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Introduction

Let Cy(X, E) be the space of all bounded continuous functions from a zero-dimensional
Hausdorff topological space X to a non-Archimedean Hausdorff locally convex space
E. By Cr.(X, E) we denote the space of all f € Cp(X, E) for which f(X) is a rel-
atively compact subset of E. In section 2 of this paper we show that, if E is polar
and complete and Y a closed subset of X which is either compact or X is ultranor-
mal, then there exists a linear map T : Cro(Y, E) — Cre(X, E) such that T'f is an
extension of f and ||Tf|lp = ||f|lp for all f € Cre(Y, E) and every polar continuous
seminorm p on E. Using this we identify in section 3 the completion of the space
Cy(X, E) under the strict topology B, when F is polar. If K(X) is the algebra of all
clopen (i.e. both closed and open) subsets of X, we define in section 4 the product
of certain K-valued finitely-additive measures on K(X) with E’-valued measures on
K(Y), where Y is another zero-dimensional topological space. Finally in sections 5
and 6 we define the so called (V R)-integral and Q-integral of functions in EX with
respect to certain measures on K (X).

1 Preliminaries

Throughout this paper, K stands for a complete non-Archimedean valued field whose
valuation is non-trivial. By a seminorm, on a vector space E over K, we mean a
non-Archimedean seminorm. Similarly, by a locally convex space we mean a non-
Archimedean locally convex space over K. For E a locally convex space, we denote
by cs(E) the collection of all continuous seminorms on E, by E’ its dual space and
by E its completion. If F is another locally convex space, then E ® F will be the
tensor product of E, F' with the projective topology.

Let now X be a zero-dimensional Hausdorff topological space and FE a Hausdorff
locally convex space. We will denote by §,X the Banaschewski compactification
of X (see [4]) and by v, X the N-repletion of X (N is the set of natural numbers),
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i.e. the subspace of 5,X consisting of all z € 3,X with the following property: For
each sequence (V,) of neighborhoods of z in 3,X we have that [V, N X # 0. The
space X is called N-replete if X = v,X. We will denote by Cp(X, E) the space of
all bounded continuous E-valued functions on X and by Cr.(X, E) the space of all
f € Cy(X, E) for which f(X) is relatively compact in E. In case E = K, we will
simply write Cy(X) and Crc(X) respectively. For A C X, we denote by x4 the
K-valued characteristic function of A in X and by A%% the closure of A in BoX.
Every f € Cr.(X, E) has a unique continuous extension fBe to all of 8,X. For f an
E-valued function on X, p a seminorm on F and A C X, we define

I £llp = sup p(f(2)), [Ifllap = supp(f(z))-
zeX TEA

The strict topology 3, on Cy(X, E) (see [7]) is the locally convex topology gen-
erated by the seminorms f + ||kf||p, Where p € cs(E) and h is in the space B,(X)
of all bounded K-valued functions on X which vanish at infinity, i.e. for each ¢ > 0
there exists a compact subset Y of X such that |h(z)| < € if z is not in Y. Let ©
be the family of all compact subsets of 3,X which are disjoint from X. For H € €,
let Cx be the space of all h € Cr.(X) whose continuous extension kP> vanishes on
H. For p € cs(E), let B p be the locally convex topology on Cy(X, E) generated by
the seminorms f — ||hf|lp, h € Cu. The inductive limit of the topologies Bpp, as
H ranges over , is denoted by (3, while § is the projective limit of the topologies
Bp,p € cs(E). The following Theorem is proved in [11].

Theorem 1.1 An absolutely conver subset V of Cy(X, E) is a Bgp-neighborhood of
zero iff the following condition is satisfied: For each r > 0, there ezist € > 0 and a
clopen subset A of X, with ABX N H =0, such that

{f€C(XE): Iflp<mlliflap < e} CV.

Let now K (X) be the algebra of all clopen, (i.e. closed and open) subsets of X. We
denote by M(X,E') (see [6]) the space of all finitely-additive E'-valued measures
m on K (X) for which m(K (X)) is an equicontinuous subset of E'. For each m in
M (X, E') there exists p € cs(E) with mp(X) < oo, where, for A € K(X),

myp(A) = sup{|m(B)s|/p(s) : p(s) # 0,A D B € K(X)}.

The space of all m € M (X, E') with my(X) < co is denoted by My(X, E'). We
denote by M. (X, E') the space of all m € M (X, E') such that, for every decreasing
net (As) of clopen subsets of X, with NA4s = 0, there exists p € cs(E) such that
my(As) — 0. Also by M (X, E") we denote the space of all m € Mp(X, E') such
that m,(As) — O for every decreasing net (As) of clopen subsets of X with NAs = 0.
Let
M(X,E)= |) M p(X, E).
pees(E)

For p € cs(E), we denote by M;,(X, E') the space of all m € My(X, E') for which
my is tight, i.e. for every e > 0, there exists a compact subset ¥ of X such that



Integration and Strict Topologies 3

mp(A) < € if A is disjoint from Y. We define

My(X,E") = U Mp(X, E').
pecs(E)

As it is shown in [11], M. ,(X,E") = Mip(X,E’). In case E = K, we write
M(X),M-(X) and M¢(X) for M(X,E'), M;(X,E") and M(X,E'), respectively.
Also, for u € M(X), we define |p|(A) = pp(A), where p = |.| is the valuation of K.

Next, we recall the definition of the integral of an E-valued function f on X
with respect to an m € M (X, E’). For A € K(X),A# 0, let D4 denote the family
of all @ = {A1,...,An : T1,... ,Zn}, Where {A;,...,An} is a clopen partition of
A and z; € A;. We make Dy a directed set by defining a; > ap iff the partition
of A in @ is a refinement of the one in as. For f € EX,m € M(X,FE') and
a = {A1,...,An ¢ T1,... ,Zn}, we define wo(f,m) = 3 m(A;)f(z:). If the
limg wa(f, m) exists in K, we will say that f is m-integrable over A and denote this
limit by [ 4 fdm. We define the integral over the empty set to be 0. For A = X,
we write simply f fdm. It is easy to see that if f is m-integrable over X, then it is
m-integrable over every A € K(X) and [, fdm = [ xafdm. Every m € M(X, E)
defines a 7,-continuous linear functional on Cr.(X, E) by f — [ fdm (see [6]). Also
every ¢ € (Cre(X, E), ) is given in this way by a unique m.

As it is shown in [7], every m € M;(X, E’) defines a f,-continuous linear form
on Cy(X, E) by um(f) = [ fdm. Moreover the map m — um, from M(X, E') to
(Co(X,E),B,)", is an algebraic isomorphism. Also it is shown in [11] that every
f € Cy(X,E) is m-integrable, for every m € M, (X, E’, and the map up, is (-
continuous. Moreover, every element of (Cy(X, E), )" is given in this way for a
unique m € M, (X, E'). For all unexplained terms on locally convex spaces we refer
to [15] and [16].

Throughout the paper, unless it is stated explicitly othewise, X is a zero-
dimensional Hausdorff topological space and E a Hausdorff locally convex space.

2 Extensions of Continuous Functions

The classical Tietze’s extension Theorem states that, for a Hausdorff tropological
space X, the following are equivalent: 1) X is normal.

2) For every closed subset ¥ of X and each continuous function f :Y — R, which
is bounded (equivalently for which f(X) is relatively compact), there exists a con-
tinuous extension f : X — R such that sup{|f(z)|: z € Y} = sup{|f(z)| : ¢ € X}
In this section we will examine the extension problem when we replace R by a
complete non-Archimedean locally convex space E.

Lemma 2.1 Let E be a Hausdorff locally convez space, E # {0}. If X is a Haus-
dorff topological space such that, for any closed subsetY of X and any f & Cre(Y, E),
there exists a continuous extension f: X — E of f, then X is ultranormal.

Proof: Let A, B be disjoint closed subsets of X and let a be a nonzero element of E.
The function f: AUB — E, f(z) =0if z € A and f(z) = a if z € B is continuous.
If g is a continuous extension of f and V' a clopen neighborhood of zero in E not
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containing a, then g~*(V) is a a clopen subset of X containing A and disjoint from
B, which proves that X is ultranormal.

Assume now that Y is a closed subset of X and that either ¥ is compact or
X is ultranormal. In both cases, for every clopen in Y subset A of Y there exists
a clopen subset B of X with A = BNY. By [16], Corollary 5.23, there exists
a family (4;)ier of clopen in Y subsets of Y such that the family {xa4, : ¢ € I}
of the corresponding characteritic functions is an orthonormal basis'in “Cre(Y) for
the tropology of uniform convergence on Cr.(Y). For each ¢ € I, choose a clopen
subset A; of X whose intersection with Y is A;. Then, as it is shown in the proof of
Theorem 5.24 in [16], there exists a linear isometry S : Cre(Y) — Cre(X) such that
f(xa;) = x4, and Sg is an extension of g for every g € Cr.(Y).

Theorem 2.2 Let X,Y, (Ai)ies and S be as above and assume that E is polar and
complete. Then, there exists a linear map

T ; Cral¥, B}~ Cre X E)

such that Tf is an extension of f and |Tf|lp = |Ifllp for all f € Cre(Y,E) and
all polar p € cs(E). Moreover, if f = Y ;e XA:Si, then Tf = 3 i1 X 5,5 where
convergence of the sums is with respect to the corresponding topologies of uniform
convergence.

Proof: Claim I: If J is a finite subset of I, f = ;.7 Xx4,8i;h = Y el X 4,5i: 51 € E,
then ]l < [|fllp (and hence ||k}, = |£1],)
Indeed, given € > 0, there exists z € X with p(h(z)) > [|k|, —€. As pis polar, there
exists ¢ € E',|¢| < p, such that |¢(h(z))| > ||hll, — €. Since S (Yiesdlsedxa) =
Y ics #(si)x 4,, we have that

11l = 1S dsidxall = 1D $lsidxa,ll 2 lo(h(z)] > [l — €,

ieJ ieJ

and the claim follows.

Claim IT : If G is the subspace of all f € Cy.(Y, E) which can be written in the form
f = > icsXA;Si, where all but a finite number of the s; are zero, then G is 7,,-dense
in Csa( ¥, B,

To show this, we first observe that every f € G can be written uniquely in the form
f=icsxa;:5i. In fact assume that f = 3 ;e XA:5i = 2 ie s, XA, Wi, Where J1, J2
are finite subsets of I. We may assume that J; = Jo = J. For each ¢ € E', we
have that 3, ; #(si)xa, = 2ies @(ui)x 5, and so ¢(s;) = ¢(us), for all i € J, which
implies that s; = u; since E is Hausdorff and polar. Let now f € Cr.(Y, E) and
a polar p € cs(E). There exist a finite clopen partition {Dy,...,Dn} of ¥ and
z; € Dj such that ||f — > p_; x0.f(zk)llp < 1. Let A be a clopen subset of Y.
Then x4 = 3 ;7 @iXa; @i € K, and 50 x5 = 3 _;cr ctixa,s for all s € E. To finish
the proof of our claim, it suffices to prove that every x4s is in the closure of G in
Cr.(Y, E). So let g be a polar continuous seminorm on E and € > 0. There exists a
finite subset J of I such that |[xas— Y ;c; @ixaslls = a(s)llxa —2ies aixallg <€
which proves that x4s € G. This completes the proof of our claim.



Integration and Strict Topologies 5

Claim III: There exists a continuous linear map T : Cro(Y, E) — C,.(X, E) such
that T(f) = > ;e X 4,8 for f= > ic1 XA;5i in G. Indeed, define

T:G — CrelX, E), ZXA 53) ZX,@iSi-

iel iel

Then T-is well defined and linear. Moreover ||T'f||, = || fl|p for each f € G and each
polar p € cs(E). Since E is complete, the space Cr.(X, E), with the topology of
uniform convergence 7, is complete and hence (by Claim II) there exists a unique
continuous extension of T to all of Cr.(Y, E)). We denote also by T this extension.
If p is a polar continuous seminorm on E and f € Cr(Y, E), then there exists a net
(f5) in G converginmg to f. Thus ||Tf|l, = lim || T fs|lp = lim || fsllp = l|fllp- Since
T'fs is an extension of fs, it follows that T'f is an extension of f. This completes
the proof.

For p € ¢s(E), let My ,(X, E') be the space of all m € My(X, E') which have
a compact support, i.e. there exists a compact subset ¥ of X such that m(A4) =0
if A is disjoint from Y. Let m € My(X,E’), where p € cs(E). We will denote
also by p the unique continuous extension of p to all of E. If ¢ € E' is such that
|¢| < p, then there exists a unique continuous extension & of ¢ to all of E. For each
A € K(X), let m(A) be the continuous extension of m(A). Then /m € My(X, B
and m,(A) = mp(A). In fact, it is clear that my(A) < 7My(A). On the other hand,
let B be contained in A and let s € E,s # 0. If (B)s # 0, then there exists
u € E with p(s — u) < p(s) and |m(B)(s — u)| < |M(B)s| Now p(s) = p(u) and
|m(B)s| = |m(B)u|. It follows easily from this that 7,(A) < my(A), and the claim
follows. It is also clear that i € My ,(X, ') if m € My,(X, E').

As an application of the preceding Theorem , we get the following

Theorem 2.3 Assume that E is polar and let p be a polar continuous seminorm
on E. If we consider on Mpy(X,E') the norm |m|lp, = my(X), then Mip(X, E')
coincides with the closure of My ,(X, E') in My(X, E').

Proof: Let m € Mp(X, E') be in the closure of M ,(X, E'). Given € > 0, choose
m € My (X, E') such that |m — |, < e. Let Y be a compact support for m. If
A € K(X) is disjoint from ¥, then for B C A and s € E we have |m(B)s| = |[m(B)—
m(B)]s| < |lm — m||pp(s) and so mp(A) < ¢, which proves that m € Mp(X, E').
Conversely, let m € M;,(X, E'). Then 1 € M; (X, E'). Let Y be a compact subset
of X such that my(A) = mp(A) < € if A is disjoint from Y. Since E is complete
and polar, there exists a linear map S : Cre(Y; E) — Cre(X, E) such that, for each
f &Y, B8 [ is an extension of f and ||Sf|lq = [|f||q for each continuous polar
seminorm g on E. Define

81 Crel X, B) = Ko 8(f) = [ S(I¥)ain.

Then
lo(H)] £ mp(X)IS(FIY) e = mp(X)|| fllyp < mp(X)][[ £llp-
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Hence, there exists yu € Mp(X, E’) such that ¢(f) = [ fdu for all f € Cr(Y, E).
Then Y is a support set for p. Let m : K(X) — E',m(A) = u(A)|E. Then
m € Myp(X,E'). Finally, if |A| > 1, then ||/ — m| < €|A|. Indeed, let s € E with
p(s) <1andlet Ae K(X). If h = S((xas)|Y) and g = xas —h,theng=0on Y
and ||g|l, < 1. Let u € K,0 < || < ¢/mp(X). Theset V = {z € X : p(g(z)) > |ul}
is clopen and does not meet Y. Thus

< |plmp(X) < e

gdm’Smp(V)Se, ’ /. gam
v X\V

Therefore |m(A)s — m(A)s| = | [ gdm| < e. It follows that ||m — || < €|A|, which
completes the proof.

3 The Completion of (Cy(X, E),5,)

Let Cp x(X, E) be the space of all bounded E-valued functions on X whose restriction
to every compact subset of X is continuous. For p € cs(E), let ﬁop be the locally
convex topology on Gy (X, E) generated by the seminorms f 1R fllp, h € Bo(X).
We define 3, to be the projective limit of the topologies Bop,p € cs(E). For a
sequence (K,) of compact subsets of X and a sequence (d,,) of positive numbers, with
dp, — 00, we denote by Wi p(Kn, dn) the set (Noe,{f € Cox(X, E) : | fllnp < dn}-
As in the case of 3, (see [7], p. 193), it can be shown that each Wi p(Kn,dn) is
a [3,p-neighborhood of zero. We also have the following Theorem whose proof is
analogous to the proof of Proposition 2.6 in [7].

Theorem 3.1 The sets of the form Wi p(Kn,|An|), where (Ky) is an increasing
sequence of compact subsets of X and (An) a sequence in K with 0 < |Ap| < [Apt1] —
00, form a base at zero for Bop.

Theorem 3.2 Letp € cs(E) and let W be an absolutely convez subset of Cy (X, E).
Then

(1). If W is a B, p-neighborhood of zero, then for every r > 0 there ezist a compact
subset Y of X and e > 0 such that

{f € Con(X, E) : | fllp <7 I fllyip S €} C W

(2). If E is complete and polar and p a polar seminorm, then the converse holds in

(1).

Proof: (1). It follows from the preceding Theorem.

(2). Assume that E is complete and polar, p is a polar seminorm and the condition
holds in (1). Then, given |A| > 1, there exist an increasing sequence (K ) of compact
subsets of X and a decreasing sequence (ey,) of positive numbers such that V,NA"V C
W, where

Va={f € Cop(X,E): |fllkap S n}, V ={f € Cop(X,E) : Ifll, <1}
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Set W1 = V1 N[N (Vht1 + A"V)]. As in the proof of Theorem 2.8 in [7], we have
that W C W Let now A1 € K,0 < |A| < min{l,e1} and let A\, = A" for
n > 1. We will finish the proof by showing that Wa = Wi ,(Kp, |An]) € Wi. So
let f € W5. Then f € V1. Let m be a positive integer. There exists a linear map
T : C(Kmy1, E) — Cre(X, E) such that, for every g € C(Kmp41, E), Tg is an exten-
sion of g and ||Tgllq = ||gllq for every polar g € cs(E). Let g = T(f|Km+1),h = f—g.
Then b = 0 on Kppy1 and so h € Vipy1. Also |lgllp = | fIEm+1llp £ |A™ and so
f € Vina1 + A™V, which proves that f € W;. This clearly completes the proof.

In the following Theorem, for each p € cs(E), we will denote also by p the unique
continuous extension of p to all of E.

Theorem 3.3 If E is polar, then (Cp (X, E‘), B,) coincides with the completion of
(Cb(Xa E): 460)'

Proof: Claim I: Cy(X, E) is B,-dense in Cy(X, E). Indeed, let W be a convex (-
neighborhood of zero in Cy(X, E). Since 3, is coarser than 7, there exists p € cs(E)
such that Wi = {f € Co(X, E) : ||fllp < 1} C W. Let A € K(X) and s € E. Choose
w € E with p(s —w) < 1. Then xas — xaw € W1, which proves that x4s belongs
to the closure of Cy(X, E) in Cp(X, E). Since the space spanned by the functions
xas, A € K(X),s € E, is B,~dense in Cy(X, E), our claim follows.

Let now W be a convex (,-neighborhood of zero in Cj (X, E)andlet f € Ch (X, E).
There exists a polar continuous seminorm p on E such that Wisa Bo,p-neighborhood.
In view of the preceding Theorem, there exist a compact subset Y of X and € > 0
such that

{9 € Cor(X, E) < llgllp < I fllp: llgllyp < €} < W.

Let h € Cy(X, E) be an extension of f|Y such that ||hll, = || fllvp. Now ||f — Al <
|fllp and f = h on Y, which implies that f —h is in W. Thus Cp(X, E) is B,-dense
in Cp (X, E), which, combined with Claim I, implies that Cy(X, E) is B,-dense in
Cb,k (Xa E)
Claim IT: (Cy (X, E), B,) is complete. In fact, let (f5) be a Bo-Cauchy net. For each
z € X, (fs(z)) is a Cauchy net in E. Thus we get a function f : X — E, f(z) =
lim fs(x). Since fs — f uniformly on compact subsets of X, it follows that f|Y
is continuous for every compact set Y. Also, f is bounded. Indeed, suppose that
there exist p € cs(E) and a sequence (zn) of elements of X such that p(f(zn)) <
p(f(znt1)) — oo. The set W = {g € Cor(X,E) : p(9(zn)) < p(f(zr))/2} is
a B p-neighborhood of zero. Thus, there exists §, such that fs — fs, € W for
§ > 8,. It follows from this that p(f(zn) — fs,(zn)) < p(f(zn))/2. Thus p(fs, (zn)) =
p(f(zy)) — o0, a contradiction. By the above f € Cyx(X, E). Moreover fs — f in
Cy (X, E) which completes the proof. : - :

Corollary 3.4 If E is polar, then (Co(X, E), B) is complete iff E is complete and
every bounded E-valued f on X such that f|Y s continuous, for every compact
subset Y of X, is continuous on X.
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Theorem 3.5 If E is polar and complete, then (Cy(X, E), Bo) is complete iff it is
quasicomplete.

Proof: Assume that (Cy(X, E),B,) is quasicomplete and let f € Cyr(X, E). For
each compact subset K of X there exists fx in Cy(X, E) such that fx = f on K
and ||fllxp = ||fx|lp for each continuous polar seminorm p on E. The set {fx :
K C X,Kcompact} is contained in the uniformly bounded subset D of Cy(X, E)
consisting of all g with ||g|l, < ||f]lp for all p € cs(E), p polar. On D, B, coincides
with the topology T of compact convergence. Ordering the family K of all compact
subsets of X by set inclusion, we get a net (fx)xex in Cy(X, E) which is 1z-Cauchy
and hence B,-Cauchy. Since D is B,-bounded, there exists g € Cp(X, E) such that
the net (fx) is B,-cnvergent to g. But then g(z) = lim fx(z) = f(z) for all  and
so f = g € Cy(X, E). Now the result follows from the preceding Corollary.

Recall that a topological space Y is called a P-space if every zero set is open. In
case Y is zero-dimensional, Y is a P-space iff every K-zero set is open, equivalently
iff every countable intersection of clopen sets is clopen.

Theorem 3.6 If X is a P-space, then (Cy(X, E), Bo) is sequentially-complete iff E
is sequentially-complete.

Proof: Assume that (Cy(X, E), B5) is sequentially-complete and let (sn) be a Cauchy
sequence in E. The sequence (gn), gn(z) = sp for all z € X, is f,-Cauchy. If (gn) is
B,-cnvergent to g, then g(z) = lim s, and so E is sequentially-complete. Conversely,
let E be sequentially-complete and let (fn) be a Bo-Cauchy sequence in Cy(X, E).
Since 3, is finer than the topology of simple convergence, the limit f(z) = lim Frlz]
exists in E for each £ € X. Then f is bounded. Indeed, assume that there exists a
p € cs(E) such that || f|, = co. Choose a sequence (an) of elements of X such that
p(f(an)) > n for all n. The set

W = {g € Cy(X,E) : p(9(ar)) < n,n € N}

is a B,-neighborhood of zero. Let n, be such that fr,—fn, € W forn > n,. Forn 2 n,
we have that p(fn(axr) — fa,(ar)) < k and so p(f(ar) = fa,(ar)) < k, which implies
that p(fn,(ax)) = p(f(az)) > k, for all k, a contradiction since fn, is bounded. Also
f is continuous. In fact, let z € X and let D be a clopen neighborhood of f(z) in
E. Bach f71(D) is a clopen neighborhood of z and so V' = NV;, is a neighborhood
of x since X is a P-space. Moreover, for y € V, f(y) € D = D, which proves the
continuity of f at z. Moreover, since 3, has a base at zero consisting of sets which
are closed with respect to the topology of simple convergence, it follows that (f,) is
Bs-convegent to f, and this completes the proof.

4 Product Measures

Let Bou(X) be the family of all ¢ € B,(X) for which |¢| is upper semicontinuous.
As it is shown in [12], if |A| > 1, then for every ¢ € B,(X) there exists ¢ €
Bou(X) such that || < |¢| < Mp|. Thus G, is defined by the seminorms f —
67, ¢ € Bou(X),p € cs(E). If Y is another Hausdorff zero-dimensional topological
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space, then for each ¢ € B,y (X) and each ¢o € By (Y), the function ¢; x ¢a,
which is defined on X x ¥ by ¢1 x ¢a(z,y) = d1(z)d2(y), is in By (X x Y). Also,
given ¢ € By(X x Y), there exist ¢ € Bou(X),¢2 € Bou(Y) such that |¢; x
@3] = |¢|. Thus the topology B, on Cy(X, E) is defined by the seminorms f —
SUPreX yeY p(¢1($}¢2(y)f($,y)), where ¢1 € BOu(X)a ¢2 € Bou(Y)ap = C'S(E)'

Theorem 4.1 Let X,Y be zero-dimiensional Hausdorff topological spaces: If'G is -
the subspace of Cy(X x Y,E) spanned by the functions xaxps,A € K(X),B €
K(Y),s € E, then G is B,-dense in Cp(X x Y, E).

Proof: Let p € cs(E),¢1 € Bou(X), 02 € Bou(Y), W = {f € Cp(X x Y, E) :
p(o1(z)d2(y) f(z,y)) < 1}. Let f € Cp(X x Y, E). The set

D = {(z,y) : p(¢1(z)¢2(y) f(=, 7)) = 1/2}

is compact. If Dj, D are the projections of D on X,Y, respectively, then D C

Dy x Dy. Choose d > ||¢1]], ||¢2|| and let z € D;. There exists y € ¥ such that

(z,y) € D and hence ¢1(z) # 0. The set Z; = {z € X : |¢1(2)| < 2|¢1(2)|}

is open and contains z. Using the compactness of Dy, we find a clopen neigh-

borhood A, of z contained in Z, such that p(f(z,y) — f(z,y)) < 1/d? for all

z € Ag,y € Ds. Because of the compactness of Dp, there are z1,...,Zm in D

such that Dy C U™, Ag,. Let A1 = Ap, Apps = Agp \UE; Az, k=1,... ,m—1.

Keeping those of the Aj which are not empty, we may assume that each Ay # 0.

For each 1 < k < m, there are pairwise disjoint clopen sets Bgi,...,Bgn, of
Y, covering Dy, and yr; € Byj such that p(f(zk,y) — f(zk, vks)) < 1/(2d?) if
y € By;. Let now h = Z;n___l z;lil XAkakjf(-rkaykj)- Then h € G. Moreover,

p(o1(x)d2(y)(f(z,y) — h(z,y)) < 1 for all (z,y). To prove this, we consider the

three possible cases:

Casel. z ¢ |J7o, Ax. Then h(z,y) = 0. Also (z,y) ¢ D and so p(¢1(z)d2(y)f(z,y)) <
175,

Case II. £ € Ag,y € Ds. There exists j with y € By;. Now p(f(z,y) — f(zx,¥)) <

1/d and p(f(zx,y) — f(Tk Yij)) < gor, which implies that p(¢1(2)é2(y)(f(z.y) —

h(z,y)) < 1.

Case II. z € Ag,y € Do. Then (z,y) ¢ D and so p(¢1(z)d2(y) f(z,y)) < 1/2. If

h(z,y) # 0, then y € By; for some j, and so h(z,y) = f(zk,yx;), p(f(zr,y) —

flow yes)) & '2%3'. Since = € A, we have that |¢1(z)] < 2|¢1(zx)| and thus

p(61(x)2(y) f(zk:y)) < 2p($1(zk)B2(y) f(zr,y)) < 1 since (zx,y) € D. It follows

that p(é1(z)d2(v)h(z,y)) < 1 and our claim follows. This clearly completes the

proof.

Theorem 4.2 If p € M (X) and m € M;,(Y, E'), then there exists a unique m €
My(Xex Y, E') such that m(A x B)r= p(A)m(B) for each A € K(X).and each
B € K(Y). Moreover, m € Myp(X x Y, E’).

Proof: By [12], Theorem 4.6, there exists a linear map

w: M = (Co(X), o) @ (Cp(Y, E), Bo) = (Co(X x ¥, E), Bo)
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such that w(g® f) = g x f, for all g € Cy(X), f € Cy(Y, E), where (g x f)(z,y) =
g(z)f(y), and w : M — w(M) is a topological isomorphism. In view of the preceding
Theorem, w(M) is B,-dernse in Cp(X x Y, E). The bilinear map

T (Co(X),80) x (¥, E), 60) — K, Tlo.) = ( [ od) (/ ram)

is continuous. Hence we have a continuous linear map ¢ : M — K, ¢(g®f) = T'(g, f)-
Since w : M — w(M) is a topological isomorphism, it follows that the linear map
Y w(M) = K¢ = ¢ow™l, is Bo-continuous on w(M). As w(M) is So-dense in
Cy(X x Y, E), there is a continuous extension ¢ of ¢ to all of Cp(X x Y, E). Thus,
there exists M € My(X x Y, E) such that (k) = [ hdm for all h € Cy(X x Y, E).
In particular, for g € Cp(X),f € Cy(Y, E), we have 1(g x f) = [(g x f)dm =
([ gdu)([ fdm). If A € K(X),B € K(Y),s € E and h = xaxBs = x4 % (x89);
then )
(A x B)s = §(h) = p(A)m(B)s

and so m(A x B)) = p(A)m(B).

Let now m; € My(X x Y, E') be such that m;(4 x B)) = ,u{A)m( ) for all A €
K(X),B € K(Y). Consider the 3,-continuous linear forms $1(h) = [ hdm,¢a(h) =

[ hdmy. If G is as in the proof of the preceding Theorem, then ¢1 = g2 on G
and hence ¢1 = ¢ since G is B,-dense in Cp(X x Y, E). Thus m = my. Finally,
assume that m € M; (X, E’). There are ¢1 € Bou(X) and ¢3 € Bou(Y) such that
[ gdm| < 1]l and | [ fdm| < gafllp for all g € Co(X), € Co(Y, E). Thus, for
h = gx f, we have that | [ hdm| < [|(¢1 X ¢2)hlp- Since the map b — [|(¢1 X $2)hl|p is
a f3,-continuous seminorm on Cy(X x Y, E), it follows that | [ hdmn| < ||(¢1 x ¢2)hllp
for all h € Cy(X x Y, E). In particular, for D € K(X xY) and s € E, we have

|m(D)s| < p(s) sup |d1(z)e2(y)] < p(s)lldr x @2l

(z,y)eX xY)

Thus, m,y(X x Y) < ||é1 x ¢2|| = ||¢1]l¢2ll. This completes the proof.

Definition 4.3 For u € M,(X) and m € M(Y, E’) we define by u X m the unique
element m of My(X x Y, E') for which m(A x B) = u(A)m)B) for A€ K(X),B €
K(Y). We call this m the product of p and m.

Theorem 4.4 Let h € Cy(X x Y, E) and m € Myp(Y, E’). Then the function

g: X =K, g(x)=Lf(x,y)dm(y)

1s bounded and continuous.

Proof: Without loss of generality, we may assume that ||m|j, < 1 and ||f[l, < 1.
Let € > 0 and let D be a compact subset of ¥ such that m,(A) < e if A is disjoint
from D. Let z, € X. For each y € D there are clopen neighborhoods V,, and W),
of y and z,, respectively, such that p(f(z,2) — f(zo,y)) < eif x € W,z € V. Let
Y1,-.-,Yn in D be such that D C V = [Jj_; Vy, and let W = (;_; Wy,. Then, for
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z € W,y € V we have that p(f(z,y) — f(zo,y)) < €. It follows that , for z € W, we
have

| /V 7z, 9)dm{y) — fv F (50, y)dm(@)] < e.
Also,

| /Y | F@Am@I < I flymy(\V) <€ and | ]y o namw < e

Thus, for z € W, we have |g(x) — g(z,)| < €, which proves thast g is continuous.
Moreover ||g|| < 1.

Theorem 4.5 Let p € M, (X),m € Mp(Y,E'),m=pxm. Ifh € C(X x Y, E),
then fhd'rh = fx[f}’ h(z,y)dm(y)]du(z).

Proof: Define
v:GXxYB) =K ()= [ [ fa)an)due).

There are ¢1 € Boy(X),d2 € Bou(Y) such that for every g € Cp(X) and every
f € Cp(Y, E), we have

| / gdil < lprgll end | f fdm| < ||éafllp

Now, for all z € X, we have 1fy h(z,y)dm(y)| < SUPyey |d2(y)p(h(z, y)) and

| f [[ h(z, 3)dm(p)ldu(@)] < suplsup @) p(h(z, V)ldr(@) =  sup  |d1xda(z,v)lp(h(z,)).
X JY zeX ye¥

(zy)eXxY

Since ¢ X @2 € By (X x Y), it follows that v is B,-continuous on Cp(X x Y, E).
For A€ K(X),Be K(Y), f = xaxB)s = xa % (xBs), we have

$() = /X [ /Y xa(@)x()dm(y)ldu(z) = p(A)m(B)s

and [ fdm = p(A)m(B)s. Thus ¢(f) = [ fdm for f € G, where G is as in
Theorem 4.1. Since G is B,-dense in Cy(X x Y, E), we have that ¢(f) = [ fdm for
all f € Cp(X x Y, E). This completes the proof.

5 (VR)-Integrals

Van Rooij defined in [16] integration of functions in KX with respect to members p
of M,(X). His definition however cannot be applied for arbitrary p in M(X). Let
p € M-(X). He defined N, : X — R by N,(z) = inf{|p|(4) : z € A € K(X)}.
Then N, is upper semicontinuous and, for every e > 0, the set {z € X : Ny(z) > €}
is compact. For A € K(X) we have that |u|(A) = supye4 Nu(z). For f € KX,
he defined ||f|ln, = sup, |f(z)|Nu(z). If g is a K(X)-simple function, ie. g =
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SR akxa,, with A; € K(X),ox € K, he defined [gdu = }5_; axm(4g). Van
Rooij called an f € KX p-integrable if there exists a sequence (g ) of simple functions
such that || f — gnlln, — 0. In this case, he called integral of f the lim [ gndp. We
will denote by (VR) [ fdu the integral of f in his sense. It was proved in [10] that,
for 4 € M-(X), if f is p-integrable in our sense, then f is also integrable in Van
Rooij’s sense and the two integrals coincide.

In this section we will assume that E is a normed space and we will define the
integral (VR) [ fdm of an f in EX with respect to an m € M(X, E') = M (X, E').
Most of the aguments we will use will be analogous to the ones used in [16] where
scalar-valued measurers and functions in K* are treated. Let m € My(X,E’). As
in [16], we define

Ny : X = R, Np(z) = inf{|m|(4) : z € A € K(X)},

where |m| = my . Then Ny, is upper-semicontinuous and |m|(4) = supyc g Nm(x)
for each A € K(X).

Let S(X,E) be the space of all E-valued K(X)-simple functions on X. For
h € EX, we define ||h||n,, = supzex Nm(z)||R(z)]|-

Lemma 5.1 I[fm € My(X,E') and g =Y p_y XA, 5% € S(X, E), then

1> m(An)skl < llgllwn < lgllimll-
k=1

Proof: Without loss of generality we may assume that the sets Aj,...,Ap are
pairwise disjoint. Since, for A € K(X) and s € E, we have |m(A)s| < |[s]||m|(4) =
||s|l supze 4 Nm(z), the Lemma follows.
We have the following easily established
Lemma 5.2 Let m € My(X,E’) and f € EX. Assume that there ezists a sequence
(gn) C S(X, E) such that ||f — gnllN,. — 0. Then: (1) The limp_,co [ gndm ezists.
(2) If (hn) is another sequence in S(X, E) such that || f—hn|IN,, — 0, then limy—o0 [ gndm =

himg e [ Apdma.
(8) |limn—co [ gndm| < || fllN,, < oo

Definition 5.3 Let m € My(X,E'). A function f € EX is called (V R)-integrable
with respect to m if there ezists a sequence (gn) C S(X, E) such that || f—gn||n,, — O
In this case we define

(VR) / fdm = Ji_lggo/gndm.
Let now m € My(X, E’) and let
Sm = {A @X vxas is (VR)-integrable for all's € E'}.
As in [16], Lemma 7.3, we have the following

Lemma 5.4 Let m € My(X,E') and A C X. Then A € Sn iff, for every € > 0,
there erists B € K(X) such that N, < € on AAB = (A\ B)U(B\ 4).
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Proof: Assume that A € Sy, and let s be a non-zero element of E. Let g € (X, E)
be such that ||xas — g|ln,. <e€lis||l. I B ={z:||g(z) — s|| < |s|/}, then B € K(X)
and |lg(z) — xa(z)s|| < min{[lg(z)|l; [9(z) — 5|} < llg(z) — xa(z)s]| and so

Ixas = xBslN,, < max{llxas— gllnn, IxBS = gllvn} = lIxas = gllvn <ells];

which implies that Ny;"<'e o AAB.

Conversely, suppose that the condition is satisfied and let s be a non-zero element
of E. Choose B € K(X) such that N,,, < ¢/||s|| on AAB. Then | xas—xBs|N,, <€
which completes the proof.

We can easily prove the following

Lemma 5.5 Let m € My(X, E"). Then: (1) For each A € S, the complement A°
18 also 1n Sp,.

(2) If Ay, As € Sy, then A1 U Az and A1 N Ay are in Sp.

(8) K(X) C Sm.

(4) A € Sy, iff, for each € > 0, there exists B € K(X) such that ANXy, e = BNXm e,
where X« = {z : Nm(x) = €}.

For m € M;(X, E’), we denote by 7, the zero-dimensional topology on X having
Sy, as a base. Clearly 7, is finer than the topology 7 of X. We denote by X, the
set X equipped with the topology Tm.

Theorem 5.6 Let m € My(X,E"). Then X, ¢ is Tm-compact for each € > 0.

Proof: It suffices to show that every cover U of X, by sets in Sy, has a finite
subcover. Without loss of generality, we may assume that A; UAs isinf if Ay, As €
U. Since N,y is Tp-upper semicontinuous, Xy, ¢ is 7m-closed. Hence the family

V={(VUZ)Y:Vel,ZCX] . 2ZESy}

is downwards directed to the empty set. Since |m| is T-additive, there exist V €
U,z C Xg, . such that |m|((V U Z)°) < € and so Xjp C V U Z, which implies that
Xm,e CV, and we are done.

Since Xm ¢ is Tm-compact and 7 is Hausdorff, it follows that 7 = 7, on Xme-

Lemma 5.7 For m € My(X,E"), an A C X is T -clopen iff it is in Sp,.

Proof: Asuume that A is 7,-clopen. Then, for € > 0, the set AN X, ¢ is clopen
in in X, . for the topology induced by T, and hence for the topology induced by 7.
Since X ¢ is T-compact, there exists B € K(X) such that AN Xp = BN Xpye.
The result now follows from Lemma 5.5.

Proposition 5.8 Ifm € My(X,E') and f € EX, then f is Tm-continuous iff f|Xm,e
is T-continuous for each € > 0.

13
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Proof: Since T = Ty, o0 X e, the necessity is clear. Conversely, assume that the
condition is satisfied. If D is a clopen subset of E, then f~!(D)N Xy is clopen in
Xm.e for the topology induced on Xm e by . Since X ¢ is T-compact, there exists
A € K(X) such that AN Xme = f71(D) N Xpme. Thus f~Y(D is Tm-clopen by
Lemma 5.5 and the result follows.

Theorem 5.9 Let m € My(X, E'). For a Tm-clopen subset A of X, we define m(A)
on E by m(A)s = (VR) [ xasdm. Then : 1) m(A) € E".
2) (A) € My(Xm, E"), Im| = ||| and |m|(A) = |m|(4) for A € K(X).

Proof: 1) It follows from the inequality
(VE) [ xasdm] < suplslNn(z) < I Il
T

2) Clearly m is finitely additive. Let A be a family of m,-clopen sets which is
downwards directed to the empty set and let ¥ = Xp . For each A € A, there
exists B € K(X) such that ANY = BNY. Let

B={BecK(X):3A€ A ANY =BNY}.

Let By, By € B and let Aj, Ay € A such that 4;,NY = B;N Y. fori=12. Let
A€ A, AC A1NA; and choose B € K(X) with ANY = BNY. If D = ANB1N By,
then ANY = DNY and so D € B, which proves that B is downwards directed.
Moreover (1B = 0. Indeed assume that 2z € (\B. If z ¢ Y, then there exists
Z € K(X) containing z with |m|(Z) < € and so Z is disjoint from Y. If B € B, then
there exists 4 € A with ANY = BNY = (B\Z)NY and so B\ Z € B, a contradiction
since z ¢ B\ Z. Thus z must bein Y and so z € NB = (g BNY. Given A € A,
there exists B € B with ANY = BNY andso z € 4, i.e. z €A, a contradiction.
Thus B is downwards directed to the empty set. Since m € M;(X, E’), thefe exists
B € Bwith |m|(B) <e Let Ac Awith ANY =BNY =0.Ifz € 4, thenz ¢ ¥
and 50 Np,(X) < e. If G is a Tm-clopen set contained in A, then for each s € E we
have
17](G)s| < sup ||sl|Nom(2) < el
zelG

and so |m|(A) < e. This proves that m € M. (Xm, E') = My(Xm, E'). Finally, let
A € K(X). Clearly |m|(4) < |m|(4). On the other hand, let D be a 7m-clopen
subset of A. For each s € E, we have

m(D)s| = |(VR) [ xpsdm| < sup ||sl| Nm(z) < [ls]llml(4),
zeD

which proves that |m|(4) > |7m|(A4), and the result follows.

Proposition 5.10 If m € My(X, E'), then Np = Np,.

Proof: Since |m|(A) = |m|(4) for A € K(X), it follows that Nem < Nm. Assume
that, for some z € X, we have Ns,(z) < € < Np(z). There exists a Tp-clopen set A
containing z with |m|(4) < e. Let B € K(X) such that ANY = BNY,Y = {y:
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Nim(y) = €}. Then z € B and so |m|(B) > Np(z) > e. Let D € K(X) contained in
B and s € E be such that |m(D)s|/||s|| > e. Then |m(DNA)s|/|s|| £ |m|(DNA) <e.
Since m(D) = m(D), we have that |m(D)s| = |m(D)s — m(D N A)s| = |m(D \
A)s| < ||s|| supyepya Nm(y)- But, if y € D\ A, then Np(y) < ¢, since D C B and
ANY =BNY, and so |m(D)s| < ¢||s||, a contradiction. This completes the proof.

Lemma 5.11 Let m € My(X, E') and g € S(Xm, E). Then, for each e> Q, there:
exists h € S(X, E) such that ||g — h||n,, <e.

Proof: If g # 0, there are paiwise disjoint Tm,-clopen sets Aj,...,An, and non-
zero elements si,...,S, in E such that ¢ = Y p_; xA.Sk- Let a = min{||s;|| :
= Ly oo TR For each i, choose B; € K(X) with Ny < €/a on A;AB;. Let
Zy = Bl,ZkH = B3 \U1 1 Bi,fork=1,... ,n—1. Then Ny, < ¢/a on A,AZ;.
Let b = Y p_; Xz.Sk- Since z € |Ji—; AkAZk when g(z) # h(z), we have that
llg — Rl|ln,, < e and the result follows.

Corollary 5.12 If m € My(X,E') and f € EX, then f is (V R)-integrable with re-
spect tom iff it is (V R)-integrable with respect to m.In this case we have (VR) [ fdm =
(VR) [ fdm.

Theorem 5.13 Form € My(X,E') and f € EX the following are equivalent:

(1) f is (V R)-integrable with respect to m.

(2) For each € > 0, f|Xm, is continuous and the set D = {z : || f(z)||[Nm(z) > €} is
T -COMPACE.

Proof: (1) = (2). Choose g € (X, E) such that ||f — glln,, < €*. Let 2, € Xme
and V = {z : |lg(z) — 9(z0)|| < €}. If £ € V N X, then [|f(z) — g(z)]| < € and
so ||f(z) = f(zo)|| < €, which proves that f|Xm, ¢ is continuous. To prove that D is
Tm-compact, choose g € S(X, E) with ||g — f|ln,, <€ Then

{z: [If(@) | Nm(z) 2 e} = {z : [lg(z)[| Nom z) 2 €}

Let Ay,...,A, € K(X) be disjoint and s; non-zero elements of E such that g =
Y p=1 XA,k Then

Az : l9(@)|Nm(z) 2 €} = {2 : |sel| Nm(2) = €} = Ak [ {2 : Nm(2) 2 €/||skll} = D

Thus D = | J Dg is 7m-compact.

(2) = (1). Our hypothesis implies (in view of Proposition 5.8) that f is Tm-
continuous. Since D is T,-compact and Ny, is T,-upper semicontinuous, there exists
a positive number « such that Ny, (z) < a for each z € D . For each z € D, the set
M, ={y:||f(y) — f(z)|| < ¢/} is a Tm-clopen neighborhood of z. If M, N M, # 0,
then M, = M,. Hence there are ai, ... ,a, € D such that the sets M,, are disjoint
and cover D. Let 0 < €; < « be such that ||f(aklle1 <€, for E =1,...,n. There
are Ay € K(X) such that M,, NY = A, NY, where Y = {z : Njy(z) > €1}. Take
Z) = Ay, Zrer = Besr \UE A, for k=1,...,n—1. Then ZxNY = A, NY.
Let g = Y 71 xa.f(ax). Then ||f(z) — g(z)||[Nm(z) < € for all z. To show this,
we consider the two possible cases. Case I: z € D. Then z € M,,, for some k,
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and 5o [|f(z) — (ak) [ Nm(2) < allf(2) — Fla)ll < . Since [I£(@)[Nm(2) > ¢, we
have ||f(z)|| = ||f(ar)||- If now z € Y, then = € Z; and so g(z) = f(ax), which
implies that ||f(z) — g(z)||Nm(z) = ||f(z) — flar)||Nm(z) < €. Ifz ¢ Y, then
1 @) Nom(z) = | F(a8)|Nom(z) < 2]l 7@} < &, a contradiction.

Case II: z ¢ D. Then ||f(z)|Nm(z) < e If |f(z) — g(z)||[Nm(z) > ¢, then
llg(z)||Nm(z) > € and so = € Zj, for some k, which implies that g(z) = f(ax) and
50 || f(ax){[Nm(z) > €. Consequently, Nm(z) > €1 and thusz € Zx NY = M, NY.
But then

1f(2) — 9(2)|Nm(z) = If(z) — f(ar)[|Nm(z) < e1¢/ex <,

a contradiction. Thus ||f — g||n,, < € which proves that f is (V R)-integrable with
respect to m and we are done.

Lemma 5.14 If ¢ € E' and Y a compact subset of X, then there exists an m €
My(X, E') such that Ny (z) = ||¢|| for z €Y and Npy(z) =0 forz ¢ Y.

Proof: By [16], p. 273, thete exists a u € M, (X) such that Ny(z) = 1forz € Y and
Ny(z)=0forz ¢ Y. Let m : K(X) — E',m(A) = u(A)¢. Then m € My(X, E')
and Ny, = ||¢||Ny, which proves the Lemma.

Theorem 5.15 If f € Cyp (X, E), then f is (VR)-integrable with respect to every
m € My(X,E"). If E is polar, then the converse is also true.

Proof: Assume that f € Cy (X, F) and let m € M;(X,E'). Let o > ||f| and € > 0.
Then
D= {z:|f()[|[Nm(z) = €} C {z: Nm(z) 2 ¢/a} = Z.

The set Z is Tm-compact. Also, f is Tp-continuous (by Theorem 5.13) and Ny, is
Tm-upper semicontinuous. Thus D is a Ty,-closed subset of Z and hence D is Tm-
compact. Hence f is (V R)-integrable by Theorem 5.13.

Conversely, assume that F is polar and that the condition is satisfied. We show
first that f is bounded. Assume the contrary. Since E is polar, there exists ¢ € E’
such that sup,ecx |¢(f(z))| = co. Let |A] > 1 and choose a sequence (a,) of distinct
elements of X such that |¢(ay)| > |A|*® for all n. Define m : K(X) — E',m(4) =
(Pa,ca)®- Then m € My(X, E'). Let an € A € K(X). If k is the smallest integer
with ay € A, then, for @(s) # 0, we have

m(A)s| = | > A7(s)| = IXTFo(s)| = AT (s)),

a;EA

and so |m|(4) > |A7"|||¢||. On the other hand, suppose that a, € A € K(X). There

exists a clopen neighborhood B of a, contained in A and not containing any ag

for k < n. If now D is a clopen subset of B, then |m(D)s| < [A™"¢(s)| and so
Np(an) <dm|(B) < |A7"||¢]]. Thus Np(an) = |AT"|||4||. But then

1l 2 sup [ £ (an) [16]][A]™ = sup A7 |e(f(an)| = o0

a contradiction since f is (V R)-integrable. Thus f is bounded. Let next Y be a
compact subset of X and let ¢ be a nonzero element of E’. By the preceding Lemma,
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there exists an m € My(X, E') such that Nn(z) = ||¢|| for z € Y and Np(z) = 0
for z ¢ Y. Given € > 0, there exists g € S(X, E) such that ||f — g||n,. < ||¢]le. Let
zo, €Y and V = {z : ||g(z) — g9(zo)|| < ||¢lle}. f x € V NY, then

1£(z) = £(zo)ll < max{||f(z) — g()|I, lg(z) — g(zo)ll; l9(zo) — F(zo)l|} <€,

which proves that f|Y is continuous. This completes the proof.

Theorem 5.16 Let m € My(X,E'). If f € EX is bounded and m-integrable, then
| [ fdm| < || £l Nem-

Proof: Let € > 0. There exists a clopen partition Aj,... ,An of X such that , for
any clopen partition Dy,..., D, of X which is a refinement of A4;,..., A, and any
y; € D;, we have that | [ fdm — f;l m(D;)f(yi)| < €. Let e > 0 be such that
|fllex < e. Choose z € Ag such that sup,ea, Nm(z) < Nm(zk) + €1. Now

|/fdm = Zm(Ak)f(xkﬂ <e
k=1

Moreover

[m(Ak) f(zx)] < |m|(Ar) || f(zx)ll = [S;Il) NI f (zx) || £ [e1+Nmm (x| f (@) || < e+ N (@) | f ()]
Y k
Thus
| [ fami < max{e, mpx m(4)f (@0)]} < max{e,e-+ sup Na(@) @)
zeX
Taking € — 0, we get our result.

Theorem 5.17 Let m € My(X,E') and f € EX a bounded function. If f is both
integrable and (V R)-integrable with respect to m, then [ fdm = (VR) [ fdm.

Proof: There exists a sequence (gn) in S(X, E) such that || f — gn||n,, — 0. Since
f — gn is m-integrable and bounded, we have

| [ sam— [ il <15 = gull, =0

Thus,
]fdm:lim[gndm= (VR}/fdm.

Theorem 5.18 Let m € My(X,E'). For a bounded f € EX, the following are
equivalent:

(1)f is (V R)-integrable with respect to m.

(2) For every € > 0, f|Xm  is continuous.

(8) f is Tm-continuous.

(4) f is (V R)-integrable with respect to .

In each of the above cases, we have

(VR) / fdm = (VR) f Fdin = f Fdm.
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Proof: (2) is equivalent to (3) and (1) is equivalent to (4) by Proposition 5.8 and
Corollary 5.12. Also (1) implies (2) by Theorem 5.13. Finally, assume that (2) holds
and let d > || f||. Then

D= {z:||f(@)||Nm(z) = €} C {z : Npn(z) > ¢/d} = Z.

Since f is Tm-continuous and Np, Tm-upper semicontinuous, it follows that D is-a -
Tm-closed subset of the Ty,-compact Z and hence it is Tm-compact. By Threorem
5.13, f is (V R)-integrable with respect to m. In each of the above cases fis Tm-
continuous and so it is m-integrable and thus

(VR) f fdm = (VR) f fdm = / Ffdm

by Corollary 5.12 and Theorem 5.17. This completes the proof.

6 Q-Integrals

Theorem 6.1 Let m € M(X,E') and f € EX. Then f is m-integrable iff the
following condition is satisfied: For each € > 0, there ezists a clopen partition
{A1,... ,An} of X such that, for every z,y which are in the same Ay and any
clopen subset B of Ay, we have |m(B)(f(z) — f(y))| < e

Proof: Assume that f is m-integrable and let ¢ > 0. There exists a clopen par-
tition {A1,...,An} of X such that, for every clopen partition {Dy,... ,Dn}of X
which is a refinement of {A41,...,A,} and any choice of z; € Dy we have that
| [ fdm— ZkN=1 m(Dy) f(zx)| < €. Let now z,y be in some A; and let B be a clopen
subset of A;. We will show that |m(B)(f(z) — f(y))| < e. To prove this, we consider
the three possible cases: -

Case L. z,y € B. Then it is clear that |m(B)(f(z) — f(y))| <e.

Case IL. z,y € D = A; \ B. Assume, by way of contradiction, that |m(B)(f(z) —
Fw))] > e Since ¢ > [m(A)(f(z) — FW)| = Im(B)(£(2) — £(v)) + m(D)(f(z) -
f(¥))], we would have that |m(B)(f(z) — f(¥))| = [m(D)(f(z) = f(¥))| < ¢, a con-

tradiction.

Case III. z € B and y € D (say). Then |m(A4;)f(y) — [m(B)f(z) + m(D)f(y)]l <€
ie. [m(B)(f(z) - F@)| < e

Thus the condition is satisfied. Conversely, suppose that the condition holds and let
€ > 0. Let {4;,..., 4y} be as in the condition and let z € Ag. If {Bi,...,Bn}isa
clopen partition of X which is a refinement of {4, ..., An} and if y; € By, then for
B; C Ay, we have that |m(B;)[f(y;) — f(zx)]| < ¢, and thus | 3 k_; m(Ar)f(zk) —
z;-\;l m(B;)f(y;)| < e. This clearly proves that f is m-integrable and hence the
result follows.

Let now m € M. (X, E') and f € EX. We define Qs on X by

Qms(@) = __jnf  sup{|m(B)f(@)|: B C 4,B € K(X)}.
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Also, for A € K(X), we define

£l a@m =sup Qms(z), [Ifllem = [Ifllx.Qm-
zEA

Lemma 6.2 Ifg = 7_; xA,Sk, where A € K(X), s, € E, then | Sopo m(Ar)sk| <
19/l Q-

Proof: We may assume that the Ay are pairwise disjoint. We prove first that, for
A€ K(X),s € E,h = xas, we have that |m(A4)s| < supzec4 Qmn(z). Indeed, let
6 > supyec4 Qmn(z). For each z € A, there exists a clopen neighborhood V; of
contained in A such that |m(B)h(z)| = |m(B)s| < 0 for evey clopen set B contained
in V. Let u = ms be defined by u(B) = m(B)s, B € K(X). Then p € M;(X).
Since |u|(Vz) < 6 for every z € A, it follows that |u|(A) < 8. Thus |m(A)s| < 6,
which proves that |m(A)s| < suprea@mn(z). If hy = x4, 5k, then for z € Ay we
have Qm p, (z) = Qmg(z) and so [m(Ax)sk| < supzea,@m,g(z) which clearly com-
pletes the proof.

As we have shown in the proof of Theorem 6.1, we have the following

Theorem 6.3 Let m € M, (X,E') and let f € EX be m-integrable. Then, given
e > 0, there exists a clopen partition {A1,...,A,} of X such that for any z €

Ay and g = S7_, xa, f(zx) we have that | [ fdm — > p_; m(Ax)f(zx)| < € and
If —9gliem < e

Lemma 6.4 Let m € M, (X, E") and let p € cs(E) be such that my(X) < oco. If
f € BX is bounded, then | fllan < IIf lymo(X).

Proof: It folows from the fact that, for B € K(X), we have |m(B)f(z)| < mp(X)p(f(z)).

Lemma 6.5 Let m € M.(X,E') and let f € EX be m-integrable. Then ||fllg,, <
0.

Proof: There exists g € S(X) such that ||f — g|lg. < 1. Let p € cs(E) be such
that m,(X) < 1. Then

[ fllom < max{L,|gllg,} < max{L, mp(X)lgli}-

Lemma 6.6 Let m € M.(X,E'"). If f € EX is m-integrable, then | [ fdm| <
1 ll@m-

Proof: Given € > 0, let {41,...,A,} be a clopen plartition of X such that, for
every clopen partition {Dj,...,Dn} of X which is a refinement of {A4;,...,Ar}
and any choice of z; € Dy we have that | [ fdm — Zﬁ;l m(Dg)f(zr)| < e Let
T € Ap and g = 3 F_; xa, f(zk). Let z € Aj. There exist a clopen subset D of Ay
with z € D such that |m(B) f(z)| < Qm,s(x) + € for every clopen set B C D. Thus,
for B C D, we have

im(B)g(z)| = |m(B)f(zk)| < max{|m(B)(f(z)—f())l,Im(B)f(z)|} £ Qm,s(z)+e
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and s0 Qmg(z) < Qm,f(z) + €. Now

| f fdm| < max{e,| 3 m(AR) f (2]} < max{e, 5up Qrm g(2)} < 5up Qmp(a) + e
Bg T zeX

Since € > 0 was arbitrary, the result follows.

Lemma 6.7 Let m € M.(X,E') and f € EX. If (gn) C S(X) is such that || f —
gnllg, — O, then the limy_.o [ gndm ezists. Moreover, if (hy) is another sequence
in S(X) such that ||f — hnllg., — 0, then limpoo [ gndm = limp_.oo [ hndm.

Proof: Since | [ gndm — [ grdm| < llgn — gllq, < max{llgn — fllom, If — gtllam}-
it follows that the lim,_.c [ gndm exists. If (hy) is another sequence in S(X) such

that ||f — hnllQ,. — 0, then

| [ P / ndr] < mex{lgn — Fllges If = Bnllgn} = O-

Thus the result follows.

Definition 6.8 Let m € M, (X,E'). A function f € EX is said to be Q-integrable
with respect to m if there ezists a sequence (g,) in S(X) such that || f — gnllQ,. — 0-
In this case, the lim, oo [ gndm is called the Q-integral of f and will be denoted by

(@) J fdm.

By what we have shown above, if f € EX is m-integrable for some m €
M, (X,E"), then f is Q-integrable and [ fdm = (Q) [ fdm.

Theorem 6.9 If m € M;(X, E'), then every f € EX which is (V R)-integrable with
respect to m, is also Q-integrable and (VR) [ fdm = (Q) [ fdm.

Proof: Tt follows from the fact that, if m € M; (X, E’), then for each h € EX we
have Qma(z) € Ny p(z)p(h(z)) for every z € X.

Theorem 6.10 Assume that E is polar and let f € EX. If f is Q-integrable with
respect to m for each m € M,(X,E'), then f is bounded.

Proof: Assume that f is not bounded. Since E is polar, there exists ¢ € E' with
supgex |#(f(z))| = co. Let |A| > 1 and choose a sequence (a,) of distinct elements of
X such that |¢(f(an)) > [A|*" foralln. Let m : K(X) — E',m(A) = (3, ca X )9
Then m € M.(X,E'). Let now a, € A € K(X) and let D be a clopen subset of A
containing a, and not containing any ay for £ < n. Then

Im(D)f(an)l = 1( Y AF)(F(an))| = X $(f(an))] 2 [AI™
ar€D

This proves that @Qm ¢(an) = |A|™ and thus ||f]|g,, = oo, which implies that"f is
not Q-integrable with respect to m (in view of Lemma 6.5). This contradiction
completes the proof.

For an m € M, (X, E’), define g, on Cpo(X, E) by gm(f) = || fllom-
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Theorem 6.11 If m € M.(X, E'), then gn, is B-continuous.

Proof: It is easy to see that g, is a non-Archimedean seminorm on Cy(X, E).
To prove that g, is B,-continuous, let G € 2. There exists a decreasing net (As) of
clopen subsets of X such that G = ﬂﬁg’s"x. Let p € cs(E) be such that mp(X) < oo
and mp(As) — 0. Let » > 0 and choose 6 such that my(As) < 1/r. The closure in
B, X of theset. X.\ Ajs is disjoint from.G..Now

V={Ff €C(X,E): |Ifllo <7 Ifllzp £ 1/mp(X)} C{f € Co(X, E) : gm(f) < 1}

Indeed, let f € V. If z € As, then Qn, f(z) < mp(As)p(f(z)) < 1. Also, for z € B
and D C B, we have |m(D)f(z)| < mp(X)p(f(z)) <1 and thus ||f]lg,, < 1. This
proves that the set W = {f € Cpo(X, E) : gm(f) < 1} is a Bg-neighborhood of zero
for each G € Q and hence it is a S-neighborhood. Thus g, is - continuous.
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