on Cp(X, E) generated by the seminorms ||.||np, where € Cg and ||f|lap = [|Af|lp- The
inductive limit of the topologies B, as H ranges over (2, is denoted by [5p, while B is the
projective limit of the topologies By, p € cs(E). Also, for H € Q, By is the locally convex
topology generated by the seminorms ||.||np, b € Cx,p € cs(E). The inductive limit of the
topologies B, H € , is denoted by 8. Replacing 2 by the family ©; of all K-zero subsets of
B,X which are disjoint from X, we get the topologies 31, for p € cs(E), 51 and (8;. Recall
that a K-zero subset of 3,X is a set of the form {z € 8,X : g(z) = 0} for some g € C(5,X).
Analogous with topologies 4 and 3’ are the topologies 38, and 3, which were defined in [3].
They are obtained by replacing € by the family €, of all Q €  with the following property:
There exists a clopen partition (4;);er of X with E?@"X disjoint from @ for all 7 € I.

Theorem 2.1 [8]. For H € Q and p € cs(E), Bup has as a base at zero the sets of the form

o]

({f € Co(X,E) : || fllanp < an},

n=1
where (o) is an increasing sequence of positive numbers, tending to co, and (A,) an increas-
ing sequence of clopen subsets of X with E:’G X disjoint from H for all n.

We only sketch the proof of the next Theorem since it is a modification of the proof of
Theorem 4.1 in [8].

Theorem 2.2 An absolutely conver subset V' of Cy(X, E) is a By p-neighborhood of zero iff
the following condition is satisfied: For each r > 0, there exists a clopen subset A of X, with

APt disjoint from H, and € > 0 such that
{(FeG(XE): |flp nllflap <€t CV.

Proof: The necessity follows using the preceding Theorem. Conversely, suppose that the
condition. is satisfied and let A € K, |A| > 1.. Choose an increasing sequence (A,) of clopen

sets, with A,"°" disjoint from H, and a decreasing sequence (e,) of positive numbers, €, — 0,
such that U, N A"U C V, where

Un={f € (X, E) : | fllanp S €}, U={f€Co(X, E): [Ifllp < 1}-
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Let V1 = U3 ﬂ[ﬂ:’:l(UnH +A™U)]. Then Vi C V. Choose A\; € K, with 0 < ;| < min{l, e },
and take A\, = A\""! for n > 1. Now

N{f € Co(X,E) : | fllanp < [Mnl} € WA,

n=1

and hence the result follows from the preceding Theorem.

Corollary 2.3 If 7., is the topology generated by the seminorm ||.||p, then B, is the finest
loally convez topology on Cy(X, E) which coincides with By on Typ-bounded sets.

We will show next that the dual space of Cp(X, E), under the topology 3, is a certain
subspace of M(X, E'). Let M,(X, E') be the space of all m € M (X, E') with the following
property: For each net (As) of clopen subsets of X which decreases to the empty set, there
exists p € cs(E), with my(X) < oo, such that my(As) — 0. Replacing decreasing nets by
decreasing sequences, we get the space M, (X, E')

Theorem 2.4 If m € M.(X,E'), then every member of Cy(X, E) is m-integrable and the
linear map unm, : Cp(X, E) — K, un(f) = [ fdm, is B-continuous.

Proof: There exists p € cs(E) with mp(X) < 1. Let f € Cp(X, E) and € > 0. We may assume
that ||f|lp < 1. Let (Ai)ier be the clopen partition of X corresponding to the equivalence
relation z ~ y iff p(f(z) — f(y)) < €. Choose z; € A;. The function f* = >, xa,f(z:) is
continuous. For each finite subset J of I, set By = Uigé ;A;. Then Bj is clopen and By | 0.
By our hypothesis, there exists g € c¢s(E),q > p, such that mg(By) — 0. Choose a finite
subset J of I such that mg(By) < €/||fllq- Let g = > ;cyxa,f(z:) and h = f* — g. For any
clopen partitioin {D;,...,D,} of X, which is a refinement of {A; € J} U{B;}, and any
yr € D, we have

S “m(Dak] Seend 3 mDgln) = 3 m{Adf ().
k=1 k=1 ieJ
Thus
> m(De) k) — > m(A:)f(z:)| <e and > m(De)[f(w) — Fw)]| S &
k=1 =i k=1

and so |37 m(Dg) f(ye) — Xiey m(Ai)f ($i)| < e. It follows that f is m-integrable. Finally,
U is (B-continuous. Indeed, let H € Q. It suffices to show that u,, is By p-continuous for
some p € cs(E). To this end, we first observe that there exists a decreasing net (Bs) of
clopen subsets of X with ﬂB—‘s’G °X = H. Since m € M.(X,E’), there exists p € cs(E)
such that m,(X) < 1 and limm,(Bs) = 0. We will show that w,, is Sp p-continuous. Let
W = {f € Co(X,E) : |lum(f)] < 1} and r > 0. There exists § with m,(Bs) < 1/r. If
B = X \ Bs, then BPX is disjoint from H and ="

{FeGX.E): fllp <7 lfllBp <1} CW.

The result now follows from Theorem 2.2.
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Theorem 2.5 The map u : M. (X, E') — (Co(X, E), B)',m — up, is an algebraic isomor-
phism.

Proof: It remains only to show that u is onto. So, let ¢ a [(B-continuous linear functional on
Cy(X, E). Since 8 is coarser that 7,, there exists m € M (X, E’) such that ¢(f) = [ fdm for
all f € Cro(X,E). We will show that m € M, (X, E’). In fact, let (4s) be a net of clopen
sets, which decreases to the empty set, and let H =) fL;‘B X Since ¢ is Sy-continuous, there
exist p € cs(E) and h € Cy such that

W1 =A{f € G(X, E) : |Ihfll, <1} C {f : [o()] < 1}
We will show that mp(As) — 0. So, let i be a non-zero element of K. The set
G ={z € BoX : [W* ()] < |ul}

is clopen and contains H. There exists § with A}ﬁ“x C G. If now A is a clopen subset of A;
and s € E with p(s) < 1, then g=lxas € W; and so |m(A4)s| < |g|. If A € K with |A] < 1,
then m,(As) < |Ap|, which clearly proves that m € M- (X, E’). Finally, ¢ = un, since both ¢
and u,, are -continuous and coincide on the (3-dense subset Cr.(X, E) of Cy(X, E).

Using arguments analogous to the ones used in the proofs of Theorems 2.4 asnd 2.5, we
get the following

Theorem 2.6 A subset H, of the dual space M(X, E') of (Cy(X, E), 8), is B-equicontinuous
iff the following condition is satisfied: For each net (As) of clopen subsets of X, which
decreases to the empty set, there erists p € cs(E) such that sup,ey mp(X) < oo and

SUP e Mp(As) — 0.

Next we will look at the dual space of (Cy(X, E),8’). For p € cs(E), let M, ,(X,E') be
the space of all m € Mp(X, E') such that mp(As) — 0 for each net (As) of clopen subsets of
X which decreases to the empty set. Let

M- (X,E") = U M (X, E').
pEcs(E
Replacing nets by decreasing sequences of clopens sets, we get the spaces Mg ,(X, E’) and
M (X, E').

As in the proofs of Theorems 2.4 and 2.5, we get that, for m € M. ,(X, E'), um is Bp-
continuous and every ¢ € (Cy(X, E), 8,)" is of the form u, for some m € M, (X, E’). Thus,
we have the following

Theorem 2.7 a) For each p € cs(E), the map
Ty : Mrp(X,E') = (Co(X, E), Bp),m — upm,

is an algebraic isomorphism.

b) M- (X, E") is algebraically isomorphic to the dual space of (Co(X, E), ).

c) A subset H of M (X, E') is Bp-equicontinuous iff sup,ep mp(X) < 00 and sup,cg mp(4s) —
0 for each net (As) of clopen subsets of X which decreases to the empty set.
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We will show now that M. ,(X, E") = M; (X, E'). We need the following

Lemma 2.8 Let F be a family of clopen subsets of X and let m € M. ,(X,E’). If W is a
clopen subset of |J{A: A € F}, then there ezists A € F such that mp(W) < my(A).

Proof: Since, for clopen sets A, B, we have my(4 U B) = max{m,(A4), my(B)}, we may
assume that F is closed under finite unions. The family B={W\ A: A € F} is downwards
directed to the empty set. If my(W) > 0, there exists A € F with my(W \'A) < m,(W) and
$0 mp(W) = max{m,(W N A),mp(W \ A)} = mp(W N A) < mp(A), and the result follows.

The proof of the following Theorem is analogous to the proof of Theorem 7.6 in [16].

Theorem 2.9 Let m € M, (X, E') and let
Npnp: X = R, Npp(z) = inf{my(A) : z € A€ K(X)}.

Then: a) Np,p 5 upper semicontinuous.
b) For each € > 0, the set Xpmpe = {2 € X : N p(z) > €} is compact.

Proof: a) It suffices to show that, for each § > 0, the set W = {z € X : Ny, p(z) < 6} is

open. So let z € W. There exists a clopen neighborhood V' of z such that m,(V) < 6. Then
Vcw.
b) Let F be a clopen cover of X, .. Without loss of generality, we may assume that F
is closed under finite unions. The set M = X \ Xmp. is a union of clopen sets. Thus the
family V= {X\(VUW):V € F,W € K(X),W C M} is downwards directed to the empty
set. Thus, there exists V € F,W € K(X), W C M such that m,(X \ (VUW)) < e. Hence
Xmpe CVUW and so Xppe C V, which completes the proof.

Theorem 2.10 M, (X, E") = M;,(X, E).

Proof: Let m € M. p,(X,E’),e > 0 and A a clopen set disjoint from the compact set ¥ =
Xmpe Every z € A has a clopen neighborhood V,, with mp(Vz) < €. In view of Lemma 2.8,
we have that my,(A) < €, which proves that m is tight.

Conversely, assume that m is tight and let (As) be a net of clopen sets decreasing to the
empty set. Given € > 0, let Y be a compact subset of X such that m,(A) < ¢ if the clopen
set A is disjoint from Y. There exists some As which is disjoint from Y and so my(As) < €.
Hence the result follows.

Corollary 2.11 M. (X,E") = M(X, E').

Recall that a subset H of M (X, E') is called tight (see [7], Definition 3.5) if there exists
p € cs(E) such that: (1) sup,cg mp(X) < oo.
(2) For every € > 0, there exists a compact subset.Y of X such that my(A) < e for every
m € H and every clopen set A disjoint from Y.
By Theorem 3.6 in [7], a subset H of M;(X, E') is tight iff it is B,-equicontinuous.

Theorem 2.12 A subset H of M(X,E") is 3'-equicontinuous iff it is Bo-equicontinuous.
q
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Proof: Since B, is coarser than 3, it suffices to show that every §'-equicontinuous subset of
M (X, E") is By,-equicontinuous. So let H be such a set. Then H is B,-equicontinuous for
some p € cs(E). In view of Theorem 2.7, we have that sup,,cg mp(X) < co. Define

Nup: X — R, Npy(z) = inf{sup mp(V) :x € V € K(X)}.
meH

Using Theorem 2.7, we get (as in the proof of Theorem 2.9) that Ny, is upper-semicontinuous
and the set Yy = {x € X : Ngp(z) > €} is compact for every ¢ > 0. For each V € K(X)
disjoint from Yz . and each m € H, we have that m,(V) < e. This proves that H is tight
and so it is B,-equicontinuous. Hence the result follows.

Corollary 2.13 If E is a polar space, then (3, is the polar topology associated with 3.

Proof: When FE is polar, the space (Cy(X, E), Bo) is polar. Now the result follows from the
preceding Theorem.

Next we will look at the dual space of Cy(X, E) under the topologies 5 and 8] . We only
sketch the proof of the following Theorem since it is analogous to the corresponding proof
given in [16], p. 49, for the case £ =K.

Theorem 2.14 If X is N-replete and E metrizable, then f(X) has non-measurable cardinal
for every f € Cp(X, E).

Proof: Let d be an ultrametric on E generating its topology. For each positive integer n,
consider the equivalence relation ~=n~, on X defined by = ~ y iff d(f(z), f(y)) < 1/n. Let
B,, be a subset of X having only one point in common with each equivalence class. Since X
is N-replete, B, has non-measurable cardinal (see [16], Theorem 2.10). Let A, = f(Br). For
each z € f(X) choose a zZ € G = [] A, such that 2z, € A, and d(z, 2,). < 1/n for each n. In
this way we get a map ¢ : f(X) — G, #(z) = z. Since each A, has non-measurable cardinal,
it follows that G has non-measurable cardinal. The result now follows from the fact that ¢
is one-to-one.

Using an argument analogous to the one used in [16], Theorem 7.1, we get the following
Theorem 2.15 If X is N-replete, then My ,(X, E') = M7 p(X, E') for all p € cs(E).

Theorem 2.16 Assume that E is metrizable and let m € My(X,E'). If f € Cy(X,E) is
such that f(X) has non-measurable cardinal, then f is m-integrable.

Proof: The space f(X) is N-replete since it is ultraparacompact and has non-measurable
cardinal (see [16], Theorem 2.18). Hence, there exists a continuous extension f*° of f to all
of v, X. Let m¥ : K(v,X) — E',m¥(A) = m(ANX). Then m¥ € Mgp(v.X, E’). Since
voX is N-replete, we have that m¥s € M. (v,X,E’) (in view of the preceding Theorem).
Thus fv is mVe-integrable, from which it follows easily that f is m-integrable.

Theorem 2.17 For every [3|-continuous linear functional ¢ on Cy(X, E) there erists m €
My(X, E") such that ¢(f) = [ fdm for all f € Cre(X, E).
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Proof: Since 3} is coarser than T, there exists (by [6], Theorem 2.8) an m € M (X, E') such
that ¢(f) = [ fdm for all f € Cro(X,E). Also, there exists p € cs(E) such that the set
{f : |#(f)| € 1} is a (1 p-neighborhood of zero in Cy(X, E). Let now (A,) be a sequence of

clopen subsets of X, with A, | 0, and Q = ﬂffn'@"x. Let A € K, with |A| > 1, and let u be
a non-zero element of K. There exist a clopen subset B of X, with B%X N Q =0, and ¢ > 0
such that

{feC(X,E): |fllp <L |IfllBp < €} C{f: ()l <1}

Let n be such that BPX ﬂ@nﬁ"x = (. It follows now easily that m,(A,) < |Au| and hence
m € Mg p(X, E'). Thus the result follows.

Theorem 2.18 Let E be metrizable and assume that f(X) has non-measurable cardinal for
every f € Co(X,E). If m € My(X,E’), then the linear functional um, on Cy(X,E) is
By -continuous.

Proof: Let m € Mg p(X, E'). Under the hypotheses of the Theorem, every f € Cp(X, E) is
m-integrable. Let Q € ;. The exists a decreasing sequence (A,) of clopen subsets of X with

ﬂffnﬁ et Q. Let r > 0 and choose n such that m,(A,) < 1/r. If B is the complement of
A, in X, then B%X NQ =0 and

{f € Co(X,E): ||fllo < 7 [IfllBp £ 1/mp(X)} C{S : um () S 1} = W

Thus W is a 8¢ ,-neighborhood for every Q € Q; and so um, is B1 p-continuous. This completes
the proof.

Theorem 2.19 If ¢ € (Cy(X, E), B1)’, then there ezists a unique m € Mo (X, E') such that
&(f) = [ fdm for all f € CrelX, E).

Proof: Since B is coarser than 7, there exists a unique m € M (X, E’) such that ¢(f) =
[ fdm for all f € Cro(X,E). We neeed to show that m € M, (X, E’). So, let (4y) be a

sequence of clopen sets which decreases to the empty set. Then Q = NA,"* is in Q1. Since
¢ is By1-continuous, it is Bg p-continuous for some p € cs(E). Let h € Cg be such that

Wi={f € Co(X,E): |hfll <1} C {f : |¢()| £ 1}.

Taking a ¢ > p if necessary, we may assume that my(X) < 1. We will finish the proof by
showing that m,(A,) — 0. So, let A € K with |A| > 1 and let x be a non-zero element of K .
There exists n, such that

——BoX =
A%z e BoX : |RP(z)] < A}
It follows easily from this that m,(Ar,) < || and the result follows.

Theorem 2.20 Let m € M (X, E’") be such that every f € Cy(X, E) is m-integrable.” Then,
U, 18 B1-continuous iff m € My(X, E').

Poof: The necessity follows from the preceding Theorem. Conversely, assume that m €
M,(X,E") and let Q € Q;. There exists a decreasing sequence (Ay) of clopen subsets of X
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with Q = ﬂA—n’B"X. Let p € cs(E) be such that m,(X) < co and mp(A4n) — 0. Givenr >0,
choose n such that my(A4,) < 1/r. If B = X\ Ay, then BPf-X is disjoint from Q and

{f € C(X,E) : IFllp £ | fllBp < 1/mp(X)} C{S : [um(F)] < 1}

Thus the set W = {f € Co(X, E) : |um(f)| < 1} is a Bg neighborhood of zero, for each
Q € Q1, and so u,, is B1-continuous, which was to be proved.

If X,Y are Hausdorff zero-dimensional topological spaces, then every continuous function
h: X —Y induces a linear map T}, : Cp(Y, E) — Cp(X, E), f— foh.

Theorem 2.21 Ifh: X — Y is continuous, then the induced map Ty, is 8—8,51— 51,8 -8
and (3] — 8} continuous. In case E is polar, Ty, is 3, — B, continuous.

Proof: Let W be a convex S-neighborhood of zero in Cp(X, E) and let V = T}~ YW). Let
RPe : B,X — B,Y be the continuous extension of A. Given Q € Q(Y), there exists a decreasing
net (W) of clopen subsets of B,Y with NW; = Q. Let Vs = (h®)~1(Ws), H = NV;. Then
H € Q(X). Since W is a B-neighborhood of zero, it is a 8y p-neighborhood of zero for some
p € cs(E). Thus, given r > 0, there exist a clopen subset A of X, whose closure in 5, X is
disjoint from H, and € > 0 such that

{f €C(X,E) : ||fllp < I fllap < e} CW.

There exists a 6 such that A%X is disjoint from V. Theset B=Y \ W5 NY is clopen in ¥’
with BfY N Q = §. Moreover

{9 G, E):llglp <7 lgllBp S e} CV.

This (by Theorem 2.2) implies that V is a Sg-neighborhood of zero, which proves that T},
is 8 — B continuous. Since an absolutely convex subset of Cy(X, E) is a [#'-neighborhood of
zero iff it is a B,-neighgborhood for some p € cs(E), the proof of the 5. — ' continuity of T},
is analogous. Also the proofs for the cases of the topologies §; and (] are analogous since a
subset of 8,Y is a K-zero set iff it is the intersection of a decreasing sequence of clopen subsets
of B,Y. Finally, if E is polar, then 3, is the polar topology associated with §’. Now the
B, — B, continuity of T}, follows from the fact that , if T is a continuous linear map between
two locally convex spaces G1, Ga, then T is also continuous with respect to the corresponding
polar topologies on G1, Gs.

3 Supports of Members of M (X, E')

Recall that a subset Y of X is a support set for an m € M (X, E') if m(A) = 0 for each clopen
A disjoint from Y. Clearly Y is a support set for m iff ¥ is such a set. For an m € M (X, E'),
we define

supp(m) = [ {V € K(X) :m(4) =0 if Ae K(X),AnV =0}.

If m € M.(X,E"), then for each s € E the set function ms : K(X) — K, (ms)(A) = m(4)s
is in M,(X) and hence supp(m) is a suppoprt set for m by Theorem 3.5 in [6].

Let now m € Mpy(X,E’). For B a subset of X, we define m.p(B) = supinfomy(Vy),
where the supremum is taken over all decreasing sequences (V;,) of clopen sets with NV, C B.
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Theorem 3.1 Let X be ultraparacompact and m € M(X,E'). Then m € M, (X, E’) iff
mp(X) < 00, supp(m) is Lindeloff and my (X \ supp(m)) =

Proof: Assume that m € M, (X, E') and let (A,) be a decreasing sequence of clopen sets
with NA,, disjoint from supp(m). The family U = {V € K(X) : mp(X\V) = 0} is downwards
directed and [y, V = supp(m). Thus the family {4, NV :n € N,V € U} is downwards
directed to the empty set. Given € > 0, there exist n and V' € U such that my(4,) =
mp(An NV?) <¢, which proves that m,,(X"\ supp(m)) = 0. Next, let F be & clopen cover of
supp(m). Since X is ultraparacompact, there exists a clopen partition (A;);er of X which is
a refinement of the open cover F | J{X \ supp(m)} of X. Let I} = {i € I : A; Nsupp(m) = 0}
and I = I'\ I;. Then supp(m) C J;cz, Ai. For each finite subset J of I, let Dy = ;g7 A:.
Then D | @ and so my(Dy,) < € for some finite subset J, of I. Clearly my(A4;) < €if i & J,.
Thus the set M = {i € I : mp(A;) # 0} is countable, supp(m) C |J;cps Ai and M C I5. Since
each A;, for i € I, is contained in some member of F it is clea.r that supp(m) is covered by
a countable subfamily of F and so supp(m) is Lindeloff.

Conversely, assume that mp(X) < oo, supp(m) is Lindelsff and m. »(X \ supp(m)) = 0.
Let (Z,) be a net of clopen subsets of X decreasing to the empty set. There exists an
increasing sequence (ay,) such that supp(m) C |Une; X \ Za,. By our hypothesis, given € > 0,
there exists n such that mp(Za,) <e, Wthh clearly completes the proof.

Theorem 3.2 Let X be ultraparacompact and let m € Mgp(X, E'). Then m € M p(X, E')
iff supp(m) is Lindeloff and m(A) = 0 if the clopen set A is disjoint from supp(m).

Proof: Assume that the condition is satisfied and let (Z,) be a decreasing sequence of clopen
sets such that the set Z = NV}, does not meet supp(m). Since X is ultranormal, there exists
a clopen set V which contains Z and is disjoint from supp(m). Now Z, (X \ V) | 0 and
so, given € > 0, there exists n with my(Z,) = mp(Z, (X \ V)) < €. Now the result follows
from the preceding Theorem.

Theorem 3.3 Let X be ultraparacompact and m € M(X,E'). Then m € M. (X, E') iff
supp(m) is Lindeloff and, for each decreasing sequence (Ay) of clopen subsets of X with NA,
disjoint from supp(m), there ezists p € cs(E) such that my(A,) — 0.

Proof: Assume that m € M,(X,E’) and let (A,) be as in the Theorem. The family

={Ve KX): mA =0 if ANV = 0} is downwards directed and the family
{A.N(X\V):n €N,V € U} is downwards directed to the empty set. Since m € M- (X, E'),
there exists p € cs(E) such that limmy (A, (X \ V)) = 0. Thus, given € > 0, there exist n
and V € U such that mp(As) = mp(An (X \ V)) < € and so mp(As) — 0. Let now F be a
clopen cover of supp(m) and let (4;);cs be a clopen partition of X which is a refinement of
the cover F | J{X \ supp(m)}. For J C I finite, set Dy = (J;4; Ai. Then Dy | 0. Thus, there
exists ¢ € cs(E) with limmg(Dy) = 0. Given € > 0, there ex15ts J, finite with mq(D;,) < €.
Thus the set M = {7 € I : my(A;) # 0} is countable. For each ¢ € M, A; is contained in some
member of F. It follows from this that supp(m) is covered by some countable subfamily of 7
and so supp(m) is Lindelsff. Conversely, assume that the condition is satisfied and let (Z,)
be a net of clopen sets which decreases to the empty set. There exists an increasing sequence
(an) with supp(m) C |, X \ Za,. There exists p € cs(E) such that my(Za,) — 0, which
implies that lim my(Z,) = 0. Thus the result follows.
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4 The Topologies 5. and .

For d a continuous ultrapseudometric on X, we will denote by Xy the quotient space X/ ~,
where ~ is the equivalence relation defined by z ~ y iff d(z,y) = 0. If Z; is the equivalence
class of z, then X; becomes an ultrametric space under the metric d(Z4,74) = d(z,y). Let
ng : X — X4 be the quotient map. Since m; is continuous, we get a linear map Ty :
Cy(X4, E) — Co(X,E), Tyf = f o mqg. We define (Cyp(X, E), B.) to be the locally convex

11

inductive lirhit of the spaces (Cy(Xgy, E), ) with respect to the linear maps T, where d"

ranges over the family of all continuous ultrapseudometrics on X. Also, for p € cs(E), we
define (Cy(X, E), Bep) to be the locally convex inductive limit of the spaces (Cyp(Xq, E), Bp)
and B, = Upecs(p) Bep- Note that if p < g, then Bep < Beq- It is clear that 8 < Se.

Theorem 4.1 Let h : X — Y be a continuous function, where X,Y are zero-dimensional
Hausdorff spaces. Then the induced linear map Sy, : Cp(Y, E) — Cp(X, E), f +— foh, is fu—Lu
and 8], — B, continuous. Also, for p € cs(E), Sy is Bp — Bp and Bup — Pup continuous.

Proof: Let W be a convex B,-neighborhood of zero in Cy(X, E). If Q € Q,(Y), then there
exists a clopen partition (A;) of ¥ such that Eﬁ"y is disjoint from @ for each i. If B; =
h1(A;), then (B;) is a clopen partition of X and so the complement H in §,X of the set
UE'B X is in Qu(X). Let p € cs(E) be such that W is a By p-neighborhood of zero. Given
r > 0, there exist ¢ > 0 and a clopen subset B of X, with B%X N H = §, such that
{g € CG(X,E) : |lgllp £ 7 lgllBp < €} € W. Since BFX UE’G"X, there exists a finite

subset J of I such that BPX C UiEJEﬁ"X. If A=|J;csAi, then ABY N Q =0 and
{f € (¥, E): |Ifllp <7 1Ifllap < €} € STH(W).

This proves that S, L(W) is a Bg p-neighborhood of zero and the 8, — B3, continuity of Sp
follows. The proof of the 3, — /3., continuity is analogous. The proof of the 3, — 8, continuity
is similar to the proof of the 38— 3 continuity in Theorem 2.21 while the proof of the Sy, —Bup
continuity is analogous to the one of the 3, — 3, continuity. Hence the result follows.

Theorem 4.2 3, < 3. and B8, < .

Proof: For an ultrametrizable space Y we have that Q(Y) = Q,(Y) and so 8 = S, and
B, = Bup for each p € cs(E). In view of the preceding Theorem, for each continuous
ultrapseudometric d on X, Ty is 8 — B, continuous and so B, < B.. Also, Ty is Bp — Bup
continuous, which implies that 8], < ..

Theorem 4.3 Let h : X — Y be a continuous function, where X,Y are zero-dimensional
Hausdorff spaces. Then, the induced linear map Sy, is Be — Be and B, — B, continuous.

Proof: Let d be a continuous ultrapseudometric on Y and define d; on X x X by di(z,y) =
d(h(z),h{y)). Then d; is continuous. Let ¢ : Xg, — Yy,Zg, — h(z)g. Then 1 is well
defined and continuous. Let Sy : Cy(Yy, E) — Cy(X4,, E) be the induced linear map. Then
Ty, © Sy = Sp o Ty. Since Ty, is B — B is continuous and Sy 8 — B continuous, it follows that
S, 0Ty is B — e continuous. This clearly proves that Sj is 8. — B continuous. The proof of
the B — B3, continuity of S is analogous.
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Theorem 4.4 If E is metrizable, then B < B1, 5. < B and Bep < P1p for each p € cs(E).

Proof: Assume that there exists a convex (.-neighborhood W of zero and a @ € §; such
that W is not a Bg-neighborhood of zero. Let (p,) be an increasing sequence of continuous
seminorms on E generating its topology and let h € Cy.(X) be such that Q = {z € Bo
hPe(z) = 0} For each positive integer n, let A, = {z € X : |h(z)| > 1/n}. Then A7

{x € B,X : |hP(z)| > 1/n}. Since W is not a Bqp,-neighborhood of zero, there exists
r7 > 0'such that, for each clopen B, with BPfX disjoint from Q, and each > 0, there exists
f € Co(X, E) with || fllp. £ 7n, ||f||3pn <€, f ¢ W. Hence, for each positive integer k, there
exists fnr € Gb(X E) fnk ¢ W ”fnk”pn < T, ”fnk”Ak,pn < ]-/'IC Let oni > ma‘x{”f'tj”pn .
1<i<n,1<j<k} and define

pn(fzj(x) fij(y))] } o

r knank [1<z<n 1<i<k

d(ﬂc,y)=ma><{lh(:c) |h(y)l, I8

Then d is a continuous ultra-pseudometric on X and so T L(W) is a B-neighborhood of zero
in Cp(Xg4,E). The set H = Ti'd °(Q) is disjoint from Xj. In fact, assume that 73°(z) = 74(a)
for some a € X,z € Q. There exists a net (z;5) in X converging to z and so m4(zs) — 74(a),
ie. d(zs,a) — 0. Since h(a) # 0, there exists 8, such that d(zs,a) < |h(e)| and thus
|h(zs5)| = |k(a)|, which contradicts the fact that h(zs) — hP(z) = 0. So, H is disjoint
from Xg and therefore T 1(W) is a By p,-neighborhood of zero for some n. There are an
€ > 0 and a clopen subset A of Xy, with APXe N H = @, such that {g € Cp(X4, E) :

lgllpn < Tn,s ||gﬂ A,pn < e} ¢ T;Y(W). Let B = 737'(A). Then BP¥ is disjoint from Q and

hence B = 771(4) € U,{z : |h*(z)| > 1/n} = Un}fl_nﬁ"X. Choose k > 1/e such that
B=my (A) - A P-X  The function g: Xq— E,9(Z3) = farx(z) is well defined, continuous
and Ty9 = fok- Smce lgllo, < rn and |lgllap, = |IfekllBp. < 1/k < €, we have that

gET, 1(W) and so f.x € W, a contradiction. This proves that 8. < 3. Suppose next that
there exists a convex S, p-neighborhood W of zero which is not a 8g ,-neighborhood for some
Q € Q1. There exists » > 0 such that, for every clopen subset B of X , whose closure in 8, X is
disjoint from Q, and any € > 0, there exists f € Cp(X, E) with ||f|l, <7, ||fllBp S & f ¢ W.
Let h € C,o(X) be such that Q = {x € B, X : hP(z) = 0} and let A, = {z : |h(z)| > 1/n}.
For each n, there exists an f, € Co(X, E) with ||fallp < 7 | fallanp £ 1/, frn @ W. Let (pn)
be an increasing sequence of continuous seminorms on E generating its topology. Choose
an > max{|| frllp, : 1 <k < n} and define

d(z,3) = max { @) = h)l sup - 35 po(fule) ~ il )]}

1<k<

Then d is a continuous ultra-pseudometric on X and so T; (W) is a By-neighborhood of
zero. Since H = frg°(Q) is disjoint from Xy, there exist a clopen subset A of Xg, with
APoXa N H =@, and € > 0 such that

{9 € Co(Xa, E) : |lgllp £ 7 llgllap < €} € Ty (W).

Choose n > 1/e such that BPX C A_nﬁc’X, where B = 7;!(A) . The function g : X4 —
E,g(%4) = fa(z), is well defined and continuous. Since ||gll, = [|fally £ 7 and |lgllap, =
| frllzp < 1/n < € we have that f, = Tyg € W, a contradiction. This proves that Bep < Bips
for each p € cs(E), which implies that 8, < 4. This completes the proof.
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Theorem 4.5 Assume that 3, is coarser than T, e.g. when E is metrizable. Then, on each
uniformly bounded equicontinuous subset H of Cy(X, E), (. coincides with the topology 7s of
poIniwise CONVETgeEnce.

Proof: We may assume that H is absolutely convex. Let W be a convex (.-neighborhood
of zero. Since 3. is coarser than 7, there exists p € cs(E) such that Wi = {f € (X, E) :
| fllp < 1} € W. Consider the continuous ultra-pseudometric d on X defined by d(z,y) =
supsepr p(f(z)— f(y)) and let (A;)icr be the clopen partition of X corresponding to the
equivalence relation z ~ y iff d(z,y) < 1. Let V = T; (W) and Q = BoX \ UiE‘,Z;’B"X.
Then D = wg" (Q) is disjoint from X4. Let ¢ € cs(E),q > p, be such that V is a 8p 4
neighborhood of zero. If r > supsey || fllg, then there exist e; > 0 and a clopen set B in
Xy, with BfXa n D = 0, such that {g € Co(X4, E) : |igllq < nllgllpg < &2} C V. If
A = 77'(B), then APX C U4 and so A%X  J,.; A;"* for some finite subset J of
I. Choose z; € A;, for each i € I, and let Wo = {f € Cp(X, E) : p(f(z:)) < e1 for i € J}
Then Wo N H ¢ W. Indeed, let f € WoN H and let f* = >, ;x4 f(z:). The function
h: Xy — E,h(Z4) = f*(z) is well defined, bounded, continuous and Tgh = f*. Moreover,
If*llg £ r. If Z4 € B, then z € A and so z € A;, for some i € J, which implies that
h(Z4) = f(z:). Thus ||k||B,q < €1 and therefore h € V, ie f* € W. Also ||f — f*|l, <1 and
so f— f* € W. Thus f € W. This proves that the topology induced on H by 7s is finer than
the one induced by 8. and the proof is complete since 7, is coarser that [e.

The proof of the following Theorem is analogous to the one of the preceding Theorem.

Theorem 4.6 For p € cs(E), let 7, be the topology on Cy(X, E) generated by the seminorm
l-llp- If Bep is coarser than 7, then on Tp-bounded p-equicontinuous subsets of Cp(X, E), Be,p
coincides with the topology generated by the seminorms f — p(f(z)),z € X.

Theorem 4.7 Assume that 7, is finer than 3. and let W be a convez (.-neighborhood of
zero. Then, for each f € Cy(X, E), there are pairwise disjoint clopen sets Ai,...An in X
and z), € Ay, such that f — ._; xa, f(zr) € W.

Proof: We may assume that W is convex. Since 7, is finer than S, , there exists p € cs(E)
such that W, = {g € Co(X,E) : |lgllp £ 1} C W. Let (A;)icr be the clopen partition
of X corresponding to the equivalence relation = ~ y iff p(f(z) — f(y)) < 1. Let h; =
XA Ti € Ai, f* = 3, crhif(zi). Then f — f* € W;. The ultra-pseudometric dlx i) =
sup; |hi(z)—hi(y)| is continuous and so V = T, * (W) is a -neighborhood of zero in Cy(Xg, E).
Let @ = B X\, Eﬁ X and D = wg"(Q). Then D is disjoint from X; and hence there exists
g € cs(E) such that V is a 8p g-neighborhood of zero. There are ¢ > 0 and a clopen subset
A of X, with APXan D = @, such that

{9 € Co(Xa, B) : llgllq < [Ifllg: llgllag < e} V.

If B = n;1(A), then BPX C |, ;%% and so Bf%X ¢ Lles ;"% for some finite subset .J
of I. Let g = 3, hif(z:), 01 = f* — g. The function g1 : X4 — E,§1(Za) = g1(z) is well
defined, continuous and Tygi; = gi1. Since ||gi]ly < [|fllq and g1 = 0 on A, it follows that
g1 € Vandso g € W. Finally, f — g = (f — f*) + g1 € W, which completes the proof.
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5 The Dual Spaces of (Cy(X, E), 8,) and (Cy(X, E), 3,,)

We will denote by M, (X, E') the space of all m € M (X, E’) with the following property: For

each decreasing net (As) of clopen subsets of X with [, ZE’B o ., there exists p € ¢s(E)
such that m,(X) < oo and m,(A4s) — 0.

Theorem 5.1 If m € M, (X, E'), then every f € Cp(X, E) is m-integrable and the linear
functional um (f) = [ fdm, f'€ Cy(X, E), is By-continuous.

Proof: There exists a p € cs(E) such that mp(X) < 1. Let f € Cy(X, E) and € > 0. Without
loss of generality, we may assume that ||f|l, < 1. Let (A;)icsr be the clopen partition of X
corresponding to the equivalence relation =z ~ y iff p(f(z) — f(y)) < e. For J C I finite,
set By = (J;¢;4i. Then (By) is a decreasing net of clopen sets with Q = ﬂB_fe"X =
BoX \ Uier E-'B X and hence Q € Q,. Thus, there exists ¢ € cs(E),¢ = p, such that
mg(By) — 0. We now finish the proof by using an argument analogous to the one used

in the proof of Theorem 2.4.
Argueing as in the proof of Theorem 2.5, we get the following

Theorem 5.2 The map m — U, from My(X,E") to (Cp(X, E), B.)’, is an algebraic iso-
morphism.

Next we will look at the dual space of (Cy(X, E), 3,). For p € cs(E), let My ,(X.E’) be
the space of all m € M, (X, E') with the following property: For each decreasing net (A4s) of

clopen subsets of X, with [; Eﬁ"x € Q,, we have that my(A4s) — 0. Let

MUX,E)= |] Mup(X.E).
pEcs(E)

Clearly M, (X,E" Cc M, (X, E’). Using arguments analogous to the ones used in the proofs
of Theorems 2.4 and 2.5, we get the following

Theorem 5.3 a) For each m € My p(X.E'), umm is Bup-continuous and the map m — Um,
from My p(X, E') to (Co(X, E), Bup)', is an algebraic isomorphism.
b) My(X, E') is algebraically isomorphic to (Cy(X, E),B,)" via the isomorphism m — un.

Theorem 5.4 Let m € M(X,E'). Then 1) m € My(X,E") iff the following condition is
satisfied: For each clopen partition (A;)icr of X, there exzists p € cs(E), with mp(X) < oo,
such that, for each € > 0, there erists a finite subset J of I with mp(Ui¢ i) S

2) m € Myy(X,E') iff mp(X) < oo and, for each clopen partition (A;)icr of X and each
€ > 0, there ezists a finite subset J of I such that mp(Ui?_gJ A;) <e.

Proof: 1) Assume that m € M, (X, E') and let (4;)ier be a clopen partition of X. For J C I
finite, set By = [J;¢; Ai. Then Q = ﬂB_Jﬁ"X € Q. and hence there exists p € cs(F), with
mp(X) < oo, such that my(By) — 0.

Conversely, assume that the condition is satisfied and let (Bs) be a decreasing net of clopen

sets with ﬂEﬁ L Q.. There exists a clopen partition (A;)ier of X such that
each Eﬁ"x is disjoint from D. Let p € ¢s(E) be as in the condition. Given € > 0, there
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exists J C I finite such that m,(Dy) < €, where Dy = in A;. If My = X\ Dy, then
Fﬁox _ﬁox =SB X . =B X TP X
7 = J;es Ai C UsBoX \ Bs " . There exists § such that M; C BX\Bs .

Thus -B_gﬁ"X = D_J’B"X and so my(Bs) < €, which proves 1).
2) The proof is analogous to that of 1).

Remark 5.5 In view of the preceding Theorem, M, (X, E') coincides with the space M, (X, E').
introduced in [3]. In the same paper it was shown that the dual space of (Cre(X, E), B,) is
M (X, E"). '

Theorem 5.6 For a subset H of My(X, E'), the following are equivalent:

(1) H is By-equicontinuous.

(2) For each decreasing net (As) of clopen subsets of X with (s -A_gﬁ"x € Q,, there ezists
p € cs(E) such that sup,,c mp(X) < oo and mp(As) — 0 uniformly for m € H.

(8) For each clopen partition (4;)ier of X, there ezists p € cs(E), with Sup,,c i mp(X) < 0o,
such that, for each € > 0, there ezists a finite subset J of I with mp(Uié 7 Ai) < € for all
m € H.

Proof: The equivalence of (2) and (3) can be proved using an argument analogous to the one
used in the proof of Theorem 5.4.

(1)= (2). Let H° be the polar of H in Cy(X,E). Since B, < 7y, there exists g € cs(E)
such that {f € Co(X, E) : ||fllq < 1} € H°. It follows from this that sup,,cz mq(X) < oo.

Let now (As) be a decreasing net of clopen sets with Q@ = [, A_gﬁ"x € Q,. Since H® is a
By-neighborhood of zero, there exist p € cs(E),p > ¢, and h € Cg such that Wy = {f €
Co(X,E) : ||hfllp £ 1} C H°. We will prove that lims m,(As) = 0 uniformly for m € H. So
let 4 be a non-zero element of K. The set D = {z € B, X : |h%(z)| < |u|} contains Q and
so it contains some ﬁf"x . If now A is a clopen subset of X contained in As and s € E with
p(s) < 1, then p~lxas € Wy and thus |m(A)s| < |u| for all m € H. If A € K, |A] > 1, then
mp(As) < |pA|, which proves that m,(As) — 0 uniformly for m € H.

(2)= (1). Let Q € Q. There exists a decreasing net (As) of clopen subsets of X such that
ﬂfi?"X = Q. Let p be as in (2) and let d > sup,,cgy mp(X). Given r > 0, there exists a ¢
such that m,(As) < 1/r for all m € H. If B = X \ As, then BfX is disjoint from Q and
{f € Cy(X,E): |Ifllo £ \IfllBp < 1/d} C H®, which proves that H is a 8g -neighborhood
of zero. It follows that H° is a (,-neighborhood and so H is (3,-equicontinuous.

The proof of the following Theorem is analogous to the one of the preceding Theorem.

Theorem 5.7 For a subset H of My (X, E’) and p € cs(E) the following are equivalent:
(1) H is By p-equicontinuous.

(2)  supey mp(X) < oo and for each decreasing net (As) of clopen subsets of X with
Ns A—53°X € Q,, we have that my(As) — 0 uniformly for m € H.

(8) sup,ecpymp(X) < oo and for each clopen partition (A;)ier of X and each € > 0, there
exists a finite subset J of I such that mp(Uiej A;) < e for eachm € H.
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6 The Dual Spaces of (Cy(X, E), 8.) and (Cy(X, E), B,)

Theorem 6.1 Assume that 8. is coarser than T, and let u be a (B¢-continuous linear form
on Cy(X,E). Let m € M(X,E') be such that u(f) = [ fdm for all f € Cro(X, E). For
f € Co(X,E) and A € K(X), set |m|s(A4) = sup{|m(B)f(z)| : z € X,B € K(X),B C A}.
If (A)ier is a clopen partition of X, then:

(1) Foreach g € Cy(X, E) of the formg = x4,5i, si € E, we have that u(g) = >, m(A;)s;.
(2) For'eache>0, theset  ={i€l: Em[f(Az) > e} is finite.

(3) If z; € A;, then the function f* =3, xa,f(z:) is m-integrable.

Proof: (1) TFor J C I finite, let hy = > ;-7xa;5. The set {hy : J finite} is uni-
formly bounded, equicontinuous and h; — g pointwise. By Theorem 4.5, we have that
Picg m(Ai)si = u(hy) — u(g)-

(2) For each %, there exist a clopen subset B; of A; and z; € X such that |m(B;)f(z:)| =
|m|s(4;)/2. The set B = U;B; is clopen. Using (1), we get that u(} ;x5 f(z:)) =
> icr ™(Bi)f(z;). There exists a finite subset J of I such that |m(B;)f(z;)| < e/2ifi & J.
For such i, we have |m|s(A4;) < € and soi ¢ L.

(3) Lete>0and D= U; 1, Ai Let {D1,...,Dn} be a clopen partition of X, which is a
refinement of {A4; : 4 € Ie}U{D}, and let y;, € Dk We may assume that [ J,_; Dr = U;cr. Ai-
Then > _; m(Di) f*(yk) = Ziel m(A;)f(z;). Let A be a clopen subset of D and z € A.
Using (1), we get that m(4) f*(2) = > ;7 m(ANA;)f*(2). But, for s ¢ I, |m(ANA;) f*(2)| <
|m|f(A;) < e. Thus |m(A)f*(z)| < € and so |Zk_r+1 m(Dy) f*(yr)| < €, which implies that
|ZkN=1 m(Dy) F*(yk) — Dier, M(Ai) f(z:)| < e. Tt clearly follows that f* is m-integrable.

Theorem 6.2 Assume that 3. is coarser than T, and let u and m be as in the preceding
Theorem. Then: (1) Every f € Cy(X, E) is m-integrable.

(2) If (Ai)ier is a clopen partition of X and (s;)ic; o bounded family in K, then for
9= xa,8, we have that [ gdm = u(g) = >, m(4;)s;.

(8) u(f)= [ fdm for each f € Cy(X, E).

Proof: (1) Let € > 0 and let p € cs(E) be such that my(X) < 1. Let (A;)ier be the clopen
partition of X which corresponds to the equivalence relation z ~ y iff p(f(z) — f(y)) < e
Let z; € A;, f* = . xa,f(z:). Since f* is m-integrable, there exists a clopen partition
{Z1,...,2Z,} of X and 2z € Zj such that, for each clopen partition {D1,... ,Dn} of X,
which is a refinement of {Zi,...,2,}, and any y; € Dj, we have | > p_; m(Zx)f*(2) —
Z?jzl m(D;) f*(y;)| < e. Since, for h = f — f*, we have |m(A)h(z)| < € for all A € K(X) and
all z € X, we have that | 2, m(D;) f(y;) — Sop_; m(Ze) f(2k)| < €, which proves that f is
m-integrable.

(2) Given € > 0, there exists a finite subset J, of I such that |m|q(4;) < eif i ¢ J,. If
the clopen set A is disjoint from D = [J;c; Ai, then [m(A4)g(z)| < e for all z € X. Also
there exists a finite subset J of I conta,ining J, such that |u(g) — > ;cym(4i)si| < e If
h =37 XASi; then | [ hdm| < € and so | [ gdm — 3 ,cym(Ai)s;i| < €, which implies that
| [gdm — u(g)| < e.

(3) Let f € Cyp(X,E) and € > 0. There exists p € cs(E) such that m,(X) < 1 and W7 =
{9 € Cy(X,E) : |lgllp < 1} C {g : |u(g)] £ 1}. Let (A;)icr be the clopen partition of
X corresponding to the equivalence relation =z ~ y iff p(f(z) — f(y)) < e. Choose z; €
A; and let f* = S xa,f(zi),h = f — f*. There exists a finite subset J of I such that
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lu(F*) =3 ey m(A) f(z:)] < eand |m|;(4;) < eifi ¢ J. If D = J;c; Ai and Z = X\ D, then
| [z f*dm| < e and [, f*dm = 3=, ;m(A;) f(z:) and so |ff*dm Y ierm(A) flx:)| £ e
Thus | [ f*dm — u(f*)| < e. If |A| > 1, then |u(h)| < €|A| and | [ hdm| < €. It follows that
| [ fdm — u(f)| < €|A|, which clearly completes the proof.

By the above Theorem, we have the following

Theorem 6.3 If 8. is coarser than T,, then there ezists a subspace Me(X, E') of M(X,E’)
such that every f € Cy(X, E) is m-integrable for every m € Me(X, E') and the map m — U,
from M.(X,E’) to (Co(X, E), B)', is an algebraic isomorphism.

Conjecture 6.4 If 8. is coarser than T, then M (X, E") = M, (X, E').

For p € ¢s(E), d a continuous ultra-pseudometric on X and A a d-clopen subset of X, we
define
|m|gp(A) = sup {% p(s)£0,BC A, B d— clopen}
Also, for Y C X, we define |m[] (Y) to be the infimum of all sup, mqgp(An), where the
infimum is taken over all sequences (A,) of d-clopen sets which cover Y. We will need the
following

Theorem 6.5 Let (Z,d) be an ultrametric space and assume that E has the countable neigh-
borhood property. If m € M.(Z,E'), then there ezists p € es(E), with mp(Z) < oo, and a
d-closed, d-separable subset G of Z such that |m|j,(Z\ G) = 0.

Proof: For Y C Z finite and € > 0, set N(Y,¢) = {z € Z : d(z,Y) < ¢}. The family
{Z\N(Y,¢): Y finite} is downwards directed to the empty set. Since m € M,(Z, E’), there
exists ¢ € cs(E), with mg(Z) < oo, such that limy |m|q4(Z \ N(Y,¢) = 0. Hence, there
exists an increasing sequence (p,) in cs(E) such that limy |m/|qp, (Z\ N(Y,1/n) = 0 for all n.
Since E has the countable neighborhood property, there exist p € cs(E) and a sequence (i)
of non-zero elements of K such that p > |un|pa for all n. For each k, choose an increasing
sequence (Yjn)n of finite subsets of Z such that |m|gp, (Z \ N(Yin, 1/k)) < |pk|/n for all n.
Let Dp = Up(Z \ N(Yin,1/k)),M =, Z\ Dy and G = M. We have

Imlap(Z \ NV 1/K)) < el 7 Imlap, (2 \ N(Yin, 1/K)) < 1/n.

Thus |m[},(Z\ G) = 0. Also, G is d-separable. Indeed, let x € G and € > 0. There exists
yeM w1th d(z,y) < €. Let n be such that y ¢ D,. Choose k > 1/e. Since y € N(Yin,1/k),
there exists z € Yy, with d(z,y) < 1/k < € and so d(z,z) < €. It follows that G is contained
in L, where L = |,  Yin- Since L is separable, its subspace G is also separable. This
completes the proof.

Let M, (X, E') be the space of all m € M (X, E’) with the following property: For each
continuous ultra-pseudometric d. on. X, .there exist p € c¢s(E), with my(X) < co , and a
d-closed, d-separable subset G of X such that |m[} (Z\G) =0.

Theorem 6.6 If . is coarser than 7, and E has the countable neighborhhod property, then
every m € M.(X, E') is in Ms(X, E").
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Proof: Let d be a given continuous ultra-pseudometric on X. Since up, is Be-continuous, T tm,
is B-continuous on Cy(Xg4, E). Thus, there is 4 € M, (X4, E') such that [ gdu = [(Tyg)dm
for all g € Cp(Xg, E). By the preceding Theorem, there exists a d-closed, d-separable subset
Z of X4 such that |,u|2-’p(Xd \ Z) = 0. The set G = 7;'(Z) is d-closed, d-separable and

mlgp(X \G) = 0.

We will look next at the dual space of (Cy(X, E),B.). For p € cs(E), we denote by
M p(X, E') the space of all m € M, ,(X, E’) with the following property: For each continu-
ous ultra-pseudometric d on X, there exists a d-closed, d-separable subset G of X such that
m[3,(X \ G) = 0. Let M, (X, E’) UM (X, E'). For the proof of the following theorem
we may use an argument analogous to the one used in the proof of Theorem 6.5. Note that in
the next Theorem we don’t need to assume that F has the countable neighborhood property.

Theorem 6.7 Let (Z,d) be an ultrametric space and let p € cs(E) and m € M. ,(Z,E').
Then there ezists a d-closed, d-separable subset G of Z such that |m[} (Z\ G) =0

Theorem 6.8 If E is metrizable, then M (X, E') is algebraically isomorphic to the dual
space of (Cb(X7 E): ﬁe,p)‘

Proof: Let u be in the dual space of (Cy(X, E), Bep). By Theorem 6.3, there exists m €
M.(X,E’) such that u(f) = [ fdm for all f € Co(X,E). Since fep < P1p, m is in
Mqsp(X,E') (see Theorem 2.17). We will show that m € M;,(X,E’). So, let d be a
continuous ultra-pseudometric on X. Since Ty is B, — B, continuous, Tju is Sp-continuous
on Cy(Xg4,E) and so there exists p € M. p(Xg, E') such that fgd,u =< Tyg,u > for all
g € Cy(Xg4, E). In view of the preceding Theorem, there exists a d-closed, d-separable sub-
set Z of Xy with |,uu[* (Xd \ Z) = 0. The set G = 7;(Z) is d-closed, d-separable and

Im[3,(X\ G) =0, which proves that m € M ,(X, E'). Conversely, let m € M,,(X, E')
and let d be a continuous ultra-pseudometric on X. Define p = pg : K (Xd) — E' pu(A4) =
m(r7'(A)). Then p € Mgp(Xa, E') since m € My p(X, E').
Claim I p € Mrp(Xg4, E'). Indeed, let (V) be a net of clopen subsets of Xy which de-
creases to the empty set. By our hypothesis, there is a d-closed, d-separable subset G of X
such that |m|; (Z\ G) = 0. Given € > 0, there is an increasing sequence (Z,) of d-clopen
subsets of X covering X \ G and such that |m|qp(Z,) < € for all n. If M = m4(G) and
An = m4(Zy), then M is closed and separable in X4 and X4\ M C |J An. Moreover, each
Ap is clopen in Xy and |p|j,(An) < €. Since M is separable, there exists an increasing
sequence (6,) such that M C U;2;(Xa\ Vs,). Now Vs, (Xa\ Ar) | @ and hence there
exists n with |u|z,(Vs, N (Xa\An)) < ¢, which, together with the |u|;,(An) < ¢, implies that
|| 5 dp (Vs,) <e. ThlS proves our claim.
Let now d,d; be continuous ultra-pseudometrics on X, with d < d;, and let f € Cy(X, E)
be d-continuous. The functions h,hy : Xqg — E,h(Z4) = f(z) = h1(Z) are well defined and
continuous. Morerover [ hdug = f hidug,. Indeed, let ¢ : Xy, — Xg4,Zq, = Z4. Then ¢ is
continuous and 7y = gomy,. Let S : Cp(Xg, E) — Cb(Xdl,E) be the induced linear map.
Then S is B, — 3, continuous. Let vy : Cp(Xag, E) — K, va(g = [gdug and vg, : Cp(Xgq,, E) —
K, v4,(g) = [ gdpa,. Then S*vg, = vg. Since < S*vg,, h > < Vg, Sh >=< vq;, b1 >, we get
that vg(h) = vg, (R1)-
Let d, be an ultrametric on E generating its topology. If f € Cy(X, E), then we have a con-
tinuous ultra-pseudometric on X defined by d(z,y) = do(f(z), f(y)) and f is d-continuous.
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If h: Xy — E,h(Z4) = f(z), then h is well defined continuous and Tzh = f. Now we define
um on Cy(X, E) as follows: For f € Cy(X, E), choose a continuous ultra-pseudometric d on
X such that f = Tyg for some g € Cy(Xg4, E). Define un,(f) = [ gdug. As we have shown
above, u,, is well defined and linear.

Claim II: u, is Bep-continuous. In fact, let W = {f € Co(X, E) : |um(f)| < 1} and let d
be a continuous ultra-pseudometric on X. Then V = {g € Cp(Xy, E) : | [ gdpq| < 1} is a
Bp-neighborhood of zero in Cy(X4, E) and Ty(V) C W, which proves our claim.

Now there exists m; € Mgy ,(X, E') such that un,(f) = [ fdm; for each f € Cp(X,E) It
is easy to see that mi(A)s = m(A)s for each clopen subset A of X and each s € E and so
m = m,. It follows that every f € Cy(X, E) is m-integrable and u,,(f) = [ fdm and so un,
is B, p-continuous. This completes the proof.

From the preceding Theorem we get

Theorem 6.9 If E is metrizable, then Ms(X, E') is algebraically isomorphic with the dual
space of (Cy(X, E), B.) via the isomorphism m — Um.

Theorem 6.10 Assume that E is metrizable and let m € My p(X, E’). Then:

(1) If (A))ser s a clopen partition of X, then, for each € > 0, the set I = {i € I : mp(4;) > €}
is finite. Moreover, m € M, (X, E’).

(2) Mop(X,E') = Myp(X, E').

Proof: (1) let A € K,|A\| > 1. For each ¢, there exist a clopen subset B; of A; and s; €
E,p(s; < 1, such that |m(B;)si| > (2|A])"Imy(A;). For J C I finite, set g7 = > ;c 7 XB,5:-
If g =3 ,c7 XB;Si, then g5 — g pointwise. The family {g; : J finite} is 7-bounded and
p-equicontinuous. In view of Theorem 4.6, we have that [ gdm =lim; [ gsdm = 3, m(B;)s;.
Given now € > 0, there exists a finite subset J of I such that |m(B;)s;| < oy for @ ¢ J, and
hence I, C J.

Let now B be a clopen subset of | J;4;, A;. Foreach s € E, we have m(B)s = 341, m(AiNB)s.
Since, for i ¢ I, and p(s) < 1, we have |m(A; N B)s| < ep(s), it follows that my(D) < e. By
Theorem 5.5, m € My p(X, E').

(2) If u € Myp(X, E'), then the map u,, is By p-continuous and hence B p-continuous, which
implies that u € M,,(X, E).

Corollary 6.11 If E is metrizable, then Ms(X, E") = M (X, E') is the common dual space
of Cy(X, E) under the topologies ., and [,,.

Theorem 6.12 Let E be metrizable and let H be a subset of Ms(X,E’). Then H is 3,-
equicontinuous iff it s B.-equicontinuous.

Proof: Assume that H B.-equicontinuous. Then there exists p € cs(E) such that H is [ p-
equicontinuous. Since Bep < Tp, it follows that sup,,cgmp(X) > oo. Let now G € Q,

and let (A;);er be a clopen partition of X such that every }Lﬁ X i disjoint from G. For
each.i, there exist a clopen subset. B; of A; and s; € E,p(s;) < 1, such that |m(B;)s;| >
(2IA]) " sup,er mp(A;) (where [A| > 1). For J C I finite, set hy = > ;. ;XB,;Si- The net
(hy)s is Tp-bounded and p-equicontinuous. Moreover hy — h = } ..; xB,s; pointwise. Let
1 be a non-zero element of K. There exists a finite subset J, of I such that h —hy € uH®
if Jo € J. It follows that sup,egy mp(4i) < 2[pA] if i € Jo. If D = ;¢ , Ai, then we get
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that m,(D) < 2|u)| for all m € H. If now 7 > 0, then there exists J C I finite such that
mp(D) < 1/r, for all m € H, where D = Uiy A;. The set A = | ;o7 A; is clopen and its
closure in ,X is disjoint from G. Moreover {f € Co(X, E) : ||fllp < 7 | fllap < 1/a} C H®,
where o > sup,,cg mp(X). This proves that H° is a B¢ -neighborhood of zero and so it is
(3. -equicontinuous. Since 3., is coarser than 3;, the result follows.
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