The Steenrod algebra action on Dickson algebra generators
and Peterson’s polynomials

Nondas E. Kechagias

ABSTRACT. Using Peterson’s polynomials, we provide excplicit formulas for
the action of the Steenrod algebra on Dickson algebra generators for the mod- -
odd case. '

1. Introduction

The action of the Steenrod algebra on Dickson algebra has been under inves-
tigation mainly because it plays an important role in stable homotopy theory and
has geometric applications, (see [2]). The value of this action on generators has
been given for p = 2 and partially for p an odd prime.

The main theme of this work is theorem 1 and 2. Those theorems are included
in section three, where we investigate the value of the action on the two extreme
generators (with respect to degree) of Dickson algebra. Combining theorems 1 and
2 with well known theorems (see [3]), the action can be calculated for any generator.

The key point is this action on Peterson’s polynomials. We are interested in a
special class of Peterson’s polynomials called leading Peterson’s polynomials. The
size of this set is given by a Fibonacci sequence. _

In section two, well known results are recollected from the literature for com-
pleteness.

2. Dickson and Symmetric invariants

Let V() be the i-th dimensional vector space over the field F}, of p-elements
generated by {y1,...,y;} and GL; the general linear group acting as usual. Let also
GL, act on the polynomial algebra P, := Foly1, ..., yn) by the induced action. P,
is graded by [y:| = 2 (for topological reasons).

Since P, < H*(V(™, F,), the Steenrod algebra acts naturally on.

Let h; be the polynomial given by .

(2.1) hi= J] @+a)

aev(s‘— 1)

which has degree 2p"~1. Let us note that 37 is a summand in k; and the last
polynomial is invariant under the upper triangular group U, where only one’s are
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allowed on the main diagonal. This is because g(y; + a) = y; + b + o/, where
b,a' € V=1, If non-zero elements are allowed on the diagonal, then AP™" is
invariant under the Borel subgroup Bj:

gy +af ™t = (cyi + b+ )Pt =Py + 0 + )P

Since the set {h] =1 ..,hE1} is algebraically independent and its elements have
the right degrees with respect to the order of the group By, the corresponding ring
of invariants PB~ is a polynomial algebra ([5]): Fp[h? ™%, ...,h571].

The following proposition is known:

PRrROPOSITION 1. Let f € P,, then it is a GL,-invariant iff f is symmetric and

invariant under the transformation y: — ys +cy;, and y; — y; fori=1,..,t1 -1
and c € F,.

Let the symmetric-group ¥, act on P, by permuting variables; and
Py o= Bplif 5D gl Y]
abbreviate the extended polynomial algebra. Then S, is called the extended sym-
metric algebra where:

P e n—1 s
Al g T s

PR

which is:

By L Pt ) e Flp = =t
i 1,7 175 i
Let ®,, be the algebra map between P, and P2~ given by @, (yf e o R

This is an algebra isomorphism but not a Steenrod algebra map. Then ®,(S,) =
PGLn | the so called Dickson algebra, abbreviated by D,,.

Let the generators for the Dickson algebra be {d, 0, ..., dn,n—1}- Then because
of the isomorphism above, the following relations are deduced:

il fow 5 TEY

1< << ji<n 5=1

n—its—jig

Moreover, using 2.1 and 2.2 we deduce the following well known formula:

i=1

(2.3) hi= T (-1t d;

=0

Here d;_1 ;-1 := 1. Let us also note that the last two formulas will be of great
importance in the sequel.

3. The Steenrod algebra action on Dickson invariants

The action mentioned above has been given for p = 2 in [1] and [3]. For p odd,
it has been calculated only for the Steenrod algebra generators, P¥, and particular
cases ([3]). Extending the idea used in the previous section, we compute it for any
element P* on the two extreme generators of D,,, namely dn,n-1 and dnp.

Let us start with Pkdn,n_l. We recall that

(3.1) Pryp = (:) yHEE=1)
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In particular,
ke .
" vy ifk=0
Rl e, n-+1 i "
P Uy = yf itk = ?n
0 otherwise

Let us define an ordering between sequences I = (ip,...,%1) and J = (jn, ..., J1)
such that I > J iff 7; > j; and ¢ is the biggest index with this property; otherwise
I = J. Next we consider sequences between exponents of various monomials in P;.

The biggest exponent in dp n—1 = (hf,’,‘i + hfff;l) +...+ hﬁ’ﬂ—l(p—l)) is (P (p—

1),0,...,0) which is associated with the monomial y‘,’;n_l(p_l). Let us consider a
typical monomial in Dy, d3% - - d.not,, its biggest sequence is the following:

n,n—

62 (7e-0 (T a) -1 (Ta). - 1a)

We are interested in those natural numbers k such that PFd,, »_; = ed2, - - - dpny’

=1
n—2

n—1
for ¢ # 0. For degree reasons: k = p™~! (Z ar — 1) + p™—2 (2 at) vy iy
0 0 ‘

n—1 T t
and 3 a; <p—1 Let k=3 k; and P*: applies to yJ™. Let A; =ag+--+as
0 1

and b; a non-negative integer such that 0 < b; < min[(p — 1)bey1, As—1].” Here
§=0,---,n—landt=1,---,n.

EXAMPLE 1. Let n = 3. We are looking for a k and a ¢ such that PFd3 o =

P (hg_l - hg(p_l) + hfz(p_l)) = cd3%d3h d3%- Let us concentrate only on
- 2 (»-1)
(3.3) I (hé” 1)) = P* (y§ —yidz1 + ysdz,o)

Of course, k = ky + ko + k3 = p*(ag +a1 +az —d) +plag+a;) +ag. Let a summand

in 3.3 be P* ((—1)63.1 (ba(.f-l_-;:i,o) (ba.i’:fa,o)ygz((P-“l)-ba,L—ba,n)-i-pba.l +53.od12>::,.11d12>?60) =

(Purfld e iy TS st i oyl e

3,1
we consider such a k3 such that .

Pka P ((p—1)—bs,1—bs,0)+pbs,1+b3,0 _ ( 2 ((p—1)—ba,1—ba,0)+pbs,1+ba,0 ) (p—1)p?(ao+ar+az)
Ys T \p*(ao+aitaz—1)+p(bs,1+ba,0)+b30 v

This is identically non zero only if b3 o = 0. Hence k3 = p?(ag+a1+as—1) +pb3,

and the summation runs over 0 < bz 1 < p—(ap+a1+az). But k—ks = p(ag+a; —

b3 1) +ag implies that by ; < ag+a;. Thus 0 < bs; < min[p—(ag+a1+az),a0+a1]-

Next we consider sz‘*kldgff = Pkatky(pp=1 4 P11 The only eligible sum-

mand for our target is Pk2+*1(hE~1\bs1 (otherwise, the ezponent of y; ezceeds the

required  ome). Phathei (g _ ygygp ) p-1)baa As  before:

ko, PU(P—1)b3,1—b2)+b2 pk,  (P—1)b2 _ —1)ba,1—b2)+b2\ ((p—1)b2, (P—1)P(a0+a1), (P—1)
P 2y2 v 2P lyl = (pi‘s((itJ'i-t)ns—T}?a.:)zl-ba )((go—gz )y2p i Gx)yip e
Hence ko = p(ag + a1 — bs,1) + b2 and ky = ag — bo. And the summation runs over
0 < by < min((p—1)bs,1,a0). Finally the coefficient of the reguired element is
given by the following sum:

X R (D) (70 (el te) ot oo ) (6 537)

b3,1,b2
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n—1 n—2 n—1
THEOREM 1. Letk = p™~! (z az — 1) +pn2 (Z at)+-~-+ag with zﬁ: a; <
] 0
p—1. Then P*d, .1 = gl d‘:l’,‘,;il , where c is the following constant mod —p.
—1y ((p—1)bn —1)bg\ (P—=1—bn\ ((P—1)ba—bn— —1)be—be_1Y . . ((p—1)b
?(—1)5(:)5,,1)((?5“1_):’ IR (e o) T e | sl v R (s L BELT Wi

n—1
Here b= Z bg.
1

PrOOF. It suffices to consider P"‘(hg’ "1)). ‘We prove the corresponding formula
n—1 2
for P* (h,(f’_l)d) by induction on n. Here k = p™~! (E a; — d) +p™2 (E at) +
0 0

n=1
-+ ap,1<d<p—=1land Y a; < p—1. The case n = 3 has been worked
0
out in the last example. Let us recall that we are looking for the coefficient of

(p-1)p*"!

i=1
zan)
the monomial [] y; ( 3 after applying P*. Expanding (h,)®~1¢ =

=1

s (p—1)d
n—1
(Z (—1)n-1-tyz’ dn-l,:) and considering the coefficient of
t=0

(34) Pkﬂyin—q[(p_l)d_bn'il _..._bn_ip_ll_*_pi;-—lbn_il +'"+Pi”-1-1bn,ip-1
We conclude that only by, := bsn—1 # 0. Moreover, 0 < bpn—1 < (p— 1)d. Thus
we proceed to the following element:

(3.5) bz(_l)b,, ((P _z;nl) d) ((p;i)ld_—lbn) yip_l)""_l ("zo_:1 m) Prkngn

n—2 -3
Here k — k, = p" 2 (Z at—bﬂ) + pn—3 (E at) +---+ap. I
0 0

n-—1

Let us proceed to the case P*d,q = ¢ [] di’,. Restrictions imply that k& =
t=0 -

n—1

5 (ap+---+az—1)p* < p* — 1 and ap > 1. The biggest exponents in d, o and
0

n—1

€ tl;lo d%, are (p""}(p—1),--- ,(p—1)) and (p"~*(p—1)(a0 +- - + an—1)," - (p — 1)ao)

-1
respectively. The idea is to consider all monomials f in dn o = [] AY 1= (E[y]l’g>
o

such that P*f = ¢s[y] (p" ™ p=D(a0-rFan—1),(p=1)a0) gpq ¢y non-identically zero. -

Here o is a permutation on {0,--- ,n — 1} and [y}P" =32 ---3F """, All coeffi-
n-—1

cients ¢y are added and that constant will be the coefficient ¢ of [] d2, in P¥dn 0.
t=0

Note that this decomposition holds for this particular generator only. Let us recall

that an element of the form [y]?" is called a Peterson polynomial and [] k; contains

all such polynomials of the given degree 1 + --- +p™~!. Among those, we.consider

only the ones with the right degree called leading Peterson’s polynomials. Our
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first task is to find the leading Peterson’s polynomials. The cardinality of this set
of polynomials is given by the n-th element of a Fibonacci sequence.

PROPOSITION 2. Let [P =42 ---4f ', for0< iy <m—1. Ift <iy oriy <

t—2, then P*’[y]i"" does not contain a multiple of [y](pnmi(P_I)(“‘J"'"""“““)"”(p_l)“")
n—1

where k = 3 (ag+---+ai—1) p'
)

PRrROOF. Let us recall that d,gp = (Z[y]f”YJ 1 = 2 CL,e Iyer) pﬁ?{y]l’«f’.
Here I, = (ins, " ,i1,5). A Steenrod opc;ration acts on monomials b;=é)a.rtan
formula: k& = k, +- -+ k;. Let us consider Pk‘ytz pietes a typical suinmand in
dno. Here 1 <e, <p-—1. ' _
(3.6) Yrvtes+k(p—1)=p"(p—1)(ao + -+ +arm1) = isy <t
Let 3 pies =p'Ey+p*1E 1 +---+pE1+ (p—1— E: —--- — Ey), then
(3.7)
ke=p""ag+ -+ a1 —Ei=1) +p 2 (p—1 - E,~E¢ ) + -+ (p—1 —E——Ei)

Hence Steenrod’s binomial coefficients are as follows:

(3 8) ( Et—l ) ( Et—?. ) . ( El ’ )
0 \aotote-B-1)\p=1-EB-Ei) " \p-1-Bi— - B

The claimed restrictions are induced: Ey + Ey_; +1 > ag+--- +a;—; and ag +
et ap1 2 B+l p-1l=E+E, 1+ F; 9= Ei_;=0fors>2. B

DEFINITION 1. A Peterson polynomial yf:" ---y{’ii satisfying n — 2 < i, <
n—=1,t-2<14 <tand 0 <4 <1 is called a leading Peterson polynomial. The
set of leading Peterson polynomials is denoted by LPP,.

LEnMA 1. The size of LPP, is given by the n-th element of a Fibonacci se-
guence.

PROOF. Let n = 2, then there are only two pairs of exponents: (1,0) and
(0.1), F5 = 2. Let n = 3, then there are only three triples of exponents: (2,1,0),
(2.0,1) and (1,2,0), F3 = 3. Given F} for k < n, F,, counts sequences of the form
(n=1,4p_1.--+ ,%1) plus (n—2,n—1,ip_o,--- ,i1). The size of the first set is F,_;
and the second F,_s. §

Our problem reduces to the case P*(LPPB,)P~L.

n—1 n—1
THEOREM 2. Letk = 3 (ap+---+as—1)p'. then Pfd, o = [1 d3'; where
0 t=0
the coefficient ¢ is given by:
p-1)! + Bi1,t
(3.9) _ * mod p
ILEEPPH El!'”Ep'l!t]'-—_.Jlr o+ +a—y —1— By

Ei+E,_1=p-1

Here ELPP, is the set which contains all exponents of monomials from LPP, and
By,s is defined inductively as follows:
Bn—l,n — z Es(.in,s - (T’l - 2))!
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Bn--2,'n. =p—1-— Bn—-l,n;
Bi1t-1=p—1—=By_ 14— Bi_y+15
Bi-2t-1=3 Es(iz-1,s — (t —3)) — Bt—1.¢-1;
Bt 3t-1=p=1-—Bi_1t-1—Bt_0;s1.

PROOF. Since k < p®, the value of P* on dn 0 is a monomial. Last proposition
implies that all coefficients in P*(LPP,)?~! must be added up. It remains to
define the terms B, ;. Let us recall that we are considering monomials of the form

I (yﬁiu,t B _yjlo'l")Et. For each variable, the coefficients of powers of its exponents
[ 1

add up to p— L. Let us consider yn: Bn_1np" '+ Bp_2,p" 2 =3 pir+E,. Then
Br-1n2 =7} Es(ins—(n—2)) and By_gn =p—1—By_; . For yn_1, we have the
following equation Bn_1,n-10""" + Bn-2n-10""2 4+ Bp-3n-1p" " ° = Y pin-is B,
which implies Bpin-1=p—1—Bs_ 1, -Bn—2,'n.—1 = ZEs(in--l,s - ('n' -3)) -
Bp-1n-1and Bp_3n-1 =p—1—Bp_gn-1—B —1,n—1. Now the claimed formulas
for B, s are easily deduced. J

Let us recall the analogue formula for P*(h,)P~! from theorem 10 page 950 in
[3].

THEOREM 3. [3] ;
(3.10)

n—2 d
- (Pkdn,o — haP Y (Prdn_10)+ 3 d —1,n-2~mPk“P'“dn—1,o)

dp—
n—1,0 m=0

Pk(hn)p_l = it
0. if k+# zocmpm

Here ppp = p™~ 1 oo g pn=1Im™,

Using formula 2.2, Cartan formula, and the two last theorems, the interested
reader can evaluate P*d, ; for 0 < s <n—1.
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