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ABSTRACT

Consider the second order linear functional equation

z(g(t)) = P(t)e(t) + Q(#)z(g°(t), (%)

where P,Q € C([0,00),[0,00)),9 € C([0,00), R), g(t) is increasing, g(t) > t or
g(t) < t and g(t) — oo as t — oo, and the linear functional equation

z(t) — pz(t = 7) + ¢(t)z(t — ) = 0, (%)

where p, 7,0 € (0,00),q(t) € C([0,00), [0,00)). We establish the following “sharp”
nonoscillation criteria for Eq. () and Eq. (s#%):

Theorem 1. If Q(¢)P(g(t)) < 1/4 for large t, then Eg. (x) has a nonoscillatory
solution.

Theorem 2. If o > 7 and for large t

_ o/t _ -1
p—a/'r -q(t) < (a T) : (J T) ,
& T

then Egq. (*x) has a nonoscillatory solution.
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1. INTRODUCTION

The oscillatory properties of solutions of differential equations with deviating
arguments and difference equations with discrete arguments have been the subject
of many recent investigations. See, for example, [1,3-5,7,9-11,13,14,18] and the
references cited therein. For the oscillatory properties of solutions of functional
equations which include difference equations with continuous arguments, the reader
is referred to [2,6,12,15,17,19-22].

In 1992, Ladas, Pakula and Wang [12] considered the difference equation

z(t) + prz(t — 71) + pax(t —72) =0, p1,p2, 71,72 €R (1.1)

and proved that every continuous solution of Eq. (1.1) oscillates if and only if the
characteristic equation
14+ pre™™ 4 ppe™2 =0 (1.2)

has no real roots. Observe that when p1,p2 € (0, 00), every solution of Eq. (1.1)
oscillates. Without loss of generality, it can be assumed that 7 > 7o > 0. But
then p; > 0 is a necessary condition for all solutions of Eq. (1.1) to oscillate. On
the basis of this discussion they studied the equation

z(t) —pz(t —7) +qz(t — o) =0, (1.3)
where
p,q,T,0 € (0,00) and T<0,

and derived the following necessary and sufficient oscillation condition
g% >p°tT(c—T)°". (1.4)

In 1993 Domshlak [2], in 1995 Zhang and Yan [20], in 1996 Shen [17], in 1997
Zhang, Yan and Zhao [22] and in 1998 Zhang, Yan and Choi [21] studied such
equations with variable coefficients, while in 1999, Yan and Zhang [19] considered
a system of delay difference equations with constant coefficients. Here, we mention
the paper [22] in which the authors considered the difference equation with a
variable coefficient of the form

2(t] ~=(t~7) +Fq(f)z(t—0c) =0, (1.5)
where
7,0 € (0,00),7 <o and g(t) € C([0,0), (0,00)), (1.6)
and proved that all solutions of (1.5) oscillate if
. -1\ fo—1\"1
llgriégfq(t)> ( = ) . ( = ) : {1.7)
and Eq. (1.5) has a nonoscillatory solution if
_ o/t _ -1
limsup g(t) < (J T) . (g T)- ) S (1.8)
t—o0o on T



with the additional condition
lg(t) —q(t")| < L|t' = ¢| for any #,t" € (0, 00), (1.9)

where L > 0 is some constant.

In the above mentioned papers the equations under consideration are called
difference equations with continuous arguments (or continuous variables or con-
tinuous time) most likely because constant time delays appear in these equations.

In 1994, Golda and Werbowski [6] studied the second order linear functional
equation of the form

z(g(t)) = P(t)z(t) + Q(t)z(¢*(t), t=0, (1.10)

where P,Q : R* — RT,g: RT — R (R™ = [0, 0c0)) are given real valued functions,
g(t) Z t for t > 0,lims o0 g(t) = o0, and g™ denotes the m-th iterate of the
function g, i.e.,

) =t, ¢ () =g(d'@), t=0, i=0,1,2,---,

and established several oscillation conditions. In particular, they proved that all
solutions of Eq. (1.10) oscillate if

i 1
llﬂéglf@(t)P(g(t)) = (111}
It should be emphasized that condition (1.11) (resp. (1.7)) is a “sharp” con-

dition in the sense that, when P(t) =p > 0,Q(t) = ¢ >0and g(t) =t — 7,7 >
0 (resp. q(t) = q > 0), it reduces to

1 o—7\" (o—7\"1
pq>z ('resp.q>( - ) ( - ) ), (1.12)

which is a necessary and sufficient condition for the oscillation of all solutions of

z(t — 7) = pz(t) + qz(t — 27) (resp. z(t) —z(t — 7) + qz(t — 0) = 0)

because if we consider the last two equations then (1.4) reduces to the two condi-
tions in (1.12) respectively.

Note that all the above mentioned papers deal with the oscillatory behavior
only except [22] in which the nonoscillation conditions (1.8) and (1.9) were estab-
lished for Eq. (1.5).

From the above discussion, the questions naturally arise as to whether the

conditions
Q(t)P(g(t)) <1/4 for large t {1.13)

and

q(t) < (J;T)G/T- (J_T)_l for- large ¢ " (1.14)

T



imply that Eq. (1.10) and (1.5) have a nonoscillatory solution respectively.

The aim of this paper is to give answers to the above questions. We will
prove that, under additional conditions on g(t), condition (1.13) implies that Eq.
(1.10) has a nonoscillatory solution. We will also prove that (1.14) is sufficient
to guarantee the existence of a nonoscillatory solution of Eq. (1.5). It is to be
noted that condition (1.9) is no longer required in our result and condition (1.14)
is weaker than condition (1.8). The last result is given by considering the more
general equation of the form

z(t) —px(t — 1)+ q(t)z(t — o) =0, (1.15)

where p € (0,00) and 7,0 and g(t) satisfy (1.6).

By a solution of (1.10) (resp. (1.15)) we understand a continuous real valued
function = : R* — R such that sup{|z(s)| : s > to} > 0 for any ¢, > 0 and =z
satisfies (1.10) (resp. (1.15)) on [0, c0). Such a solution is called oscillatory if it has
arbitrarily large zeros, otherwise it is called nonoscillatory. Thus a nonoscillatory
solution is either eventually positive or eventually negative.

2. MAIN RESULTS

2.1. Nonoscillation criteria for Eq. (1.10)

We will use the following hypotheses for Eq. (1.10).

(H1) P(t) € C(R™,(0,00)),Q(t) € C(RT,R™);

(Hs) g(t) € C(RT,R),g(0) = —r1 < g(t) < t (retarded argument), r; >
0,g(t) — oo as t — oo and g(t) is strictly increasing;

(Hs) g(t) € C(R*,(0,00)),g(t) > t (advanced argument), and is strictly in-
creasing.

Theorem 2.1. Let (H;) holds. Assume that either (Hz) or (H3) is satisfied. If
Q()P(g(t)) <1/4 for large t, (1.13)
then Eq. (1.10) has a nonoscillatory solution. -

To prove Theorem 2.1, we need the following lemmas.

Lemma 2.1. Consider the first order nonlinear functional equation

- >0, (2.1)

v = T e —1 ‘2

where a(t) € C(R™, RY) is a given function. Assume that
a(t) < 1/4 for large t. (2.2)

Then Eq. (2.1) has an eventually positive continuous solution u(t).
Proof. Without less of generality, we assume that

0<a(t)<1/4 for t>0. (2.3)

3



Set

1-1/1-4a(0) |,
1, if a(0)=0.
Then o satisfies the relation 1
=1z a(0)e’ (25)
We claim that
1<a<?2. (2.6)
Indeed, let
1—-+/1-4
f(§)=——"2€—'§, 0<é<1/4
Then ¢ z
fpek o LB —afl—d
f(&)'- 262@ ) 0<§<1/4
Set
F)=1-26—+1—-4§, 0<EL1/4
Then

ik

Fo =2

Thus, F(£) is strictly increasing on (0,1/4). Since F(0) = 0, it follows that

F(§) > 0for 0 < £ < 1/4. Therefore, f'(£§) > 0 for 0 < £ < 1/4. Noting that
f(1/4) = 2 and

—1)>0, 0<¢<1/4.

: L 1-yT=Z 1
i JO =l i

£—0+ 0 2¢
we have 1 < f(§) <2 for 0 < £ <1/4. This and (2.4) lead to (2.6).
Next, we define a function u(t) as follows:

L

: -1<t<0
b m, - - ? 2 7
P {mflm-—l k<t<k+1, £=0,1,2,.. (2.7)
From (2.5), it is not difficult to see that
i u(t) = T 550 = Ta s = O (2.8)
ot 1-a(@u(-1) " 1-a(0a -

(2.7) and (2.8) imply that u(t) is continuous on [—1, c0). We prove that
u(t)>1 for t>-1. (2.9)
Indeed, from (2.5), (2.6) and (2.7), we have

1<u) <2 for 51 <t<0. L e (2:10)



For 0 <t <1, by (2.2), (2.7) and (2.9), we have

1 < L <2
—a@ut—1) = 1-2a(®) =

1§u(t}=1

In general we have 1 < u(t) <2fork <t <k+1,k=0,1,2,.... Thus, (2.9) holds.
From (2.7) we see that

L t=> 0.

"= TS mee—1 £2

This shows that u(t) is a positive continuous solution of (2.1). The proof is com-
plete. '

We now give some notations on the function g(t). If g(¢) satisfies the condition
(Hj), then g~1(t) (g~ 1(t) > t) denotes the inverse of the function g() and g~*(¢)
is defined by g~*~1(t) = g 1(¢7*(t)),k = 1,2,...; If g(t) satisfies the condition
(Hs), then g_1(t) (g—1(t) < t) denotes the inverse of the function g(t) and g_g(t)
is defined by g—x—1(f) = g-1(9-x(%)), k= 1,2, ....

Lemma 2.2. Consider the first order nonlinear functional egquation

! >0, (2.11)

V= Tewemy f2

where b(t) € C(R™, R™) and g(t) satisfies the condition (H3). Then there ezists a
continuous change of variables that transforms Eq. (2.11) into Eg. (2.1). Such a
change of variables is given by u(t) = W(h(t)),t > 0, and a(t) = b(h(t)), where
h(t) is defined by

h(t) =g "(¢(t—n)), n—1<t<n, n=0,1,2,.. (2.12)
and ¢ : [-1,0] — [—r1,00) is any continuous increasing function satisfying the
condition -

9(4(07)) = ¥(-17). (2.13)

Furthermore, we have that u(-) defined by u(t) = W(h(t)) oscillates if and only if
W {(-) oscillates.

Proof. Replacing t by h(t) in (2.11) we have (cf.[1])

1
~ 1-b(@)W(g(r(®))

The term on the left side is just u(¢). To complete the transformation it suffices
to have a(t) = b(h(t)) and g(h(t)) = h(t — 1), for ¢ > 0. From (2.12), we have

W (h(2)) (2.14)

h(t) = (), -1<¢<0,

h(ty=g  (h(t—1)), n—1<t<n, n=12,...



By (2.13) we see that h is continuous. Since 1 is increasing on [—1, 0], it follows that
h is increasing. Finally, to see that u(-) oscillates if and only if W(-) oscillates,
it suffices to prove that h(t) — co as t — oo. Indeed, if u() oscillates, then
there exists a sequence {t,} such that ¢, — oo as n — oo and u(t,) = 0. Let
sn = h(t,), then s, — 00 as n — oo because h(t) — oo as ¢ — oo. Thus,
W(sn) = W(h(tn)) = u(ty,) = 0. This shows that W(-) oscillates. Conversely, if
W (-) oscillates, then there exists a sequence {s,} such that s, — oo as n — oo
and W(sp) = 0. Let t, = h™%(sn) (here h~! is the inverse of the function h
), then t, — oo as n — oo and u(tn) = W(h(tn)) = W(ss) = 0. Thus, u(:)
oscillates. Now, to prove that h(t) — oo as t — oo, we need only to prove that
h(n) — oo as n — oo, where n takes only integer values. Otherwise, the sequence
h(n) = ¢7™(¢(0)) has a limit L, then '

g7} (L) = g7 (lim_g™"(®(0))) = lim g~V (y(0)) = L

This is impossible because g~1(¢) > ¢ for all £. The proof is complete.

Remark 2.1. One way to transform (2.11) into (2.1) is to suppose that the func-
tion 1 has the form ¥(t) = at + b, where a and b are to be determined. We first
require 1(—1) = —r;, which gives b — a = —r;. In addition, condition (2.13) re-
quires g(b) = —a + b. From (Hz3), g(0) = —ry, it follows that b = 0,a = r;. Thus
’f,b(t) = rit.

Lemma 2.3. Assume that (Hy) and (Hz) hold. Then Eq. (1.10) has an eventually
positive solution if and only if the first order nonlinear functional equation

1
YO = T omreOwEn) 2" =y

has an eventually positive continuous solution.

Proof. Assume that z(t) is an eventually positive solution of Eq. (1.10). Dividing
both sides of (1.10) by z(g(t)) gives

s 2(%()
= POy T2 20y (216)
Set
) W) = 29 (2.17)
P)a(t) ‘

Then W (t) is eventually positive and continuous and satisfies

1= 5 + QOPEOT (o), (218)

which shows that W (t) is an eventually positive continuous solution of (2.15).
Next assume that W(t) is an eventually positive continuous solution of (2.15).
Without loss‘ of generality, we may assume that W (t) > 0 for £ >'0. By similar



arguments, as in the proof of Lemma 2.2, we see that there exists a continuous
change of variables that transforms the equation

x(t) = Wt;?(?)‘”(g(t))’ £20 (2.19)

into the equation
y(t) = Ryt —1), t=0, (2.20)

where R(t) = [W(h())P(h(t))]"1, h(t) is as in Lemma 2.2, and Eq. (2.19) has
an eventually positive continuous solution-z(¢) if and only if Eqg:- (2:20) has an
eventually positive continuous solution y(¢). Since R(t) > 0 for ¢ > 0, it is easy
to see that Eq. (2.20) has an eventually positive continuous solution. Indeed, the
function y(¢) defined by

(t)_ T(t)a —1.<_t50=
YW= Ryt—1), k<t<k+1, k=0,1,2,..,

where r(t) is any positive continuous function on [—1, 0] such that r(0) = R(0)r(-1),
is a positive continuous solution of (2.20). Thus, Eq. (2.19) has an eventually pos-
itive continuous solution. Let Z(¢) be such a solution. Substituting

Wiy - Z6)

— Z(t)P(2)
into (2.15), we obtain

Z(g(t)) Z(g2(t)) _
=P (1 —QUHP (g“”f(g(tnp(g(t))) =1

ie.,
Z(g9(2)) = P()z(t) + Q)T (9*(2)).
This shows that Z(t) is a positive solution of (1.10). The proof is complete.

Proof of Theorem 2.1. We first consider the case when g(t] satisfies (H2). By
Lemma 2.3, it suffices to prove that Eq. (2.15) has an eventually positive contin-
uous solution. Set b(t) = Q(t)P(g(t)) and let h(t) be a change of variables as in
Lemma 2.2. Define a(t) = b(h(t)) = Q(h(t))P(g(h(t))) and u(t) = W(h(t)). From
condition (1.13), we have

0 < a(t) = Q(h(t))P(g(h(t))) < 1/4 for large t.

Thus, by Lemma 2.1, Eq. (2.1) has an eventually positive continuous solution
u(t). By Lemma 2.2, we see that Eq. (2.15) has an eventually positive continuous
solution W (t).

Next, we consider the case when g(¢) satisfies (H3). Since g(?) satisfies (H3), it
follows that g_;(t) satisfies (Hg), with the possible exception that g_1(0) = —r2 <
0,72 # 1. Replacing g%(¢) by t in Eq. (1.10), we have

z(g-1(t)) = Q(g-2(1))z(t) + P(g-2(2))z(9-2(2))- (2.21)

7



Condition (1.13) implies that for ¢ sufficiently large

0 < P(g-2(t))Q(g-2(9-1(2))) = Qg-3(t)) P(g9-2(t)) < 1/4.

As in the case when g(t) satisfies (Hz), we see that Eq. (2.21) has an eventually
positive solution. Thus, Eq. (1.10) has an eventually positive solution. The proof
is complete.

Example 2.1. Consider the equation
il

46_t‘/ 22(t/4). (2.22)

z(t/2) = etz(t) +

It is easy to see that

QUP(g(t) = 7/ 2= 7.

Thus, by Theorem 2.1, Eq. (2.22) has a nonoscillatory solution. In fact, z(t) =
t~le~2 is such a nonoscillatory solution.

2.2. Nonoscillation criteria for Eq. (1.15)

We will establish the following nonoscillation theorem for Eq. (1.15).
Theorem 2.2. Let o > 7. Assume that

po/T - q(t) < (U = T)J/T . (g — T)_l for large t. (2.23)

g T

Then Eq. (1.15) has a nonoscillatory solution.

Remark 2.2. When p = 1, condition (2.23) reduces to condition (1.14) and Eq.
(1.15) reduces to Eq. (1.5). Thus condition (1.14) is sufficient for Eq. (1.5) to
have a nonoscillatory solution. On the other hand, condition (2.23) is “sharp” in
the sense that when g(t) = ¢ > 0 condition (2.23) also is necessary for Eq. (1.15)
to have a nonoscillatory solution (cf.(1.4)). §

To prove this theorem, we need two intermediate results. The first one is
Schauder’s fixed-point theorem [16].

Lemma 2.4. Let ) be a nonempty bounded closed convex subset of a Banach space
(B, ||-1]), and let S : Q@ — Q be a continuous mapping such that S(2) is (relatively)
compact (S is completely continuous). Then, S(z) = x, for some z € 2.

The second one is the following version of Ascoli’s theorem.

Lemma 2.5. Let {f : [0,00) — R,n =1,2,..} be a sequence of functions such
that:

(i). there ezists a constant M > 0 such that |fr(t)| < M for alln > 1 and
=0

(ii). fn(t) is continuous on [0,00) for allm > 1;

(iii). there emist constants L > 0,p > 0 such that 0 < fn(t) < Le ™ for
t>T >0 and all n > 1, where T* is @ constant. -



Then there ezists a continuous function f : [0,00) — R and a subsequence {gn} of
{fn} such that gn(t) — f(t) as n — o0, uniformly on [0, c0).

Remark 2.3. The authors are unaware of a precise reference for Lemma 2.5, but
it is a sequence of the results in [8].

Proof of Theorem 2.2. Let the right side of (2.23) be ¢. Then, by the results in
[12] (see also condition (1.4)), the equation

ut) —u(t—7)+cu(t—0)=0 (2.24)

has an nonoscillatory solution of the form u(t) = e*, where XA < 0 is a root of the
characteristic equation 1 — e™*™ 4+ ce™? = (. It is clear that the equality holds:

)= cZu(t +iT — o).

i=1

For each real number 7, let us define B, as the space of all real bounded continuous
functions defined on [r, 00), provided with the usual sup-norm; and let Q, := {v €
B, : 0 < v(t) < eM,t > r}. It is clear that () is a nonempty bounded closed
convex subset of the Banach space B,. Let T > 0 be such that (2.23) holds for
t > T. Define a mapping S on Q7 as follows:

] Rt +in)yt+ir—a), tZ2T+eo—1,
S(y)(t)_{S(y)l(T'l‘O'—T)-l‘ﬂ(f)—‘U,(T-{»-o'—--,r), T€ t < T —r

where
) =p~"-q(t) <c, t>T.
Thenfort>T+0—7
o
0<S(y)(t) D cult+ir—o) =u(t) = e, (2.25)
=1
While for T <t < T + o — 7, we also have
0<SWE) <uT+o-7)+ult)—uT +o—7) =u(t) <M

Thus, (2.25) holds for ¢ > T'. For any y € Qr, we claim that S(y) is continuous.
Since lim;—o u(t) = 0, it follows that for any € > 0 there exists T; > T such that
u(t) < e for t > T;. Choose a positive integer N such that N7 > T;. Then for all
t>T+ o0 — 7 we have

n oo
z Ft+inyt+ir—o) < > cult+ir—o)
i=m+1 i=m-+1

= 4{t-+mr)<e

o0

for any m,n > N, which implies that the series 3 5o, ¢*(t+i7)y(t+i7—0) converges
uniformly on [T'+ o — 7,00). Thus, S(y) is continuous. From this and (2.25), we
have S(Q7) C Qr.



Notice that 0 < S(y)(t) < e¢*. This and Lemma 2.5 imply that S(Qr) is
(relatively) compact. Hence, by Lemma 2.4, S(y) = y for some y € Q7. ie,

[o.a] * - &
_ Rig*t+in)y(t+ir—o), t>T+o—T,
y(”'{y(T+o—T)+u(t)—u(T+a—T), T<t<T+o—r (220
and
yt) -yt -1)+ gyt —0) =0, t2T+o. (2.27)

We claim that y(¢) > 0 for ¢t > T'. Since v/(¢) < 0,t > T, from (2.26), we have -
y(t) >0, T<t<T+o-T.
Assume that there exists a t € [T'+ o — 7, 00) such that y(¢) < 0, then we can let
t*=inf{t >T +0o—7:y(t) <0},

so that

y(t*) =0 and y(t) >0, T <t<t™
On the other hand, from (2.26), we have

co
y(t") = D g*@ +in)y(t* +ir — o)

i=1

> ¢t +7n)yt*+7—-0)>0,

a contradiction. Thus y(¢) > 0 for ¢ > T. Finally, let us define z(t) = pTy(t).
Then, by (2.27), we have

z(t) —pz(t — 1) + q(t)z(t — o) = 0.

Thus, z(t) is a nonoscillatory solution of (1.15). The proof is complete.
Example 2.2. Consider the equation -

(et —t+ 1)(2¢ - 11)

z(t) —z(t—1) + 2t — 1)e55

z(t—5.5) = 0.

It is not difficult to check that for ¢t > 6
_ e —it+ 1)(2t — 11)
qt) = 2t(t — 1)e5d

5-5 == 1 5.5 1
< -(5.5=1)"".
- ( 5.9 ) & )

Thus, by Theorem 2.2, this equation has a nonoscillatory solution. In fact, z(t) =
t~le~t is such a nonoscillatory solution.
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