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Abstract

In this paper a maximum entropy characterization is presented for Kotz type
symmetric multivariate distributions as well as for multivariate Burr and Pareto type
IIT distributions. Analytical formulae for the Shannon entropy of these multivariate
distributions are also derived.
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1 Introduction

The maximum entropy method is a well-known approach to produce the unknown proba-
bility density function f , compatible to new information about f in the form of constraints
on expected values. Although entropy maximization was first formulated in terms of ther-
modynarmic entropy, the principle of maximum entropy was first introduced as a general
method of inference by Jaynes (1957) and it was axiomatically characterized by Shore
and Johnson (1980). It has been successfully applied in a remarkable variety of fields and
has been also used for the characterization of several standard probability distributions
(cf. Kapur (1989), Guiasu (1990), Gzyl (1995)). .

Consider a p—variate random vector X! = (X, ..., X,,), with unknown density f. Al-
though f is unknown, suppose that we have access to some information about this density,
formulated in terms of a set of information constraints on expected values. Consider the
class of p—variate density functions F = {f(x) : E¢[T3(X)] = e, i = 0,1, ..., m}, where
T.,i = 0,1, ...,m, are absolutely integrable functions with respect to f and Tp(x) = ap = 1.
We suppose further that the values of o; and the form of T;,% = 0,1,...,m, are known.
The maximum entropy principle suggests to derive the unknown density function of the
random vector X, by the model that maximizes the Shannon entropy

H(X) = - / £ (%) log f (x)dx, 1)

subject to the information constraints that define the class F. Jaynes states that the
maximum entropy distribution, obtained by this constrained maximization problem, "is
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the only unbiased assignement we can make; to use any other would amount to arbitrary
assumption of information which by hypothesis we do not have.” (Jaynes (1957), p. 623).

A considerable part of the literature related to the principle of maximum entropy is
devoted to the maximum entropy characterization of the main univariate probability dis-
tributions. In the work of Kagan et al. (1973), Preda (1982), Bad Dumitrescu (1986),
Kapur (1989), Guiasu (1977, 1990), Ebrahimi (2000), Kotz et al. (2000) and the ref-
erences therein, the main univariate probability distributions have been reobtained by
maximizing the Shannon entropy, subject to various types of constraints expressed by
mean values of random variables. Comparatively little is the literature dealing with the
characterization of multivariate distributions by means of the maximum entropy princi-
ple. The main reference, from this point of view, is the book of Kapur (1989) which
devotes Chapters 4 and 5 for the characterization of some multivariate distributions, and
the paper by Zografos (1999) where Pearson’s Type II and VII multivariate distributions
have reobtained by means of the maximum entropy principle.

In this paper, following Zografos (1999), we will concentrate on the characterization of
Kotz type symmetric multivariate distributions as well as Burr and Pareto type III mul-
tivariate distributions. Analytical formulae for the Shannon entropy of these multivariate
distributions are derived.

2 Symmetric Kotz type multivariate distribution

The p—variate random vector X* = (X7, ..., X,) in RP is said to have a symmetric Kotz
type multivariate distribution, if the density function of X is defined by

) =GB [(x— 'S x — )] exp {—r [(x— = x—-p@]}, (2

for r,s > 0, 2m + p > 2 and C, a normalizing constant. The normalizing constant Cj, is
given by v/2) '

_ sI'(p (2m+p—2)/2s

Cr = T (@m +p —2)/25) ' (3)

The parameter p is the mean vector E(X) and the positive definite matrix 3 is related

to the variance-covariance matrix of X (cf. Fang et al. (1990), p. 76, 77). When m = 1,

s = 1 and r = 1/2, the distribution defined by (2) reduces to a multivariate normal

distribution. The above, are particularly appealing family of distributions in constructing
models in which the usual normality assumption is not satisfied.

In order to give a maximum entropy characterization of the density function defined

by (2) we need the following lemmas. The proof of Lemma 1 is outlined in the Appendix.

Lemma 1. Let RP is the p—dimensional Euclidean space. Then

. 2P/2T((p— .
a) [ (y'y) ™" exp[-s(y'y)’ldy = iﬁ;}“ﬁp—f—Wn(zﬂ P2 >0, p< k.
RP



s— s wP/2 —2 s — s)—
b) [ (v'y) " exp[—r(y'y)’ldy = ZEUE 2200 ((Gup)/29-1 >0, p < s+ 8.
RP

7P/2(20—p) /25

c) I{P (v'y) ™" exp[-r(y'y)log(y'y)dy = =g —
x [I'((p — 2p)/2s) — log(k)T((p — 2)/25)],
for k£ > 0, p < . T denotes the gamma function and I'(t) = (d/dt)T'(t).
Lemma 2. For fixed a > 0, consider the function w(z; @) of z, defined by
w(z; a) = ¥(z) — log(az), forz >0,

with ¥(t) = (d/dt)log[(t), being the digamma function. The equation w(z;a) =
w(xp; ), has the unique solution = = z.

Proof. For z > 0 consider the function ¢(y) = z/(y + z)?, y > 1. It is obvious that ¢ is
continuous, positive and decreasing in ¥ > 1. Hence based on the Cauchy’s integral test
we have that

> o(k)- / ply)dy>0 or Y (:H—xm)z = (4)

k=1 k=0
On the other hand it is well-known that £¥(z) =3 (k+—11}2 Therefore, based on (4)
k=0

d Z"" 1 1
S . — ——— —— — O > O
d:cw(x’a) e (k+z)P? = =% B

which means that w(z; ) is strictly increasing in # > 0, which completes the proof of the
lemma. W

The following lemma proves that Shannon’s entropy, given by (1), is not invariant
under linear, non-singular transformations of the random vector X. The proof is imme-
diately obtained from the more general result that the Shannon entropy is not invariant
under an invertible transformation of the variables (cf. Darbellay and Vajda (2000)).

Lemma 3. Suppose that Y is a p—variate random vector, A a non singular square matrix
of order p and u a fixed p—dimensional vector. Then

H(AY + u) = log |det(A)| + H(Y).

Theorem 1. Let Y''= (V;,...,Y,) be a p—variate random vector in R? with density g.

Let also T 5
txr\s] — p—
EQ' [(Y Y) ] 28?" ] (C].)



and
(C2)

1 2m 4+ p—2 2sr
E,llog(YYY)] = S ( : )

2s "2m+p—2
for 2m +p > 2, r,s > 0, and w the function defined in Lemma 2. Then, the unique
solution of the maximization problem

max H(Y) =max {— _/ 9(y) logg(Y)dY},
under the constraints (C1) and (C2), is given by the density
9(v) = G(y'y)" texp[-r(y'y)?, 1s>0, 2m+p>2,
and the normalizing constant C, is given by (3).

Proof. Based on the Lagrange multipliers method we have

2m+p—2 1 (2m+p—2. 2sr )

HY)—A—p TP = 2
(Y) F s R 2s "2m+p—2

= f 9(y) logle  (y'y) ™" exp[—u(y*y)®lg* (¥)ldy
exp[—u(y'y)*lg (¥)ldy — 1,

K

< f g¥)le*'y)”
with equality if and only if

9(y) = e (y'y) " exp[—u(y'y)’]- (5)

In view of Lemma 1 (a) and the fact that g(y), given by (5), is a density function we
have that o )/25)
— = 0, < = 6

Constraint (C1) and Lemma 1 (b) lead to the relation

6)\2m il st 72T(((p — 2K)/2s) + 1)#((2.5—;0)/23)-—1 1Sl 7 2
2 sT'(p/2) ’ ’ 2

The last equation, taking into account relation (6), gives

28r p—2K

7
2m+p—2 2s (7)

#:

On the other-hand constraint (C2), Lemma 1'(¢) and relation (6), lead to the relation

p— 2K i e B 2sr A P—2kK p— 2K
r F —log(p)T . (8
( 2s ) v ( 2s '2m+p-— 2) ( 2s ) log(k) ( 2s ) (®)

=




Based on this last equation, and relations (7), (8) we have that

w 2m4+p—2 2sr p— 2k 2sr
! = gy . ;
2s "2m+p—2 25 '2m+p—2

In view of Lemma 2 and the last equation we obtain that —x = m — 1 and using (7) we
obtain that u = r. Taking into account that x = 1 —m and p = r, it is obtained that
e = C,, by using relation (6). This completes the proof of the theorem. =

Based on Theorem 1 and Lemma 3 we can now state a similar characterization result
for Kotz type symmetric distribution with density given by (2). In this context, for a
p—dimensional vector p and a positive definite matrix X of order p, consider the linear
transformation X = 3V/2Y 4 p, of the random vector Y of Theorem 1. The next corollary
states that among all densities f in RP that satisfy suitable constraints, the Kotz type
symmetric distribution with density given by (2) is the unique density that maximizes
Shannon’s entropy.

Corollary 1. Let X! = (X, ..., X,) be a p—variate random vector in RP with density f.
Let also

= s 2m+p—2 .
By [(X - )= (X - )] = T, (C1%)
and
- 1 2m +p— 2 2sr .
By [log (X — )’ =7H(X — )] Igw( 25 ;2m+p_2), (C27)

for 2m + p > 2, 7,8 > 0. Then the unique solution of the maximization problem

g H(X) =g { - [ £ 10gf(><)dx} ,

under the constraints (C1*) and (C2*), is the density of the Kotz type symmetric distri-
bution given by (2).

In the next corollary the analytic formula for the entropy of the Kotz type symmetric
distribution is presented. The proof can be immediately obtained in view of Corollary 1,
relations (1) and (2) and taking into account constraints (C1*) and (C2*) of Corollary 1.

Corollary 2. The Shannon entropy of the Kotz type symmetric distribution with density
given by (2) is

1 2m+p—2 1 2m+p—2 25T
H(Kotz)=—long+§log|E|+rT—(m-—l)gw( 5 ;2m+p—2 ;
with C, = — /21“((3;%?—2) oy r@mtr=2)/2s  4y(z:0) = U(z) — log(az), for z > 0, and

7,§>0,2m +p>2.

An application of Corollary 2 for m = 1, s = 1 and r = 1/2, leads to the well-known
entropy of the multivariate normal distribution that is § (plog(27) + log |=| + p).

)



3 Burr and Pareto type ITI multivariate distributions

The aim of this section is to obtain Burr and Pareto type III multivariate distributions
by means of the maximum entropy principle. A random vector X* = (X, ..., X;) follows
a Burr multivariate distribution if the density function of X is defined by (cf. Johnson
and Kotz (1972)),

P

F&x) =]] (@+i—Ddicag (14 Y diaft)~¥P), (9)

=1 i=1

forz; >0,¢;,>0,d; >0,i=1,...,p, and a > 0. From here and in the sequel we shall be
concerned with the case o = 1.
The multivariate Pareto type III distribution has density (cf. Johnson and Kotz

(1972)) L ) e
ofw () (5 o

for z; > X, 7, >0,6; >0,i=1,...,p. fa =1, ¢ =1/7;, and d; = 1, then a Pareto
random vector of type IIL, to be denoted as Z, can be obtained from a Burr random vector
X by the following component-wise transformation

zi=0x;+ X, i=1,...,p

Hence the maximum entropy characterization of Pareto type III multivariate distribu-
tion can be achieved by the respective one of the multivariate Burr distribution in view
of Lemma 3 and the above transformation. In order to present the maximum entropy
characterization of Burr distribution we will follow ideas of the previous section. In this
context the following lemmas are necessary. The proof of Lemma 4 is outlined in the
Appendix.

Lemma 4. Let S={y € RP: y; >0, i=1,..,p}. Thenfor¢; >0,i=1,...,p,

0) (H;yz)“ﬂyﬁ"dy ~T(— 3 8) T B)/Tw 11 e,

i=1 =1 =1

n—

i=1 i=l i=1

x (D it BT (1) — T ()" (u— z 5),

i=1

e S )+ [] v log(1+ z y&)dy = (1T T(8)/T%(w) n &)

) [ogtu)(1+ 3 v+ T s7dy = (L1 T(8)/eT() 1T @)

=1

[

x (D(u= 32 BT(8;) — T(B,)T (u— 32 B)),

=1 =1



p
for B; = (1 — k;)/ci, with 8; > 0, &; real constants and g >3 8;, 4,7 = 1,...,p.

=1
Lemma 5. For p € N, consider the system of equations

U(y) —¥(y —-p:l?) =¥(1+p) — (1) (11)
¥(z) - Y(y—pz)=0 ’

for (z,y) € V = {(z,y) € R?: z >0, y > pz}, with ¥ the digamma function: The
equations (11) have the unique solution z =1 and y = 1+ p.

Proof. Taking into account that the digamma function is strictly increasing, the second
equation of (11) leads to

y= (p+ Lz (12)
Hence the first equation of (11) becomes

U((p+1)z) — ¥(z) = ¥(1+p) — (1) (13)

For z > 0 define the function w(z) = ¥((p+ 1)z) — ¥(z). It is well known that ¥(mz) =
m—1
logm + ﬁ > (m + ﬁ) The derivative of ¥ with respect to z at the point m =p+1

k=0

p
gives that (p+1)¥ ((p+1)z) = ;_:‘ﬁ EZ:=0 III'(:::—I—;ﬁ). Taking into account that the function

¥ is strictly decreasing the last identity leads to (p+1)¥'((p+ 1)z) < ¥'(z). Hence the
function w(z), defined above, is strictly decreasing and the equation (13) has the unique
solution z = 1. From (12) the unique solution with respect to y is y = 1 + p which
completes the proof of the lemma. ]

Theorem 2. Let Y! = (Y3, ...,Y;) be a p—variate random vector in § = {y € RP : y; > 0,
i =1,...,p} with density g. Let also for ¢; > 0, i = 1,..., p, the following constraints are
satisfied,

Ey(log(1+ ) | Y)) = ¥(1+p) — ¥(1), (C3)

=1
E,(log(Y;))=0, j=1,..,p, (C4)

for ¥ the digamma function. In this context, the unique solution of the maximization
problem

e H(Y) =max { = [ oy)loga(y)ay ¢
s
under the constraints (C3) and (C4), is given by the density

P P
9(¥) =[J ieawe™a+ Y 4s)"*, >0, i=1,..,p, and y €.
i=1 i=1

7



Proof. Following the steps of the proof of Theorem 1, for constants X, u, and &;, @ =
1,...,p, we have that

H(Y) = A - p(¥(1+p) - ¥(1)) S/ ( 1+Eyf") “H% ) y)dy — 1,
g i=1
with equality if and only if
P P
M+ oy [T v (14)
i=1 4=1 '
From Lemma 4 (a) and the fact that the density g(y) above integrates to 1, we have that

P P

=T(u— Y B) HF /T (1)

el

Ci, (15)

1~

i=1

p

for 8, = (1 — k;)/c;, with 8; > 0,i=1,...,p, and >3 B;. Constraint (C3) and Lemma
=1

4 (b) lead, after a little algebra, to the equality

Y0+ p) — U(1) = B() — U= 3 B). (16)
i=1
In a similar manner constraint (C4), Lemma 4 (c) and relation (15) give that
—W e i B:)=0, j=1,..p (17)
i=1
Equations (16) and (17) lead,
¥(B;) = ¥(p) — ¥(l+p)+¥(1), forevery j=1,..,p,

which means that
U(B,) = ¥(By) = .. = ¥(B,)-

This last equation and the strict monotonicity of digamma function ¥ ensure that

Br=0y=.= ﬁ =p. (18)
Based on them, equations (16) and (17) are equivalent to the following
Y(1+p) — U(1) = U(u) — U(u—pp), (19)

(8) - ¥(p—pB) =0,

for > 0 and u > pB. From Lemma 5 we have that the unique solution of the equations
(19) is
B=1 and p=1+p. (20)

8



Itis B; = (1 — &;)/ci, i = 1, ..., p, then from (19) and (20) we have that

—K; = C; — ]., 1= 1, cees P (21)

yd

Relations (15), (18), and (20) lead to e™* =]] ic;, which completes the proof of the
i=1

theorem in view of (14). = ‘

The density

P

p ;
=1

i=1

and ye S={y € RP:y, >0,i=1,..,p}, obtained in Theorem 2, can be also used
in order to generate the multivariate Burr distribution with density given by (9) and the
parameter o = 1. Indeed, if the p—variate random vector Y* = (Y7, ..., Y,) has density
g(y), given by (22), then the random vector X! = (X3, ..., X,) defined by the following
component-wise transformation

xT; = dz—_l/Ciyi, g = 1, sy Py

has a multivariate Burr distribution with density given by (9) and the parameter o = 1.
This remark associated with Theorem 2 and Lemma 3 lead to the following corollary
which states the maximum entropy characterization of Burr multivariate distribution for
the parameter o = 1.

Corollary 3. Let X! = (X, ..., X,) be a p—variate random vector in § = {x € RF :
z; > 0,41 = 1,...,p} with density f. Let also for ¢; > 0, i = 1,...,p, the following
constraints are satisfied, -

By(log(1+ 3 deXE) = ¥(1 + ) — (1), (C3")
Ef(log(d;/X,)) =0, j=1,...,p, (Ca)

for ¥ the digamma function. Then the unique solution of the maximization problem
max H(X) =max | — f f(x)log f(x)dx
S
under the constraints (C3*) and (C4*), is given by the density
P P
fx) =[] idicizz™ 1+ > diaf)™ 0, >0, d;>0, i=1,...,p,x€8.  (23)
i=1

=1

9



Based on the discussion at the beginning of this section, the multivariate Pareto type
ITI distribution with density f*(z), given by (10), can be generated from (23) for ¢; = 1/7,,
and d; = 1, and by using the component-wise transformation

Z; = Bimi B Aia 1= 11 ey 22

for z; > M\, v; > 0, 8; >0, i = 1, ...,p. This transformation, in association with Corollary
3 and Lemma 3, leads to a similar maximum entropy characterization of the Pareto type
III density, given by (10), under the following constraints,

Ep (log (1+ zi: (Zie_i A*’)“’%)) =U(1l+p) - tﬁ(1), (C3*)
B (g (Z72)) =0, 5= 1mmp (o)

The above results can be also used in order to evaluate the Shannon entropy of the
multivariate Burr, for & = 1, and the multivariate Pareto type III distributions. These
entropies are presented in the corollary that follows the proof of which can be immediately
obtained in view of Corollary 3, relations (9) and (10) and taking into account constraints

(C3*), (C4%) and (C3™), (C4*).

Corollary 4. a) The Shannon entropy of the Burr distribution with density given by (9)
andao=1,¢>0,d >0,1=1,...,p, is

H(Burr,a=1) 210g2+(1+p)[\11(1 +p) — Zlog (le/c‘)

=1 i=1

b) The Shannon entropy of the Pareto type III distribution, with density given by (10),
is
P

H(Pareto I1I) = — zp: 1og§ +(1+p)T(L+p) - TW)+ Y log (1),
i=1 *

Fed

fory, >0,8: >0,i=1,...p

The above expressions for the Shannon entropy of Burr and Pareto III multivariate
distributions have been also obtained by Darbellay and Vajda (2000) in a different frame-
work.

A Appendix

Proof of Lemma 1. The proof of parts (a) and (c) are given in the sequel. Part (b) can
be proved in a similar manner.

10



(a) Consider the generalized spherical coordinate transformation
zy = r [] sinby
k=1
p—J ) ;
@y = r(]] sinfy)eosl; 50, 28 <p—1
k=1
T = recosf
for0 <r<1,0<6; <7 i=1..,p—2and 0 < 0,; < 27. Clearly, we have
xx = 2?4+ ---+ 22 = 7% and the Jacobian of the transformation from z1,...,z, to

7,01, ..., 0p—1 is TP sinP"26; Sin?~3@ - - - sinf,_» (cf. Muirhead (1982), p. 37). Taking
into account the equality

7 27

2r%
f f / Sin?~26, Sin?~36, - - - sin p_sd0y - - - dfp_2dBp 1 = oo,
L'(%)

(cf. Muirhead (1982), p. 37), we have

_ . P/2 o
[ ty) Hexpl-s(y'y)ldy = £ f # exp[—k(r?)°] P~ dr
RP

= 811'(;;/‘"’2) f 2" exp(—kz)dz.

The last integral is the gamma function T'((p —2u)/2s)x*P/% k>0, p <k, and
the proof of part (a) of the lemma is completed.
(c) If we consider again the generalized spherical coordinate transformation, we have

[ (7'y) 7" exp[—r(yty)’]log(y'y)dy = 125//22) f (r?)~* exp[—r(r?)°] log(r?) rP~1dr
Re 0

_.3 +1 oo} —2u N
- AP
0
(A1)
=l exp(—z)dz, t > 0,

The derivative with respect to # of the gamma function I'(t) =/ =z

o8

is given by I'' (t) =/ z'~!exp(—z)log(z)dz. For z = az, @ > 0, we have
0

I'(t) a/ az) ! exp(—az) log(a dz—i-af )it exp(—az) log(z)dz.
0 0

Hence

a/ )t~ exp(—az) log(z)dz = ' (t) — log(e)T'(¢).
0

11



An application of this last equality, for « = x and t = (p — 2p)/2s, to the relation (Al)
leads to the desired result. |

Proof of Lemma 4. a) Consider the transformation w; = y;*, « = 1,...,p. Then if we
denote by I f (1+ Z g e H y; " dy, we have

[e;ole o] oo p— oc P I 7
B / / / -1 / uﬁp_l(l+zuz')"“dup duy...du,_1  (A2)
00 St . = .

Consider now the integral I, f w1+ Z u;) "“du,. If we will use the transformation

2_

p—1
w=u,/(1+ >_ u;), then
i=1

=1

p—1 &
L=(1+ ) uw) ™ / WP (1 4+ w)Hdw = 1+Z BB, — B,
' 0

for 8, > 0, 4 > B, and B the beta function. Taking into account relation (A2)

P R p—1 —HtBp
T = (H Ci)_lB(ﬁpa# _ ﬁp) f/ / H ufi_l (l—l— Z uz) } dul...dup_l.
i=1 00 0 =1 :

t=1

If the same procedure is repeated (p — 1)—times then the integral I becomes

P

= ch "1HBﬁz,u Zﬁ

i=1 =1

and leads to the desired result.
b) The proof of this part follows immediately from part a) if we observe that

/1+Z:y1 Hyz”*log 1+§:yt ——-—/ l—i—z:y2 Hyz"’dy

ge=] t=1 ]

P P
c) Let I* =/ log(y;)(1+ X y*)™ [] y; ™dy. Consider the transformation u; = y;',
S =1 i=1
1=1,...,p. Then

F=(e; H ci) ! / log(u;)(1+ Z ;) * H u T du, (A3)
2 i=1

i=1 =1

12



p—1
with 8; = (1 —&;) /¢, © = 1, ..., p. If we use the transformation w = u;/(1+ > wu;), and
i=1,i7
take the derivatives, with respect to §;, of both sides of the identity [ WP 14+ w)Pdw =

0
L(8;)T (e — B;)/T(u), B; > 0, u> B;, after a little algebra, we obtain that

G P P p
flog(uj)ufj_1(1+ Z ;) Pdu; = (1+ Z u;) THHP (W1+W210g(1+ Z u,-)) 3
0

i=1 i=1,is] i=1,i5]
(A4)

with Wi = [['(8,)T (s — 8;) — T(8,)T" (n — B;)]/T (1) and Wy = T(8;)T'(u — B;)/T(w)-
Using relation (A4) and parts (a) and (b) of Lemma 4, relation (A3) completes the proof
of the lemma. |
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