Non-Archimedean Integration and Strict Topologies

A. K. KATSARAS Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece

1991 Mathematics Subject Classification: 46S10

Introduction

Let $C_b(X, E)$ be the space of all bounded continuous functions from a zero-dimensional Hausdorff topological space X to a non-Archimedean Hausdorff locally convex space E. By $C_{rc}(X, E)$ we denote the space of all $f \in C_b(X, E)$ for which f(X) is a relatively compact subset of E. In section 2 of this paper we show that, if E is polar and complete and Y a closed subset of X which is either compact or X is ultranormal, then there exists a linear map $T: C_{rc}(Y, E) \to C_{rc}(X, E)$ such that Tf is an extension of f and $||Tf||_p = ||f||_p$ for all $f \in C_{rc}(Y, E)$ and every polar continuous seminorm p on E. Using this we identify in section 3 the completion of the space $C_b(X, E)$ under the strict topology β_o when E is polar. If K(X) is the algebra of all clopen (i.e. both closed and open) subsets of X, we define in section 4 the product of certain \mathbb{K} -valued finitely-additive measures on K(X) with E'-valued measures on K(Y), where Y is another zero-dimensional topological space. Finally in sections 5 and 6 we define the so called (VR)-integral and Q-integral of functions in E^X with respect to certain measures on K(X).

1 Preliminaries

Throughout this paper, \mathbb{K} stands for a complete non-Archimedean valued field whose valuation is non-trivial. By a seminorm, on a vector space E over \mathbb{K} , we mean a non-Archimedean seminorm. Similarly, by a locally convex space we mean a non-Archimedean locally convex space over \mathbb{K} . For E a locally convex space, we denote by cs(E) the collection of all continuous seminorms on E, by E' its dual space and by \hat{E} its completion. If F is another locally convex space, then $E \otimes F$ will be the tensor product of E, F with the projective topology.

Let now X be a zero-dimensional Hausdorff topological space and E a Hausdorff locally convex space. We will denote by $\beta_o X$ the Banaschewski compactification of X (see [4]) and by $v_o X$ the N-repletion of X (N is the set of natural numbers),

2

i.e. the subspace of $\beta_o X$ consisting of all $x \in \beta_o X$ with the following property: For each sequence (V_n) of neighborhoods of x in $\beta_o X$ we have that $\bigcap V_n \cap X \neq \emptyset$. The space X is called \mathbb{N} -replete if $X = v_o X$. We will denote by $C_b(X, E)$ the space of all bounded continuous E-valued functions on X and by $C_{rc}(X, E)$ the space of all $f \in C_b(X, E)$ for which f(X) is relatively compact in E. In case $E = \mathbb{K}$, we will simply write $C_b(X)$ and $C_{rc}(X)$ respectively. For $A \subset X$, we denote by χ_A the \mathbb{K} -valued characteristic function of A in X and by $\overline{A}^{\beta_o X}$ the closure of A in $\beta_o X$. Every $f \in C_{rc}(X, E)$ has a unique continuous extension f^{β_o} to all of $\beta_o X$. For f an E-valued function on X, p a seminorm on E and $A \subset X$, we define

$$||f||_p = \sup_{x \in X} p(f(x)), \quad ||f||_{A,p} = \sup_{x \in A} p(f(x)).$$

The strict topology β_o on $C_b(X, E)$ (see [7]) is the locally convex topology generated by the seminorms $f \mapsto \|hf\|_p$, where $p \in cs(E)$ and h is in the space $B_o(X)$ of all bounded K-valued functions on X which vanish at infinity, i.e. for each $\epsilon > 0$ there exists a compact subset Y of X such that $|h(x)| < \epsilon$ if x is not in Y. Let Ω be the family of all compact subsets of $\beta_o X$ which are disjoint from X. For $H \in \Omega$, let C_H be the space of all $h \in C_{rc}(X)$ whose continuous extension h^{β_o} vanishes on H. For $p \in cs(E)$, let $\beta_{H,p}$ be the locally convex topology on $C_b(X, E)$ generated by the seminorms $f \mapsto \|hf\|_p$, $h \in C_H$. The inductive limit of the topologies $\beta_{H,p}$, as H ranges over Ω , is denoted by β_p while β is the projective limit of the topologies β_p , $p \in cs(E)$. The following Theorem is proved in [11].

Theorem 1.1 An absolutely convex subset V of $C_b(X, E)$ is a $\beta_{H,p}$ -neighborhood of zero iff the following condition is satisfied: For each r > 0, there exist $\epsilon > 0$ and a clopen subset A of X, with $\bar{A}^{\beta_o X} \cap H = \emptyset$, such that

$$\{f \in C_b(X, E) : ||f||_p \le r, ||f||_{A,p} \le \epsilon\} \subset V.$$

Let now K(X) be the algebra of all clopen, (i.e. closed and open) subsets of X. We denote by M(X, E') (see [6]) the space of all finitely-additive E'-valued measures m on K(X) for which m(K(X)) is an equicontinuous subset of E'. For each m in M(X, E') there exists $p \in cs(E)$ with $m_p(X) < \infty$, where, for $A \in K(X)$,

$$m_p(A) = \sup\{|m(B)s|/p(s) : p(s) \neq 0, A \supset B \in K(X)\}.$$

The space of all $m \in M(X, E')$ with $m_p(X) < \infty$ is denoted by $M_p(X, E')$. We denote by $M_{\tau}(X, E')$ the space of all $m \in M(X, E')$ such that, for every decreasing net (A_{δ}) of clopen subsets of X, with $\cap A_{\delta} = \emptyset$, there exists $p \in cs(E)$ such that $m_p(A_{\delta}) \to 0$. Also by $\mathcal{M}_{\tau,p}(X, E')$ we denote the space of all $m \in M_p(X, E')$ such that $m_p(A_{\delta}) \to 0$ for every decreasing net (A_{δ}) of clopen subsets of X with $\cap A_{\delta} = \emptyset$. Let

$$\mathcal{M}_{\tau}(X, E') = \bigcup_{p \in cs(E)} \mathcal{M}_{\tau, p}(X, E').$$

For $p \in cs(E)$, we denote by $M_{t,p}(X, E')$ the space of all $m \in M_p(X, E')$ for which m_p is tight, i.e. for every $\epsilon > 0$, there exists a compact subset Y of X such that

 $m_p(A) \leq \epsilon$ if A is disjoint from Y. We define

$$M_t(X, E') = \bigcup_{p \in cs(E)} M_{t,p}(X, E').$$

As it is shown in [11], $\mathcal{M}_{\tau,p}(X, E') = M_{t,p}(X, E')$. In case $E = \mathbb{K}$, we write $M(X), M_{\tau}(X)$ and $M_t(X)$ for $M(X, E'), M_{\tau}(X, E')$ and $M_t(X, E')$, respectively. Also, for $\mu \in M(X)$, we define $|\mu|(A) = \mu_p(A)$, where p = |.| is the valuation of \mathbb{K} .

Next, we recall the definition of the integral of an E-valued function f on X with respect to an $m \in M(X, E')$. For $A \in K(X)$, $A \neq \emptyset$, let \mathcal{D}_A denote the family of all $\alpha = \{A_1, \ldots, A_n : x_1, \ldots, x_n\}$, where $\{A_1, \ldots, A_n\}$ is a clopen partition of A and $x_i \in A_i$. We make \mathcal{D}_A a directed set by defining $\alpha_1 \geq \alpha_2$ iff the partition of A in α_1 is a refinement of the one in α_2 . For $f \in E^X$, $m \in M(X, E')$ and $\alpha = \{A_1, \ldots, A_n : x_1, \ldots, x_n\}$, we define $\omega_{\alpha}(f, m) = \sum_{i=1}^n m(A_i)f(x_i)$. If the $\lim_{\alpha} \omega_{\alpha}(f, m)$ exists in \mathbb{K} , we will say that f is m-integrable over A and denote this limit by $\int_A f dm$. We define the integral over the empty set to be 0. For A = X, we write simply $\int f dm$. It is easy to see that if f is m-integrable over X, then it is m-integrable over every $A \in K(X)$ and $\int_A f dm = \int \chi_A f dm$. Every $m \in M(X, E')$ defines a τ_u -continuous linear functional on $C_{rc}(X, E)$ by $f \mapsto \int f dm$ (see [6]). Also every $\phi \in (C_{rc}(X, E), \tau_u)'$ is given in this way by a unique m.

As it is shown in [7], every $m \in M_t(X, E')$ defines a β_o -continuous linear form on $C_b(X, E)$ by $u_m(f) = \int f dm$. Moreover the map $m \mapsto u_m$, from $M_t(X, E')$ to $(C_b(X, E), \beta_o)'$, is an algebraic isomorphism. Also it is shown in [11] that every $f \in C_b(X, E)$ is m-integrable, for every $m \in M_\tau(X, E')$, and the map u_m is β -continuous. Moreover, every element of $(C_b(X, E), \beta)'$ is given in this way for a unique $m \in M_\tau(X, E')$. For all unexplained terms on locally convex spaces we refer to [15] and [16].

Throughout the paper, unless it is stated explicitly othewise, X is a zero-dimensional Hausdorff topological space and E a Hausdorff locally convex space.

2 Extensions of Continuous Functions

The classical Tietze's extension Theorem states that, for a Hausdorff tropological space X, the following are equivalent: 1) X is normal.

2) For every closed subset Y of X and each continuous function $f:Y\to\mathbb{R}$, which is bounded (equivalently for which f(X) is relatively compact), there exists a continuous extension $\bar{f}:X\to\mathbb{R}$ such that $\sup\{|f(x)|:x\in Y\}=\sup\{|\bar{f}(x)|:x\in X\}$ In this section we will examine the extension problem when we replace \mathbb{R} by a complete non-Archimedean locally convex space E.

Lemma 2.1 Let E be a Hausdorff locally convex space, $E \neq \{0\}$. If X is a Hausdorff topological space such that, for any closed subset Y of X and any $f \in C_{rc}(Y, E)$, there exists a continuous extension $\bar{f}: X \to E$ of f, then X is ultranormal.

Proof: Let A, B be disjoint closed subsets of X and let a be a nonzero element of E. The function $f: A \cup B \to E$, f(x) = 0 if $x \in A$ and f(x) = a if $x \in B$ is continuous. If g is a continuous extension of f and V a clopen neighborhood of zero in E not

containing a, then $g^{-1}(V)$ is a a clopen subset of X containing A and disjoint from B, which proves that X is ultranormal.

Assume now that Y is a closed subset of X and that either Y is compact or X is ultranormal. In both cases, for every clopen in Y subset A of Y there exists a clopen subset B of X with $A = B \cap Y$. By [16], Corollary 5.23, there exists a family $(A_i)_{i \in I}$ of clopen in Y subsets of Y such that the family $\{\chi_{A_i} : i \in I\}$ of the corresponding characteritic functions is an orthonormal basis in $C_{rc}(Y)$ for the tropology of uniform convergence on $C_{rc}(Y)$. For each $i \in I$, choose a clopen subset \tilde{A}_i of X whose intersection with Y is A_i . Then, as it is shown in the proof of Theorem 5.24 in [16], there exists a linear isometry $S: C_{rc}(Y) \to C_{rc}(X)$ such that $f(\chi_{A_i}) = \chi_{\tilde{A}_i}$ and Sg is an extension of g for every $g \in C_{rc}(Y)$.

Theorem 2.2 Let $X, Y, (A_i)_{i \in I}$ and S be as above and assume that E is polar and complete. Then, there exists a linear map

$$T: C_{rc}(Y, E) \to C_{rc}(X, E)$$

such that Tf is an extension of f and $||Tf||_p = ||f||_p$ for all $f \in C_{rc}(Y, E)$ and all polar $p \in cs(E)$. Moreover, if $f = \sum_{i \in I} \chi_{A_i} s_i$, then $Tf = \sum_{i \in I} \chi_{\tilde{A}_i} s_i$ where convergence of the sums is with respect to the corresponding topologies of uniform convergence.

Proof: Claim I: If J is a finite subset of I, $f = \sum_{i \in J} \chi_{A_i} s_i$, $h = \sum_{i \in I} \chi_{\tilde{A}_i} s_i$, $s_i \in E$, then $||h||_p \le ||f||_p$ (and hence $||h||_p = ||f||_p$)
Indeed, given $\epsilon > 0$, there exists $x \in X$ with $p(h(x)) > ||h||_p - \epsilon$. As p is polar, there exists $\phi \in E'$, $|\phi| \le p$, such that $|\phi(h(x))| > ||h||_p - \epsilon$. Since $S\left(\sum_{i \in J} \phi(s_i) \chi_{A_i}\right) = \sum_{i \in J} \phi(s_i) \chi_{\tilde{A}_i}$, we have that

$$||f||_p \ge ||\sum_{i \in J} \phi(s_i)\chi_{A_i}|| = ||\sum_{i \in J} \phi(s_i)\chi_{\tilde{A}_i}|| \ge |\phi(h(x))| > ||h||_p - \epsilon,$$

and the claim follows.

Claim II: If G is the subspace of all $f \in C_{rc}(Y, E)$ which can be written in the form $f = \sum_{i \in J} \chi_{A_i} s_i$, where all but a finite number of the s_i are zero, then G is τ_u -dense in $C_{rc}(Y, E)$.

To show this, we first observe that every $f \in G$ can be written uniquely in the form $f = \sum_{i \in J} \chi_{A_i} s_i$. In fact assume that $f = \sum_{i \in J_1} \chi_{A_i} s_i = \sum_{i \in J_2} \chi_{A_i} u_i$, where J_1, J_2 are finite subsets of I. We may assume that $J_1 = J_2 = J$. For each $\phi \in E'$, we have that $\sum_{i \in J} \phi(s_i) \chi_{A_i} = \sum_{i \in J} \phi(u_i) \chi_{\tilde{A}_i}$ and so $\phi(s_i) = \phi(u_i)$, for all $i \in J$, which implies that $s_i = u_i$ since E is Hausdorff and polar. Let now $f \in C_{rc}(Y, E)$ and a polar $p \in cs(E)$. There exist a finite clopen partition $\{D_1, \ldots, D_n\}$ of Y and $x_i \in D_i$ such that $\|f - \sum_{k=1}^n \chi_{D_k} f(x_k)\|_p < 1$. Let A be a clopen subset of Y. Then $\chi_A = \sum_{i \in I} \alpha_i \chi_{A_i}$, $\alpha_i \in \mathbb{K}$, and so $\chi_A s = \sum_{i \in I} \alpha_i \chi_{A_i} s$ for all $s \in E$. To finish the proof of our claim, it suffices to prove that every $\chi_A s$ is in the closure of G in $C_{rc}(Y, E)$. So let q be a polar continuous seminorm on E and $\epsilon > 0$. There exists a finite subset G of G in that $\|\chi_A s - \sum_{i \in J} \alpha_i \chi_{A_i} s\|_q = q(s) \|\chi_A - \sum_{i \in J} \alpha_i \chi_{A_i} \|_q < \epsilon$, which proves that $\chi_A s \in G$. This completes the proof of our claim.

Claim III: There exists a continuous linear map $T: C_{rc}(Y, E) \to C_{rc}(X, E)$ such that $T(f) = \sum_{i \in I} \chi_{\tilde{A}_i} s_i$ for $f = \sum_{i \in I} \chi_{A_i} s_i$ in G. Indeed, define

$$T: G \to C_{rc}(X, E), \quad T(\sum_{i \in I} \chi_{A_i} s_i) = \sum_{i \in I} \chi_{\tilde{A}_i} s_i.$$

Then T is well defined and linear. Moreover $||Tf||_p = ||f||_p$ for each $f \in G$ and each polar $p \in cs(E)$. Since E is complete, the space $C_{rc}(X, E)$, with the topology of uniform convergence τ_u , is complete and hence (by Claim II) there exists a unique continuous extension of T to all of $C_{rc}(Y, E)$. We denote also by T this extension. If p is a polar continuous seminorm on E and $f \in C_{rc}(Y, E)$, then there exists a net (f_{δ}) in G converging to f. Thus $||Tf||_p = \lim ||Tf_{\delta}||_p = \lim ||f_{\delta}||_p = ||f||_p$. Since Tf_{δ} is an extension of f_{δ} , it follows that Tf is an extension of f. This completes the proof.

For $p \in cs(E)$, let $M_{k,p}(X, E')$ be the space of all $m \in M_p(X, E')$ which have a compact support, i.e. there exists a compact subset Y of X such that m(A) = 0 if A is disjoint from Y. Let $m \in M_p(X, E')$, where $p \in cs(E)$. We will denote also by p the unique continuous extension of p to all of \hat{E} . If $\phi \in E'$ is such that $|\phi| \leq p$, then there exists a unique continuous extension $\hat{\phi}$ of ϕ to all of \hat{E} . For each $A \in K(X)$, let $\hat{m}(A)$ be the continuous extension of m(A). Then $\hat{m} \in M_p(X, \hat{E}')$ and $\hat{m}_p(A) = m_p(A)$. In fact, it is clear that $m_p(A) \leq \hat{m}_p(A)$. On the other hand, let B be contained in A and let $s \in \hat{E}, s \neq 0$. If $\hat{m}(B)s \neq 0$, then there exists $u \in E$ with p(s-u) < p(s) and $|\hat{m}(B)(s-u)| < |\hat{m}(B)s|$ Now p(s) = p(u) and $|\hat{m}(B)s| = |\hat{m}(B)u|$. It follows easily from this that $\hat{m}_p(A) \leq m_p(A)$, and the claim follows. It is also clear that $\hat{m} \in M_{t,p}(X, \hat{E}')$ if $m \in M_{t,p}(X, E')$.

As an application of the preceding Theorem, we get the following

Theorem 2.3 Assume that E is polar and let p be a polar continuous seminorm on E. If we consider on $M_p(X, E')$ the norm $||m||_p = m_p(X)$, then $M_{t,p}(X, E')$ coincides with the closure of $M_{k,p}(X, E')$ in $M_p(X, E')$.

Proof: Let $m \in M_p(X, E')$ be in the closure of $M_{k,p}(X, E')$. Given $\epsilon > 0$, choose $\bar{m} \in M_{k,p}(X, E')$ such that $\|m - \bar{m}\|_p < \epsilon$. Let Y be a compact support for \bar{m} . If $A \in K(X)$ is disjoint from Y, then for $B \subset A$ and $s \in E$ we have $|m(B)s| = |[m(B) - \bar{m}(B)]s| \leq ||m - \bar{m}||_p p(s)$ and so $m_p(A) \leq \epsilon$, which proves that $m \in M_{t,p}(X, E')$. Conversely, let $m \in M_{t,p}(X, E')$. Then $\hat{m} \in M_{t,p}(X, \hat{E}')$. Let Y be a compact subset of X such that $m_p(A) = \bar{m}_p(A) \leq \epsilon$ if A is disjoint from Y. Since \hat{E} is complete and polar, there exists a linear map $S: C_{rc}(Y, \hat{E}) \to C_{rc}(X, \hat{E})$ such that, for each $f \in C_{rc}(Y, \hat{E}), Sf$ is an extension of f and $\|Sf\|_q = \|f\|_q$ for each continuous polar seminorm q on \hat{E} . Define

$$\phi: C_{rc}(X, \hat{E}) \to \mathbb{K}, \phi(f) = \int S(f|Y)d\hat{m}.$$

Then

$$|\phi(f)| \le m_p(X) ||S(f|Y)||_p = m_p(X) ||f||_{Y,p} \le m_p(X) ||f||_p.$$

Hence, there exists $\mu \in M_p(X, \hat{E}')$ such that $\phi(f) = \int f d\mu$ for all $f \in C_{rc}(Y, \hat{E})$. Then Y is a support set for μ . Let $\bar{m}: K(X) \to E', \bar{m}(A) = \mu(A)|E$. Then $\bar{m} \in M_{k,p}(X, E')$. Finally, if $|\lambda| > 1$, then $||\bar{m} - m|| \le \epsilon |\lambda|$. Indeed, let $s \in E$ with $p(s) \le 1$ and let $A \in K(X)$. If $h = S((\chi_A s)|Y)$ and $g = \chi_A s - h$, then g = 0 on Y and $||g||_p \le 1$. Let $\mu \in \mathbb{K}, 0 < |\mu| < \epsilon/m_p(X)$. The set $V = \{x \in X : p(g(x)) > |\mu|\}$ is clopen and does not meet Y. Thus

$$\left| \int_{V} g dm \right| \le m_p(V) \le \epsilon, \quad \left| \int_{X \setminus V} g dm \right| \le |\mu| m_p(X) \le \epsilon.$$

Therefore $|m(A)s - \bar{m}(A)s| = |\int gdm| \le \epsilon$. It follows that $||m - \bar{m}|| \le \epsilon |\lambda|$, which completes the proof.

3 The Completion of $(C_b(X, E), \beta_o)$

Let $C_{b,k}(X,E)$ be the space of all bounded E-valued functions on X whose restriction to every compact subset of X is continuous. For $p \in cs(E)$, let $\bar{\beta}_{o,p}$ be the locally convex topology on $C_{b,k}(X,E)$ generated by the seminorms $f \mapsto \|hf\|_p$, $h \in B_o(X)$. We define $\bar{\beta}_o$ to be the projective limit of the topologies $\bar{\beta}_{o,p}, p \in cs(E)$. For a sequence (K_n) of compact subsets of X and a sequence (d_n) of positive numbers, with $d_n \to \infty$, we denote by $W_{k,p}(K_n,d_n)$ the set $\bigcap_{n=1}^{\infty} \{f \in C_{b,k}(X,E) : \|f\|_{K_n,p} \leq d_n\}$. As in the case of β_o (see [7], p. 193), it can be shown that each $W_{k,p}(K_n,d_n)$ is a $\bar{\beta}_{o,p}$ -neighborhood of zero. We also have the following Theorem whose proof is analogous to the proof of Proposition 2.6 in [7].

Theorem 3.1 The sets of the form $W_{k,p}(K_n, |\lambda_n|)$, where (K_n) is an increasing sequence of compact subsets of X and (λ_n) a sequence in \mathbb{K} with $0 < |\lambda_n| < |\lambda_{n+1}| \to \infty$, form a base at zero for $\bar{\beta}_{0,p}$.

Theorem 3.2 Let $p \in cs(E)$ and let W be an absolutely convex subset of $C_{b,k}(X,E)$. Then

(1). If W is a $\bar{\beta}_{o,p}$ -neighborhood of zero, then for every r > 0 there exist a compact subset Y of X and $\epsilon > 0$ such that

$$\{f \in C_{b,k}(X,E) : ||f||_p \le r, ||f||_{Y,p} \le \epsilon\} \subset W.$$

(2). If E is complete and polar and p a polar seminorm, then the converse holds in (1).

Proof: (1). It follows from the preceding Theorem.

(2). Assume that E is complete and polar, p is a polar seminorm and the condition holds in (1). Then, given $|\lambda| > 1$, there exist an increasing sequence (K_n) of compact subsets of X and a decreasing sequence (ϵ_n) of positive numbers such that $V_n \cap \lambda^n V \subset W$, where

$$V_n = \{ f \in C_{b,k}(X,E) : \|f\|_{K_n,p} \le \epsilon_n \}, V = \{ f \in C_{b,k}(X,E) : \|f\|_p \le 1 \}.$$

Set $W_1 = V_1 \cap [\bigcap_{n=1}^{\infty} (V_{n+1} + \lambda^n V)]$. As in the proof of Theorem 2.8 in [7], we have that $W_1 \subset W$. Let now $\lambda_1 \in \mathbb{K}, 0 < |\lambda_1| < \min\{1, \epsilon_1\}$ and let $\lambda_n = \lambda^{n-1}$ for n > 1. We will finish the proof by showing that $W_2 = W_{k,p}(K_n, |\lambda_n|) \subset W_1$. So let $f \in W_2$. Then $f \in V_1$. Let m be a positive integer. There exists a linear map $T: C(K_{m+1}, E) \to C_{rc}(X, E)$ such that, for every $g \in C(K_{m+1}, E), Tg$ is an extension of g and $||Tg||_q = ||g||_q$ for every polar $q \in cs(E)$. Let $g = T(f|K_{m+1}), h = f - g$. Then h = 0 on K_{m+1} and so $h \in V_{m+1}$. Also $||g||_p = ||f|K_{m+1}||_p \le |\lambda|^m$ and so $f \in V_{m+1} + \lambda^m V$, which proves that $f \in W_1$. This clearly completes the proof.

In the following Theorem, for each $p \in cs(E)$, we will denote also by p the unique continuous extension of p to all of \hat{E} .

Theorem 3.3 If E is polar, then $(C_{b,k}(X,\hat{E}),\bar{\beta}_o)$ coincides with the completion of $(C_b(X,E),\beta_o)$.

Proof: Claim I: $C_b(X, E)$ is β_o -dense in $C_b(X, \hat{E})$. Indeed, let W be a convex β_o -neighborhood of zero in $C_b(X, \hat{E})$. Since β_o is coarser than τ_u , there exists $p \in cs(E)$ such that $W_1 = \{f \in C_b(X, \hat{E}) : ||f||_p \le 1\} \subset W$. Let $A \in K(X)$ and $s \in \hat{E}$. Choose $w \in E$ with p(s-w) < 1. Then $\chi_A s - \chi_A w \in W_1$, which proves that $\chi_A s$ belongs to the closure of $C_b(X, E)$ in $C_b(X, \hat{E})$. Since the space spanned by the functions $\chi_A s, A \in K(X), s \in \hat{E}$, is β_o -dense in $C_b(X, \hat{E})$, our claim follows.

Let now W be a convex $\bar{\beta}_o$ -neighborhood of zero in $C_{b,k}(X, \hat{E})$ and let $f \in C_{b,k}(X, \hat{E})$. There exists a polar continuous seminorm p on E such that W is a $\bar{\beta}_{o,p}$ -neighborhood. In view of the preceding Theorem, there exist a compact subset Y of X and $\epsilon > 0$ such that

$$\{g \in C_{b,k}(X,\hat{E}): \|g\|_p \leq \|f\|_p, \|g\|_{Y,p} \leq \epsilon\} \subset W.$$

Let $h \in C_b(X, \hat{E})$ be an extension of f|Y such that $||h||_p = ||f||_{Y,p}$. Now $||f - h||_p \le ||f||_p$ and f = h on Y, which implies that f - h is in W. Thus $C_b(X, \hat{E})$ is $\bar{\beta}_o$ -dense in $C_{b,k}(X,\hat{E})$, which, combined with Claim I, implies that $C_b(X,E)$ is $\bar{\beta}_o$ -dense in $C_{b,k}(X,\hat{E})$.

Claim II: $(C_{b,k}(X,\hat{E}),\bar{\beta}_o)$ is complete. In fact, let (f_δ) be a $\bar{\beta}_o$ -Cauchy net. For each $x \in X, (f_\delta(x))$ is a Cauchy net in \hat{E} . Thus we get a function $f: X \to \hat{E}, f(x) = \lim f_\delta(x)$. Since $f_\delta \to f$ uniformly on compact subsets of X, it follows that f|Y is continuous for every compact set Y. Also, f is bounded. Indeed, suppose that there exist $p \in cs(E)$ and a sequence (x_n) of elements of X such that $p(f(x_n)) < p(f(x_{n+1})) \to \infty$. The set $W = \{g \in C_{b,k}(X,\hat{E}) : p(g(x_n)) \le p(f(x_n))/2\}$ is a $\bar{\beta}_{o,p}$ -neighborhood of zero. Thus, there exists δ_o such that $f_\delta - f_{\delta_o} \in W$ for $\delta \ge \delta_o$. It follows from this that $p(f(x_n) - f_{\delta_o}(x_n)) \le p(f(x_n))/2$. Thus $p(f_{\delta_o}(x_n)) = p(f(x_n)) \to \infty$, a contradiction. By the above $f \in C_{b,k}(X,\hat{E})$. Moreover $f_\delta \to f$ in $C_{b,k}(X,\hat{E})$, which completes the proof.

Corollary 3.4 If E is polar, then $(C_b(X, E), \beta_o)$ is complete iff E is complete and every bounded E-valued f on X such that f|Y is continuous, for every compact subset Y of X, is continuous on X.

Theorem 3.5 If E is polar and complete, then $(C_b(X, E), \beta_o)$ is complete iff it is quasicomplete.

Proof: Assume that $(C_b(X, E), \beta_o)$ is quasicomplete and let $f \in C_{b,k}(X, E)$. For each compact subset K of X there exists f_K in $C_b(X, E)$ such that $f_K = f$ on K and $||f||_{K,p} = ||f_K||_p$ for each continuous polar seminorm p on E. The set $\{f_K : K \subset X, K \text{compact}\}$ is contained in the uniformly bounded subset D of $C_b(X, E)$ consisting of all g with $||g||_p \le ||f||_p$ for all $p \in cs(E)$, p polar. On D, β_o coincides with the topology τ_k of compact convergence. Ordering the family K of all compact subsets of X by set inclusion, we get a net $(f_K)_{K \in K}$ in $C_b(X, E)$ which is τ_k -Cauchy and hence β_o -Cauchy. Since D is β_o -bounded, there exists $g \in C_b(X, E)$ such that the net (f_K) is β_o -convergent to g. But then $g(x) = \lim_{K \to \infty} f_K(x) = f(x)$ for all x and so $f = g \in C_b(X, E)$. Now the result follows from the preceding Corollary.

Recall that a topological space Y is called a P-space if every zero set is open. In case Y is zero-dimensional, Y is a P-space iff every \mathbb{K} -zero set is open, equivalently iff every countable intersection of clopen sets is clopen.

Theorem 3.6 If X is a P-space, then $(C_b(X, E), \beta_o)$ is sequentially-complete iff E is sequentially-complete.

Proof: Assume that $(C_b(X, E), \beta_o)$ is sequentially-complete and let (s_n) be a Cauchy sequence in E. The sequence $(g_n), g_n(x) = s_n$ for all $x \in X$, is β_o -Cauchy. If (g_n) is β_o -convergent to g, then $g(x) = \lim s_n$ and so E is sequentially-complete. Conversely, let E be sequentially-complete and let (f_n) be a β_o -Cauchy sequence in $C_b(X, E)$. Since β_o is finer than the topology of simple convergence, the limit $f(x) = \lim f_n(x)$ exists in E for each $x \in X$. Then f is bounded. Indeed, assume that there exists a $p \in cs(E)$ such that $||f||_p = \infty$. Choose a sequence (a_n) of elements of X such that $p(f(a_n)) > n$ for all n. The set

$$W = \{g \in C_b(X, E) : p(g(a_n)) \le n, n \in \mathbb{N}\}\$$

is a β_o -neighborhood of zero. Let n_o be such that $f_n-f_{n_o}\in W$ for $n\geq n_o$. For $n\geq n_o$ we have that $p(f_n(a_k)-f_{n_o}(a_k))\leq k$ and so $p(f(a_k)-f_{n_o}(a_k))\leq k$, which implies that $p(f_{n_o}(a_k))=p(f(a_k))>k$, for all k, a contradiction since f_{n_o} is bounded. Also f is continuous. In fact, let $x\in X$ and let D be a clopen neighborhood of f(x) in E. Each $f_n^{-1}(D)$ is a clopen neighborhood of f and so f and so f is a neighborhood of f at f is a f is a f in f is a neighborhood of f at f in f is a f in f in f is a f in f in

4 Product Measures

Let $B_{ou}(X)$ be the family of all $\phi \in B_o(X)$ for which $|\phi|$ is upper semicontinuous. As it is shown in [12], if $|\lambda| > 1$, then for every $\phi \in B_o(X)$ there exists $\psi \in B_{ou}(X)$ such that $|\psi| \leq |\phi| \leq \lambda \psi$. Thus β_o is defined by the seminorms $f \mapsto \|\phi f\|, \phi \in B_{ou}(X), p \in cs(E)$. If Y is another Hausdorff zero-dimensional topological

space, then for each $\phi_1 \in B_{ou}(X)$ and each $\phi_2 \in B_{ou}(Y)$, the function $\phi_1 \times \phi_2$, which is defined on $X \times Y$ by $\phi_1 \times \phi_2(x,y) = \phi_1(x)\phi_2(y)$, is in $B_{ou}(X \times Y)$. Also, given $\phi \in B_{ou}(X \times Y)$, there exist $\phi_1 \in B_{ou}(X)$, $\phi_2 \in B_{ou}(Y)$ such that $|\phi_1 \times \phi_2| \geq |\phi|$. Thus the topology β_o on $C_b(X, E)$ is defined by the seminorms $f \mapsto \sup_{x \in X, u \in Y} p(\phi_1(x)\phi_2(y)f(x,y))$, where $\phi_1 \in B_{ou}(X)$, $\phi_2 \in B_{ou}(Y)$, $p \in cs(E)$.

Theorem 4.1 Let X, Y be zero-dimensional Hausdorff topological spaces: If G is the subspace of $C_b(X \times Y, E)$ spanned by the functions $\chi_{A \times B} s, A \in K(X), B \in K(Y), s \in E$, then G is β_o -dense in $C_b(X \times Y, E)$.

Proof: Let $p \in cs(E), \phi_1 \in B_{ou}(X), \phi_2 \in B_{ou}(Y), W = \{f \in C_b(X \times Y, E) : p(\phi_1(x)\phi_2(y)f(x,y)) \le 1\}$. Let $f \in C_b(X \times Y, E)$. The set

$$D = \{(x, y) : p(\phi_1(x)\phi_2(y)f(x, y)) \ge 1/2\}$$

is compact. If D_1, D_2 are the projections of D on X, Y, respectively, then $D \subset D_1 \times D_2$. Choose $d > \|\phi_1\|, \|\phi_2\|$ and let $x \in D_1$. There exists $y \in Y$ such that $(x,y) \in D$ and hence $\phi_1(x) \neq 0$. The set $Z_x = \{z \in X : |\phi_1(z)| < 2|\phi_1(x)|\}$ is open and contains x. Using the compactness of D_2 , we find a clopen neighborhood A_x of x contained in Z_x such that $p(f(z,y)-f(x,y)) < 1/d^2$ for all $z \in A_x, y \in D_2$. Because of the compactness of D_1 , there are x_1, \ldots, x_m in D_1 such that $D_1 \subset \bigcup_{k=1}^m A_{x_k}$. Let $A_1 = A_{x_1}, A_{k+1} = A_{x_{k+1}} \setminus \bigcup_{i=1}^k A_{x_i}, k = 1, \ldots, m-1$. Keeping those of the A_k which are not empty, we may assume that each $A_k \neq \emptyset$. For each $1 \leq k \leq m$, there are pairwise disjoint clopen sets $B_{k_1}, \ldots, B_{k_{n_k}}$ of Y, covering D_2 , and $y_{kj} \in B_{kj}$ such that $p(f(x_k, y) - f(x_k, y_{kj})) < 1/(2d^2)$ if $y \in B_{kj}$. Let now $h = \sum_{k=1}^m \sum_{j=1}^{n_k} \chi_{A_k \times B_{kj}} f(x_k, y_{kj})$. Then $h \in G$. Moreover, $p(\phi_1(x)\phi_2(y)(f(x,y) - h(x,y)) \leq 1$ for all (x,y). To prove this, we consider the three possible cases:

Case I. $x \notin \bigcup_{k=1}^m A_k$. Then h(x,y) = 0. Also $(x,y) \notin D$ and so $p(\phi_1(x)\phi_2(y)f(x,y)) \le 1/2$.

Case II. $x \in A_k, y \in D_2$. There exists j with $y \in B_{kj}$. Now $p(f(x,y) - f(x_k,y)) < 1/d^2$ and $p(f(x_k,y) - f(x_k,y_{kj})) < \frac{1}{2d^2}$, which implies that $p(\phi_1(x)\phi_2(y)(f(x,y) - h(x,y)) \le 1$.

Case III. $x \in A_k, y \notin D_2$. Then $(x,y) \notin D$ and so $p(\phi_1(x)\phi_2(y)f(x,y)) \le 1/2$. If $h(x,y) \ne 0$, then $y \in B_{kj}$ for some j, and so $h(x,y) = f(x_k,y_{kj}), p(f(x_k,y) - f(x_k,y_{kj})) \le \frac{1}{2d^2}$. Since $x \in A_{x_k}$, we have that $|\phi_1(x)| < 2|\phi_1(x_k)|$ and thus $p(\phi_1(x)\phi_2(y)f(x_k,y)) \le 2p(\phi_1(x_k)\phi_2(y)f(x_k,y)) \le 1$ since $(x_k,y) \notin D$. It follows that $p(\phi_1(x)\phi_2(y)h(x,y)) \le 1$ and our claim follows. This clearly completes the proof.

Theorem 4.2 If $\mu \in M_{\tau}(X)$ and $m \in M_{t,p}(Y, E')$, then there exists a unique $\bar{m} \in M_t(X_t \times Y, E')$ such that $\bar{m}(A \times B)_x = \mu(A)m(B)$ for each $A \in K(X_t)$ and each $B \in K(Y)$. Moreover, $\bar{m} \in M_{t,p}(X \times Y, E')$.

Proof: By [12], Theorem 4.6, there exists a linear map

$$\omega: M = (C_b(X), \beta_o) \otimes (C_b(Y, E), \beta_o) \rightarrow (C_b(X \times Y, E), \beta_o)$$

such that $\omega(g \otimes f) = g \times f$, for all $g \in C_b(X)$, $f \in C_b(Y, E)$, where $(g \times f)(x, y) = g(x)f(y)$, and $\omega : M \to \omega(M)$ is a topological isomorphism. In view of the preceding Theorem, $\omega(M)$ is β_o -dernse in $C_b(X \times Y, E)$. The bilinear map

$$T: (C_b(X), \beta_o) \times (C_b(Y, E), \beta_o) \to \mathbb{K}, \quad T(g, f) = \left(\int g d\mu\right) \left(\int f dm\right)$$

is continuous. Hence we have a continuous linear map $\phi: M \to \mathbb{K}$, $\phi(g \otimes f) = T(g, f)$. Since $\omega: M \to \omega(M)$ is a topological isomorphism, it follows that the linear map $\psi: \omega(M) \to \mathbb{K}$, $\psi = \phi \circ \omega^{-1}$, is β_o -continuous on $\omega(M)$. As $\omega(M)$ is β_o -dense in $C_b(X \times Y, E)$, there is a continuous extension $\tilde{\psi}$ of ψ to all of $C_b(X \times Y, E)$. Thus, there exists $\bar{m} \in M_t(X \times Y, E)$ such that $\tilde{\psi}(h) = \int h d\bar{m}$ for all $h \in C_b(X \times Y, E)$. In particular, for $g \in C_b(X)$, $f \in C_b(Y, E)$, we have $\psi(g \times f) = \int (g \times f) d\bar{m} = (\int g d\mu)(\int f dm)$. If $A \in K(X)$, $B \in K(Y)$, $S \in E$ and $S \in K(X)$.

$$\bar{m}(A \times B)s = \tilde{\psi}(h) = \mu(A)m(B)s$$

and so $\bar{m}(A \times B) = \mu(A)m(B)$.

Let now $m_1 \in M_t(X \times Y, E')$ be such that $m_1(A \times B) = \mu(A)m(B)$ for all $A \in K(X)$, $B \in K(Y)$. Consider the β_o -continuous linear forms $\phi_1(h) = \int h d\bar{m}$, $\phi_2(h) = \int h dm_1$. If G is as in the proof of the preceding Theorem, then $\phi_1 = \phi_2$ on G and hence $\phi_1 = \phi_2$ since G is β_o -dense in $C_b(X \times Y, E)$. Thus $\bar{m} = m_1$. Finally, assume that $m \in M_{t,p}(X, E')$. There are $\phi_1 \in B_{ou}(X)$ and $\phi_2 \in B_{ou}(Y)$ such that $|\int g dm| \leq ||\phi_1 g||$ and $|\int f dm| \leq ||\phi_2 f||_p$ for all $g \in C_b(X)$, $f \in C_b(Y, E)$. Thus, for $h = g \times f$, we have that $|\int h d\bar{m}| \leq ||(\phi_1 \times \phi_2)h||_p$. Since the map $h \mapsto ||(\phi_1 \times \phi_2)h||_p$ is a β_o -continuous seminorm on $C_b(X \times Y, E)$, it follows that $|\int h d\bar{m}| \leq ||(\phi_1 \times \phi_2)h||_p$ for all $h \in C_b(X \times Y, E)$. In particular, for $D \in K(X \times Y)$ and $s \in E$, we have

$$|\bar{m}(D)s| \le p(s) \sup_{(x,y) \in X \times Y)} |\phi_1(x)\phi_2(y)| \le p(s) ||\phi_1 \times \phi_2||.$$

Thus, $\bar{m}_p(X \times Y) \leq \|\phi_1 \times \phi_2\| = \|\phi_1\|\phi_2\|$. This completes the proof.

Definition 4.3 For $\mu \in M_{\tau}(X)$ and $m \in M_{t}(Y, E')$, we define by $\mu \times m$ the unique element \bar{m} of $M_{t}(X \times Y, E')$ for which $\bar{m}(A \times B) = \mu(A)m)B)$ for $A \in K(X), B \in K(Y)$. We call this \bar{m} the product of μ and m.

Theorem 4.4 Let $h \in C_b(X \times Y, E)$ and $m \in M_{t,p}(Y, E')$. Then the function

$$g: X \to \mathbb{K}, \quad g(x) = \int_Y f(x, y) dm(y)$$

is bounded and continuous.

Proof: Without loss of generality, we may assume that $||m||_p \leq 1$ and $||f||_p \leq 1$. Let $\epsilon > 0$ and let D be a compact subset of Y such that $m_p(A) < \epsilon$ if A is disjoint from D. Let $x_o \in X$. For each $y \in D$ there are clopen neighborhoods V_y and W_y of y and x_o , respectively, such that $p(f(x, z) - f(x_o, y)) < \epsilon$ if $x \in W_y, z \in V_y$. Let y_1, \ldots, y_n in D be such that $D \subset V = \bigcup_{k=1}^n V_{y_k}$ and let $W = \bigcap_{k=1}^n W_{y_k}$. Then, for $x \in W, y \in V$ we have that $p(f(x,y) - f(x_o,y)) \le \epsilon$. It follows that , for $x \in W$, we have

$$\left| \int_{V} f(x, y) dm(y) - \int_{V} f(x_{o}, y) dm(y) \right| \leq \epsilon.$$

Also,

$$|\int_{Y\setminus V} f(x,y)dm(y)| \leq ||f||_p m_p(Y\setminus V) \leq \epsilon \text{ and } |\int_{Y\setminus V} f(x_o,y)dm(y)| \leq \epsilon.$$

Thus, for $x \in W$, we have $|g(x) - g(x_o)| \le \epsilon$, which proves that g is continuous. Moreover $||g|| \le 1$.

Theorem 4.5 Let $\mu \in M_{\tau}(X), m \in M_{t,p}(Y, E'), \bar{m} = \mu \times m$. If $h \in C_b(X \times Y, E)$, then $\int h d\bar{m} = \int_X [\int_Y h(x, y) dm(y)] d\mu(x)$.

Proof: Define

$$\psi: C_b(X \times Y, E) \to \mathbb{K}, \quad \psi(f) = \int_X \int_Y f(x, y) dm(y) d\mu(x).$$

There are $\phi_1 \in B_{ou}(X), \phi_2 \in B_{ou}(Y)$ such that for every $g \in C_b(X)$ and every $f \in C_b(Y, E)$, we have

$$\left| \int g d\mu \right| \le \|\phi_1 g\|$$
 and $\left| \int f dm \right| \le \|\phi_2 f\|_p$.

Now, for all $x \in X$, we have $|\int_Y h(x,y) dm(y)| \le \sup_{y \in Y} |\phi_2(y)| p(h(x,y))$ and

$$|\int_X [\int_Y h(x,y) dm(y)] d\mu(x)| \leq \sup_{x \in X} [\sup_{y \in Y} |\phi_2(y)| p(h(x,y))] |\phi_1(x)| = \sup_{(x,y) \in X \times Y} |\phi_1 \times \phi_2(x,y)| p(h(x,y)).$$

Since $\phi_1 \times \phi_2 \in B_{ou}(X \times Y)$, it follows that ψ is β_o -continuous on $C_b(X \times Y, E)$. For $A \in K(X)$, $B \in K(Y)$, $f = \chi_{A \times B} s = \chi_A \times (\chi_B s)$, we have

$$\psi(f) = \int_{X} \left[\int_{Y} \chi_{A}(x) \chi_{B}(y) dm(y) \right] d\mu(x) = \mu(A) m(B) s$$

and $\int f d\bar{m} = \mu(A)m(B)s$. Thus $\psi(f) = \int f d\bar{m}$ for $f \in G$, where G is as in Theorem 4.1. Since G is β_o -dense in $C_b(X \times Y, E)$, we have that $\psi(f) = \int f d\bar{m}$ for all $f \in C_b(X \times Y, E)$. This completes the proof.

5 (VR)-Integrals

Van Rooij defined in [16] integration of functions in \mathbb{K}^X with respect to members μ of $M_{\tau}(X)$. His definition however cannot be applied for arbitrary μ in M(X). Let $\mu \in M_{\tau}(X)$. He defined $N_{\mu}: X \to \mathbb{R}$ by $N_{\mu}(x) = \inf\{|\mu|(A): x \in A \in K(X)\}$. Then N_{μ} is upper semicontinuous and, for every $\epsilon > 0$, the set $\{x \in X: N_{\mu}(x) \geq \epsilon\}$ is compact. For $A \in K(X)$ we have that $|\mu|(A) = \sup_{x \in A} N_{\mu}(x)$. For $f \in \mathbb{K}^X$, he defined $||f||_{N_{\mu}} = \sup_{x \in A} |f(x)|_{N_{\mu}}(x)$. If g is a K(X)-simple function, i.e. $g = \sum_{x \in A} |f(x)|_{N_{\mu}}(x)$

 $\sum_{k=1}^{n} \alpha_k \chi_{A_k}$, with $A_k \in K(X)$, $\alpha_k \in \mathbb{K}$, he defined $\int g d\mu = \sum_{k=1}^{n} \alpha_k m(A_k)$. Van Rooij called an $f \in \mathbb{K}^X \mu$ -integrable if there exists a sequence (g_n) of simple functions such that $||f - g_n||_{N_\mu} \to 0$. In this case, he called integral of f the $\lim \int g_n d\mu$. We will denote by $(VR) \int f d\mu$ the integral of f in his sense. It was proved in [10] that, for $\mu \in M_\tau(X)$, if f is μ -integrable in our sense, then f is also integrable in Van Rooij's sense and the two integrals coincide.

In this section we will assume that E is a normed space and we will define the integral $(VR) \int f dm$ of an f in E^X with respect to an $m \in M_t(X, E') = M_\tau(X, E')$. Most of the aguments we will use will be analogous to the ones used in [16] where scalar-valued measurers and functions in \mathbb{K}^X are treated. Let $m \in M_t(X, E')$. As in [16], we define

$$N_m: X \to \mathbb{R}, N_m(x) = \inf\{|m|(A): x \in A \in K(X)\},\$$

where $|m| = m_{\|.\|}$. Then N_m is upper-semicontinuous and $|m|(A) = \sup_{x \in A} N_m(x)$ for each $A \in K(X)$.

Let S(X, E) be the space of all E-valued K(X)-simple functions on X. For $h \in E^X$, we define $||h||_{N_m} = \sup_{x \in X} N_m(x) ||h(x)||$.

Lemma 5.1 If $m \in M_t(X, E')$ and $g = \sum_{k=1}^n \chi_{A_k} s_k \in S(X, E)$, then

$$|\sum_{k=1}^{n} m(A_k)s_k| \le ||g||_{N_m} \le ||g|| ||m||.$$

Proof: Without loss of generality we may assume that the sets A_1, \ldots, A_n are pairwise disjoint. Since, for $A \in K(X)$ and $s \in E$, we have $|m(A)s| \leq ||s|| |m|(A) = ||s|| \sup_{x \in A} N_m(x)$, the Lemma follows.

We have the following easily established

Lemma 5.2 Let $m \in M_t(X, E')$ and $f \in E^X$. Assume that there exists a sequence $(g_n) \subset S(X, E)$ such that $||f - g_n||_{N_m} \to 0$. Then: (1) The $\lim_{n \to \infty} \int g_n dm$ exists. (2) If (h_n) is another sequence in S(X, E) such that $||f - h_n||_{N_m} \to 0$, then $\lim_{n \to \infty} \int g_n dm = \lim_{n \to \infty} \int h_n dm$.

(3) $|\lim_{n\to\infty} \int g_n dm| \le ||f||_{N_m} < \infty.$

Definition 5.3 Let $m \in M_t(X, E')$. A function $f \in E^X$ is called (VR)-integrable with respect to m if there exists a sequence $(g_n) \subset S(X, E)$ such that $||f - g_n||_{N_m} \to 0$. In this case we define

 $(VR) \int f dm = \lim_{n \to \infty} \int g_n dm.$

Let now $m \in M_t(X, E')$ and let

$$\mathcal{S}_m = \{ A \subset X : \chi_A s \text{ is (VR)-integrable for all } s \in E \}.$$

As in [16], Lemma 7.3, we have the following

Lemma 5.4 Let $m \in M_t(X, E')$ and $A \subset X$. Then $A \in \mathcal{S}_m$ iff, for every $\epsilon > 0$, there exists $B \in K(X)$ such that $N_m < \epsilon$ on $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

Proof: Assume that $A \in \mathcal{S}_m$ and let s be a non-zero element of E. Let $g \in S(X, E)$ be such that $\|\chi_A s - g\|_{N_m} < \epsilon \|s\|$. If $B = \{x : \|g(x) - s\| < \|s\|\}$, then $B \in K(X)$ and $\|g(x) - \chi_B(x)s\| \le \min\{\|g(x)\|, \|g(x) - s\|\} \le \|g(x) - \chi_A(x)s\|$ and so

$$\|\chi_{A}s - \chi_{B}s\|_{N_{m}} \le \max\{\|\chi_{A}s - g\|_{N_{m}}, \|\chi_{B}s - g\|_{N_{m}}\} = \|\chi_{A}s - g\|_{N_{m}} < \epsilon \|s\|,$$

which implies that $N_m < \epsilon$ on $A\Delta B$.

Conversely, suppose that the condition is satisfied and let s be a non-zero element of E. Choose $B \in K(X)$ such that $N_m < \epsilon/\|s\|$ on $A\Delta B$. Then $\|\chi_A s - \chi_B s\|_{N_m} \le \epsilon$ which completes the proof.

We can easily prove the following

Lemma 5.5 Let $m \in M_t(X, E')$. Then: (1) For each $A \in \mathcal{S}_m$, the complement A^c is also in \mathcal{S}_m .

- (2) If $A_1, A_2 \in \mathcal{S}_m$, then $A_1 \cup A_2$ and $A_1 \cap A_2$ are in \mathcal{S}_m .
- (3) $K(X) \subset \mathcal{S}_m$.
- (4) $A \in \mathcal{S}_m$ iff, for each $\epsilon > 0$, there exists $B \in K(X)$ such that $A \cap X_{m,\epsilon} = B \cap X_{m,\epsilon}$, where $X_{m,\epsilon} = \{x : N_m(x) \ge \epsilon\}$.

For $m \in M_t(X, E')$, we denote by τ_m the zero-dimensional topology on X having S_m as a base. Clearly τ_m is finer than the topology τ of X. We denote by X_m the set X equipped with the topology τ_m .

Theorem 5.6 Let $m \in M_t(X, E')$. Then $X_{m,\epsilon}$ is τ_m -compact for each $\epsilon > 0$.

Proof: It suffices to show that every cover \mathcal{U} of $X_{m,\epsilon}$ by sets in \mathcal{S}_m has a finite subcover. Without loss of generality, we may assume that $A_1 \cup A_2$ is in \mathcal{U} if $A_1, A_2 \in \mathcal{U}$. Since N_m is τ_m -upper semicontinuous, $X_{m,\epsilon}$ is τ_m -closed. Hence the family

$$\mathcal{V} = \{ (V \cup Z)^c : V \in \mathcal{U}, Z \subset X_{m,\epsilon}^c, Z \in \mathcal{S}_m \}$$

is downwards directed to the empty set. Since |m| is τ -additive, there exist $V \in \mathcal{U}, Z \subset X_{m,\epsilon}^c$ such that $|m|((V \cup Z)^c) < \epsilon$ and so $X_{m,\epsilon} \subset V \cup Z$, which implies that $X_{m,\epsilon} \subset V$, and we are done.

Since $X_{m,\epsilon}$ is τ_m -compact and τ is Hausdorff, it follows that $\tau = \tau_m$ on $X_{m,\epsilon}$.

Lemma 5.7 For $m \in M_t(X, E')$, an $A \subset X$ is τ_m -clopen iff it is in S_m .

Proof: Assume that A is τ_m -clopen. Then, for $\epsilon > 0$, the set $A \cap X_{m,\epsilon}$ is clopen in in $X_{m,\epsilon}$ for the topology induced by τ_m and hence for the topology induced by τ . Since $X_{m,\epsilon}$ is τ -compact, there exists $B \in K(X)$ such that $A \cap X_{m,\epsilon} = B \cap X_{m,\epsilon}$. The result now follows from Lemma 5.5.

Proposition 5.8 If $m \in M_t(X, E')$ and $f \in E^X$, then f is τ_m -continuous iff $f|X_{m,\epsilon}$ is τ -continuous for each $\epsilon > 0$.

Proof: Since $\tau = \tau_m$ on $X_{m,\epsilon}$, the necessity is clear. Conversely, assume that the condition is satisfied. If D is a clopen subset of E, then $f^{-1}(D) \cap X_{m,\epsilon}$ is clopen in $X_{m,\epsilon}$ for the topology induced on $X_{m,\epsilon}$ by τ . Since $X_{m,\epsilon}$ is τ -compact, there exists $A \in K(X)$ such that $A \cap X_{m,\epsilon} = f^{-1}(D) \cap X_{m,\epsilon}$. Thus $f^{-1}(D)$ is τ_m -clopen by Lemma 5.5 and the result follows.

Theorem 5.9 Let $m \in M_t(X, E')$. For a τ_m -clopen subset A of X, we define $\bar{m}(A)$ on E by $\bar{m}(A)s = (VR) \int \chi_A s dm$. Then : 1) $\bar{m}(A) \in E'$. 2) $\bar{m}(A) \in M_t(X_m, E')$, $||m| = ||\bar{m}||$ and $|\bar{m}|(A) = |m|(A)$ for $A \in K(X)$.

Proof: 1) It follows from the inequality

$$|(VR) \int \chi_A s dm| \le \sup_{x \in A} ||s|| N_m(x) \le ||m|| ||s||.$$

2) Clearly \bar{m} is finitely additive. Let \mathcal{A} be a family of τ_m -clopen sets which is downwards directed to the empty set and let $Y = X_{m,\epsilon}$. For each $A \in \mathcal{A}$, there exists $B \in K(X)$ such that $A \cap Y = B \cap Y$. Let

$$\mathcal{B} = \{ B \in K(X) : \exists A \in \mathcal{A}, A \cap Y = B \cap Y \}.$$

Let $B_1, B_2 \in \mathcal{B}$ and let $A_1, A_2 \in \mathcal{A}$ such that $A_i \cap Y = B_i \cap Y$, for i = 1, 2. Let $A \in \mathcal{A}, A \subset A_1 \cap A_2$ and choose $B \in K(X)$ with $A \cap Y = B \cap Y$. If $D = A \cap B_1 \cap B_2$, then $A \cap Y = D \cap Y$ and so $D \in \mathcal{B}$, which proves that \mathcal{B} is downwards directed. Moreover $\bigcap \mathcal{B} = \emptyset$. Indeed assume that $x \in \bigcap \mathcal{B}$. If $x \notin Y$, then there exists $Z \in K(X)$ containing x with $|m|(Z) < \epsilon$ and so Z is disjoint from Y. If $B \in \mathcal{B}$, then there exists $A \in \mathcal{A}$ with $A \cap Y = B \cap Y = (B \setminus Z) \cap Y$ and so $B \setminus Z \in \mathcal{B}$, a contradiction since $x \notin B \setminus Z$. Thus x must be in Y and so $x \in \cap \mathcal{B} = \bigcap_{B \in \mathcal{B}} B \cap Y$. Given $A \in \mathcal{A}$, there exists $B \in \mathcal{B}$ with $A \cap Y = B \cap Y$ and so $x \in A$, i.e. $x \in \bigcap \mathcal{A}$, a contradiction. Thus \mathcal{B} is downwards directed to the empty set. Since $m \in M_t(X, E')$, there exists $B \in \mathcal{B}$ with $|m|(B) < \epsilon$. Let $A \in \mathcal{A}$ with $A \cap Y = B \cap Y = \emptyset$. If $x \in A$, then $x \notin Y$ and so $N_m(X) < \epsilon$. If G is a τ_m -clopen set contained in A, then for each $s \in E$ we have

$$|\bar{m}|(G)s| \le \sup_{x \in G} ||s||N_m(x) \le \epsilon ||s||$$

and so $|\bar{m}|(A) \leq \epsilon$. This proves that $\bar{m} \in M_{\tau}(X_m, E') = M_t(X_m, E')$. Finally, let $A \in K(X)$. Clearly $|m|(A) \leq |\bar{m}|(A)$. On the other hand, let D be a τ_m -clopen subset of A. For each $s \in E$, we have

$$|\bar{m}(D)s| = |(VR) \int \chi_D s dm| \le \sup_{x \in D} ||s|| N_m(x) \le ||s|| |m|(A),$$

which proves that $|m|(A) \ge |\bar{m}|(A)$, and the result follows.

Proposition 5.10 If $m \in M_t(X, E')$, then $N_{\bar{m}} = N_m$.

Proof: Since $|m|(A) = |\bar{m}|(A)$ for $A \in K(X)$, it follows that $N_{\bar{m}} \leq N_m$. Assume that, for some $x \in X$, we have $N_{\bar{m}}(x) < \epsilon < N_m(x)$. There exists a τ_m -clopen set A containing x with $|\bar{m}|(A) < \epsilon$. Let $B \in K(X)$ such that $A \cap Y = B \cap Y, Y = \{y : x \in X\}$

 $N_m(y) \geq \epsilon\}$. Then $x \in B$ and so $|m|(B) \geq N_m(x) > \epsilon$. Let $D \in K(X)$ contained in B and $s \in E$ be such that $|m(D)s|/||s|| > \epsilon$. Then $|\bar{m}(D \cap A)s|/||s|| \leq |\bar{m}|(D \cap A) < \epsilon$. Since $m(D) = \bar{m}(D)$, we have that $|m(D)s| = |m(D)s - \bar{m}(D \cap A)s| = |\bar{m}(D \setminus A)s| \leq ||s|| \sup_{y \in D \setminus A} N_m(y)$. But, if $y \in D \setminus A$, then $N_m(y) < \epsilon$, since $D \subset B$ and $A \cap Y = B \cap Y$, and so $|m(D)s| \leq \epsilon ||s||$, a contradiction. This completes the proof.

Lemma 5.11 Let $m \in M_t(X, E')$ and $g \in S(X_m, E)$. Then, for each $\epsilon > 0$, there exists $h \in S(X, E)$ such that $||g - h||_{N_m} \le \epsilon$.

Proof: If $g \neq 0$, there are paiwise disjoint τ_m -clopen sets A_1, \ldots, A_n and nonzero elements s_1, \ldots, s_n in E such that $g = \sum_{k=1}^n \chi_{A_k} s_k$. Let $\alpha = \min\{\|s_i\| : i = 1, \ldots, n\}$. For each i, choose $B_i \in K(X)$ with $N_m < \epsilon/\alpha$ on $A_i \Delta B_i$. Let $Z_1 = B_1, Z_{k+1} = B_{k+1} \setminus \bigcup_{i=1}^k B_i$, for $k = 1, \ldots, n-1$. Then $N_m < \epsilon/\alpha$ on $A_i \Delta Z_i$. Let $h = \sum_{k=1}^n \chi_{Z_k} s_k$. Since $x \in \bigcup_{k=1}^n A_k \Delta Z_k$ when $g(x) \neq h(x)$, we have that $\|g - h\|_{N_m} \leq \epsilon$ and the result follows.

Corollary 5.12 If $m \in M_t(X, E')$ and $f \in E^X$, then f is (VR)-integrable with respect to m iff it is (VR)-integrable with respect to \bar{m} . In this case we have $(VR) \int f d\bar{m} = (VR) \int f d\bar{m}$.

Theorem 5.13 For $m \in M_t(X, E')$ and $f \in E^X$ the following are equivalent:

(1) f is (VR)-integrable with respect to m.

(2) For each $\epsilon > 0$, $f|X_{m,\epsilon}$ is continuous and the set $D = \{x : ||f(x)||N_m(x) \ge \epsilon\}$ is τ_m -compact.

Proof: (1) \Rightarrow (2). Choose $g \in S(X, E)$ such that $||f - g||_{N_m} < \epsilon^2$. Let $x_o \in X_{m,\epsilon}$ and $V = \{x : ||g(x) - g(x_o)|| < \epsilon\}$. If $x \in V \cap X_{m,\epsilon}$, then $||f(x) - g(x)|| \le \epsilon$ and so $||f(x) - f(x_o)|| \le \epsilon$, which proves that $f|X_{m,\epsilon}$ is continuous. To prove that D is τ_m -compact, choose $g \in S(X, E)$ with $||g - f||_{N_m} < \epsilon$. Then

$${x: ||f(x)||N_m(x) \ge \epsilon} = {x: ||g(x)||N_m(x) \ge \epsilon}.$$

Let $A_1, \ldots, A_n \in K(X)$ be disjoint and s_i non-zero elements of E such that $g = \sum_{k=1}^n \chi_{A_k} s_k$. Then

$$A_k \bigcap \{x : \|g(x)\|N_m(x) \ge \epsilon\} = \{x : \|s_k\|N_m(x) \ge \epsilon\} = A_k \bigcap \{x : N_m(x) \ge \epsilon/\|s_k\|\} = D_k.$$

Thus $D = \bigcup D_k$ is τ_m -compact.

(2) \Rightarrow (1). Our hypothesis implies (in view of Proposition 5.8) that f is τ_m -continuous. Since D is τ_m -compact and N_m is τ_m -upper semicontinuous, there exists a positive number α such that $N_m(x) < \alpha$ for each $x \in D$. For each $x \in D$, the set $M_x = \{y : \|f(y) - f(x)\| < \epsilon/\alpha\}$ is a τ_m -clopen neighborhood of x. If $M_x \cap M_y \neq \emptyset$, then $M_x = M_y$. Hence there are $a_1, \ldots, a_n \in D$ such that the sets M_{a_k} are disjoint and cover D. Let $0 < \epsilon_1 < \alpha$ be such that $\|f(a_k\|\epsilon_1 < \epsilon, \text{ for } k = 1, \ldots, n$. There are $A_k \in K(X)$ such that $M_{a_k} \cap Y = A_k \cap Y$, where $Y = \{x : N_m(x) \geq \epsilon_1\}$. Take $Z_1 = A_1, Z_{k+1} = B_{k+1} \setminus \bigcup_{i=1}^k A_i, \text{ for } k = 1, \ldots, n-1$. Then $Z_k \cap Y = A_k \cap Y$. Let $g = \sum_{k=1}^n \chi_{A_k} f(a_k)$. Then $\|f(x) - g(x)\|N_m(x) \leq \epsilon$ for all x. To show this, we consider the two possible cases. Case I: $x \in D$. Then $x \in M_{a_k}$, for some k,

and so $||f(x) - f(a_k)||N_m(x) \le \alpha ||f(x) - f(a_k)|| < \epsilon$. Since $||f(x)||N_m(x) \ge \epsilon$, we have $||f(x)|| = ||f(a_k)||$. If now $x \in Y$, then $x \in Z_k$ and so $g(x) = f(a_k)$, which implies that $||f(x) - g(x)||N_m(x) = ||f(x) - f(a_k)||N_m(x) < \epsilon$. If $x \notin Y$, then $||f(x)||N_m(x) = ||f(a_k)||N_m(x) \le \epsilon_1 ||f(a_k)|| < \epsilon$, a contradiction.

Case II: $x \notin D$. Then $||f(x)||N_m(x) < \epsilon$. If $||f(x) - g(x)||N_m(x) > \epsilon$, then $||g(x)||N_m(x) > \epsilon$ and so $x \in Z_k$, for some k, which implies that $g(x) = f(a_k)$ and so $||f(a_k)||N_m(x) > \epsilon$. Consequently, $N_m(x) > \epsilon_1$ and thus $x \in Z_k \cap Y = M_{a_k} \cap Y$. But then

$$||f(x) - g(x)||N_m(x) = ||f(x) - f(a_k)||N_m(x) < \epsilon_1 \epsilon/\alpha < \epsilon,$$

a contradiction. Thus $||f - g||_{N_m} \le \epsilon$ which proves that f is (VR)-integrable with respect to m and we are done.

Lemma 5.14 If $\phi \in E'$ and Y a compact subset of X, then there exists an $m \in M_t(X, E')$ such that $N_m(x) = \|\phi\|$ for $x \in Y$ and $N_m(x) = 0$ for $x \notin Y$.

Proof: By [16], p. 273, thete exists a $\mu \in M_{\tau}(X)$ such that $N_{\mu}(x) = 1$ for $x \in Y$ and $N_{\mu}(x) = 0$ for $x \notin Y$. Let $m : K(X) \to E', m(A) = \mu(A)\phi$. Then $m \in M_t(X, E')$ and $N_m = \|\phi\|N_{\mu}$, which proves the Lemma.

Theorem 5.15 If $f \in C_{b,k}(X, E)$, then f is (VR)-integrable with respect to every $m \in M_t(X, E')$. If E is polar, then the converse is also true.

Proof: Assume that $f \in C_{b,k}(X,E)$ and let $m \in M_t(X,E')$. Let $\alpha > ||f|$ and $\epsilon > 0$. Then

$$D = \{x : ||f(x)||N_m(x) \ge \epsilon\} \subset \{x : N_m(x) \ge \epsilon/\alpha\} = Z.$$

The set Z is τ_m -compact. Also, f is τ_m -continuous (by Theorem 5.13) and N_m is τ_m -upper semicontinuous. Thus D is a τ_m -closed subset of Z and hence D is τ_m -compact. Hence f is (VR)-integrable by Theorem 5.13.

Conversely, assume that E is polar and that the condition is satisfied. We show first that f is bounded. Assume the contrary. Since E is polar, there exists $\phi \in E'$ such that $\sup_{x \in X} |\phi(f(x))| = \infty$. Let $|\lambda| > 1$ and choose a sequence (a_n) of distinct elements of X such that $|\phi(a_n)| > |\lambda|^{2n}$ for all n. Define $m: K(X) \to E', m(A) = (\sum_{a_n \in A})\phi$. Then $m \in M_t(X, E')$. Let $a_n \in A \in K(X)$. If k is the smallest integer with $a_k \in A$, then, for $\phi(s) \neq 0$, we have

$$|m(A)s| = |\sum_{a_i \in A} \lambda^{-i} \phi(s)| = |\lambda^{-k} \phi(s)| \ge |\lambda^{-n} \phi(s)|,$$

and so $|m|(A) \ge |\lambda^{-n}| ||\phi||$. On the other hand, suppose that $a_n \in A \in K(X)$. There exists a clopen neighborhood B of a_n contained in A and not containing any a_k for k < n. If now D is a clopen subset of B, then $|m(D)s| \le |\lambda^{-n}\phi(s)|$ and so $N_m(a_n) \le |m|(B) \le |\lambda^{-n}| ||\phi||$. Thus $N_m(a_n) = |\lambda^{-n}| ||\phi||$. But then

$$||f||_{N_m} \ge \sup_n ||f(a_n)|| ||\phi|| ||\lambda|^{-n} \ge \sup_n |\lambda|^{-n} |\phi(f(a_n))| = \infty,$$

a contradiction since f is (VR)-integrable. Thus f is bounded. Let next Y be a compact subset of X and let ϕ be a nonzero element of E'. By the preceding Lemma,

there exists an $m \in M_t(X, E')$ such that $N_m(x) = \|\phi\|$ for $x \in Y$ and $N_m(x) = 0$ for $x \notin Y$. Given $\epsilon > 0$, there exists $g \in S(X, E)$ such that $\|f - g\|_{N_m} < \|\phi\|_{\epsilon}$. Let $x_o \in Y$ and $V = \{x : \|g(x) - g(x_o)\| < \|\phi\|_{\epsilon}\}$. If $x \in V \cap Y$, then

$$||f(x) - f(x_o)|| \le \max\{||f(x) - g(x)||, ||g(x) - g(x_o)||, ||g(x_o) - f(x_o)||\} \le \epsilon,$$

which proves that f|Y is continuous. This completes the proof.

Theorem 5.16 Let $m \in M_t(X, E')$. If $f \in E^X$ is bounded and m-integrable, then $|\int f dm| \leq ||f||_{N_m}$.

Proof: Let $\epsilon > 0$. There exists a clopen partition A_1, \ldots, A_n of X such that , for any clopen partition D_1, \ldots, D_n of X which is a refinement of A_1, \ldots, A_n and any $y_i \in D_i$, we have that $|\int f dm - \sum_{i=1}^N m(D_i) f(y_i)| < \epsilon$. Let $\epsilon_1 > 0$ be such that $||f||\epsilon_1 < \epsilon$. Choose $x_k \in A_k$ such that $\sup_{x \in A_k} N_m(x) < N_m(x_k) + \epsilon_1$. Now

$$|\int fdm - \sum_{k=1}^{n} m(A_k)f(x_k)| < \epsilon.$$

Moreover

 $|m(A_k)f(x_k)| \le |m|(A_k)||f(x_k)|| = \sup_{y \in A_k} N_m(y)||f(x_k)|| \le [\epsilon_1 + N_m(x_k)]||f(x_k)|| \le \epsilon + N_m(x_k)||f(x_k)||.$

Thus

$$|\int f dm| \leq \max\{\epsilon, \max_{k} |m(A_k)f(x_k)|\} \leq \max\{\epsilon, \epsilon + \sup_{x \in X} N_m(x) ||f(x)||\}.$$

Taking $\epsilon \to 0$, we get our result.

Theorem 5.17 Let $m \in M_t(X, E')$ and $f \in E^X$ a bounded function. If f is both integrable and (VR)-integrable with respect to m, then $\int f dm = (VR) \int f dm$.

Proof: There exists a sequence (g_n) in S(X, E) such that $||f - g_n||_{N_m} \to 0$. Since $f - g_n$ is m-integrable and bounded, we have

$$|\int fdm - \int g_n dm| \le ||f - g_n||_{N_m} \to 0.$$

Thus.

$$\int f dm = \lim \int g_n dm = (VR) \int f dm.$$

Theorem 5.18 Let $m \in M_t(X, E')$. For a bounded $f \in E^X$, the following are equivalent:

- (1) f is (VR)-integrable with respect to m.
- (2) For every $\epsilon > 0$, $f|X_{m,\epsilon}$ is continuous.
- (3) f is τ_m -continuous.
- (4) f is (VR)-integrable with respect to \bar{m} .

In each of the above cases, we have

$$(VR)\int fdm=(VR)\int fd\bar{m}=\int fdm.$$

Proof: (2) is equivalent to (3) and (1) is equivalent to (4) by Proposition 5.8 and Corollary 5.12. Also (1) implies (2) by Theorem 5.13. Finally, assume that (2) holds and let d > ||f||. Then

$$D = \{x : ||f(x)|| N_m(x) \ge \epsilon\} \subset \{x : N_m(x) \ge \epsilon/d\} = Z.$$

Since f is τ_m -continuous and N_m τ_m -upper semicontinuous, it follows that D is a τ_m -closed subset of the τ_m -compact Z and hence it is τ_m -compact. By Threorem 5.13, f is (VR)-integrable with respect to m. In each of the above cases f is τ_m -continuous and so it is m-integrable and thus

$$(VR)\int fdm=(VR)\int fd\bar{m}=\int fdm$$

by Corollary 5.12 and Theorem 5.17. This completes the proof.

6 Q-Integrals

Theorem 6.1 Let $m \in M(X, E')$ and $f \in E^X$. Then f is m-integrable iff the following condition is satisfied: For each $\epsilon > 0$, there exists a clopen partition $\{A_1, \ldots, A_n\}$ of X such that, for every x, y which are in the same A_k and any clopen subset B of A_k we have $|m(B)(f(x) - f(y))| \le \epsilon$.

Proof: Assume that f is m-integrable and let $\epsilon > 0$. There exists a clopen partition $\{A_1, \ldots, A_n\}$ of X such that, for every clopen partition $\{D_1, \ldots, D_N\}$ of X which is a refinement of $\{A_1, \ldots, A_n\}$ and any choice of $x_k \in D_k$ we have that $|\int f dm - \sum_{k=1}^N m(D_k) f(x_k)| \le \epsilon$. Let now x, y be in some A_i and let B be a clopen subset of A_i . We will show that $|m(B)(f(x) - f(y))| \le \epsilon$. To prove this, we consider the three possible cases:

Case I. $x, y \in B$. Then it is clear that $|m(B)(f(x) - f(y))| \le \epsilon$.

Case II. $x, y \in D = A_i \setminus B$. Assume, by way of contradiction, that $|m(B)(f(x) - f(y))| > \epsilon$. Since $\epsilon \ge |m(A_i)(f(x) - f(y))| = |m(B)(f(x) - f(y))| + m(D)(f(x) - f(y))|$, we would have that $|m(B)(f(x) - f(y))| = |m(D)(f(x) - f(y))| \le \epsilon$, a contradiction.

Case III. $x \in B$ and $y \in D$ (say). Then $|m(A_i)f(y) - [m(B)f(x) + m(D)f(y)]| \le \epsilon$, i.e. $|m(B)(f(x) - f(y))| \le \epsilon$.

Thus the condition is satisfied. Conversely, suppose that the condition holds and let $\epsilon > 0$. Let $\{A_1, \ldots, A_n\}$ be as in the condition and let $x_k \in A_k$. If $\{B_1, \ldots, B_N\}$ is a clopen partition of X which is a refinement of $\{A_1, \ldots, A_n\}$ and if $y_j \in B_j$, then for $B_j \subset A_k$, we have that $|m(B_j)[f(y_j) - f(x_k)]| \le \epsilon$, and thus $|\sum_{k=1}^n m(A_k)f(x_k) - \sum_{j=1}^N m(B_j)f(y_j)| \le \epsilon$. This clearly proves that f is m-integrable and hence the result follows.

Let now $m \in M_{\tau}(X, E')$ and $f \in E^X$. We define $Q_{m,f}$ on X by

$$Q_{m,f}(x) = \inf_{x \in A \in K(X)} \sup\{|m(B)f(x)| : B \subset A, B \in K(X)\}.$$

Also, for $A \in K(X)$, we define

$$||f||_{A,Q_m} = \sup_{x \in A} Q_{m,f}(x), \quad ||f||_{Q_m} = ||f||_{X,Q_m}.$$

Lemma 6.2 If $g = \sum_{k=1}^{n} \chi_{A_k} s_k$, where $A_k \in K(X)$, $s_k \in E$, then $|\sum_{k=1}^{n} m(A_k) s_k| \le ||g||_{Q_m}$.

Proof: We may assume that the A_k are pairwise disjoint. We prove first that, for $A \in K(X)$, $s \in E$, $h = \chi_A s$, we have that $|m(A)s| \leq \sup_{x \in A} Q_{m,h}(x)$. Indeed, let $\theta > \sup_{x \in A} Q_{m,h}(x)$. For each $x \in A$, there exists a clopen neighborhood V_x of x contained in A such that $|m(B)h(x)| = |m(B)s| < \theta$ for every clopen set B contained in V_x . Let $\mu = ms$ be defined by $\mu(B) = m(B)s$, $B \in K(X)$. Then $\mu \in M_{\tau}(X)$. Since $|\mu|(V_x) < \theta$ for every $x \in A$, it follows that $|\mu|(A) \leq \theta$. Thus $|m(A)s| \leq \theta$, which proves that $|m(A)s| \leq \sup_{x \in A} Q_{m,h}(x)$. If $h_k = \chi_{A_k} s_k$, then for $x \in A_k$ we have $Q_{m,h_k}(x) = Q_{m,g}(x)$ and so $|m(A_k)s_k| \leq \sup_{x \in A_k} Q_{m,g}(x)$ which clearly completes the proof.

As we have shown in the proof of Theorem 6.1, we have the following

Theorem 6.3 Let $m \in M_{\tau}(X, E')$ and let $f \in E^X$ be m-integrable. Then, given $\epsilon > 0$, there exists a clopen partition $\{A_1, \ldots, A_n\}$ of X such that for any $x_k \in A_k$ and $g = \sum_{k=1}^n \chi_{A_k} f(x_k)$ we have that $|\int f dm - \sum_{k=1}^n m(A_k) f(x_k)| \le \epsilon$ and $||f - g||_{Q_m} \le \epsilon$.

Lemma 6.4 Let $m \in M_{\tau}(X, E')$ and let $p \in cs(E)$ be such that $m_p(X) < \infty$. If $f \in E^X$ is bounded, then $||f||_{Q_m} \leq ||f||_p m_p(X)$.

Proof: It follows from the fact that, for $B \in K(X)$, we have $|m(B)f(x)| \leq m_p(X)p(f(x))$.

Lemma 6.5 Let $m \in M_{\tau}(X, E')$ and let $f \in E^X$ be m-integrable. Then $||f||_{Q_m} < \infty$.

Proof: There exists $g \in S(X)$ such that $||f - g||_{Q_m} \le 1$. Let $p \in cs(E)$ be such that $m_p(X) \le 1$. Then

$$\|f\|_{Q_m} \leq \max\{1, \|g\|_{Q_m}\} \leq \max\{1, m_p(X) \|g\|_p\}.$$

Lemma 6.6 Let $m \in M_{\tau}(X, E')$. If $f \in E^X$ is m-integrable, then $|\int f dm| \leq ||f||_{Q_m}$.

Proof: Given $\epsilon > 0$, let $\{A_1, \ldots, A_n\}$ be a clopen plantition of X such that, for every clopen partition $\{D_1, \ldots, D_N\}$ of X which is a refinement of $\{A_1, \ldots, A_n\}$ and any choice of $x_k \in D_k$ we have that $|\int f dm - \sum_{k=1}^N m(D_k) f(x_k)| \le \epsilon$. Let $x_k \in A_k$ and $g = \sum_{k=1}^n \chi_{A_k} f(x_k)$. Let $x \in A_k$. There exist a clopen subset D of A_k with $x \in D$ such that $|m(B)f(x)| < Q_{m,f}(x) + \epsilon$ for every clopen set $B \subset D$. Thus, for $B \subset D$, we have

 $|m(B)g(x)| = |m(B)f(x_k)| \le \max\{|m(B)(f(x_k) - f(x))|, |m(B)f(x)|\} \le Q_{m,f}(x) + \epsilon$

and so $Q_{m,q}(x) \leq Q_{m,f}(x) + \epsilon$. Now

$$\left| \int f dm \right| \le \max\{\epsilon, \left| \sum_{k=1}^{n} m(A_k) f(x_k) \right| \le \max\{\epsilon, \sup_{x} Q_{m,g}(x) \} \le \sup_{x \in X} Q_{m,p}(x) + \epsilon.$$

Since $\epsilon > 0$ was arbitrary, the result follows.

Lemma 6.7 Let $m \in M_{\tau}(X, E')$ and $f \in E^X$. If $(g_n) \subset S(X)$ is such that $||f - g_n||_{Q_m} \to 0$, then the $\lim_{n \to \infty} \int g_n dm$ exists. Moreover, if (h_n) is another sequence in S(X) such that $||f - h_n||_{Q_m} \to 0$, then $\lim_{n \to \infty} \int g_n dm = \lim_{n \to \infty} \int h_n dm$.

Proof: Since $|\int g_n dm - \int g_k dm| \le ||g_n - g_k||_{Q_m} \le \max\{||g_n - f||_{Q_m}, ||f - g_k||_{Q_m}\}$, it follows that the $\lim_{n\to\infty} \int g_n dm$ exists. If (h_n) is another sequence in S(X) such that $||f - h_n||_{Q_m} \to 0$, then

$$|\int g_n dm - \int h_n dm| \le \max\{||g_n - f||_{Q_m}, ||f - h_n||_{Q_m}\} \to 0.$$

Thus the result follows.

Definition 6.8 Let $m \in M_{\tau}(X, E')$. A function $f \in E^X$ is said to be Q-integrable with respect to m if there exists a sequence (g_n) in S(X) such that $||f - g_n||_{Q_m} \to 0$. In this case, the $\lim_{n\to\infty} \int g_n dm$ is called the Q-integral of f and will be denoted by $(Q) \int f dm$.

By what we have shown above, if $f \in E^X$ is m-integrable for some $m \in M_{\tau}(X, E')$, then f is Q-integrable and $\int f dm = (Q) \int f dm$.

Theorem 6.9 If $m \in M_t(X, E')$, then every $f \in E^X$ which is (VR)-integrable with respect to m, is also Q-integrable and $(VR) \int f dm = (Q) \int f dm$.

Proof: It follows from the fact that, if $m \in M_{t,p}(X, E')$, then for each $h \in E^X$ we have $Q_{m,h}(x) \leq N_{m,p}(x)p(h(x))$ for every $x \in X$.

Theorem 6.10 Assume that E is polar and let $f \in E^X$. If f is Q-integrable with respect to m for each $m \in M_{\tau}(X, E')$, then f is bounded.

Proof: Assume that f is not bounded. Since E is polar, there exists $\phi \in E'$ with $\sup_{x \in X} |\phi(f(x))| = \infty$. Let $|\lambda| > 1$ and choose a sequence (a_n) of distinct elements of X such that $|\phi(f(a_n))| > |\lambda|^{2n}$ for all n. Let $m: K(X) \to E', m(A) = (\sum_{a_n \in A} \lambda^{-n}) \phi$. Then $m \in M_{\tau}(X, E')$. Let now $a_n \in A \in K(X)$ and let D be a clopen subset of A containing a_n and not containing any a_k for k < n. Then

$$|m(D)f(a_n)| = |(\sum_{a_k \in D} \lambda^{-k})\phi(f(a_n))| = |\lambda|^{-n}|\phi(f(a_n))| \ge |\lambda|^n.$$

This proves that $Q_{m,f}(a_n) \geq |\lambda|^n$ and thus $||f||_{Q_m} = \infty$, which implies that f is not Q-integrable with respect to m (in view of Lemma 6.5). This contradiction completes the proof.

For an $m \in M_{\tau}(X, E')$, define q_m on $C_b(X, E)$ by $q_m(f) = ||f||_{Q_m}$.

Theorem 6.11 If $m \in M_{\tau}(X, E')$, then q_m is β -continuous.

Proof: It is easy to see that q_m is a non-Archimedean seminorm on $C_b(X, E)$. To prove that q_m is β_o -continuous, let $G \in \Omega$. There exists a decreasing net (A_δ) of clopen subsets of X such that $G = \bigcap \bar{A}_\delta^{\beta_o X}$. Let $p \in cs(E)$ be such that $m_p(X) < \infty$ and $m_p(A_\delta) \to 0$. Let r > 0 and choose δ such that $m_p(A_\delta) < 1/r$. The closure in $\beta_o X$ of the set $X \setminus A_\delta$ is disjoint from G. Now

$$V = \{ f \in C_b(X, E) : ||f||_p \le r, ||f||_{B,p} \le 1/m_p(X) \} \subset \{ f \in C_b(X, E) : q_m(f) \le 1 \}.$$

Indeed, let $f \in V$. If $x \in A_{\delta}$, then $Q_{m,f}(x) \leq m_p(A_{\delta})p(f(x)) \leq 1$. Also, for $x \in B$ and $D \subset B$, we have $|m(D)f(x)| \leq m_p(X)p(f(x)) \leq 1$ and thus $||f||_{Q_m} \leq 1$. This proves that the set $W = \{f \in C_b(X, E) : q_m(f) \leq 1\}$ is a β_G -neighborhood of zero for each $G \in \Omega$ and hence it is a β -neighborhood. Thus q_m is β - continuous.

References

- [1] J. Aguayo, N de Grande-de Kimpe and S. Navarro, Strict locally convex topologies on BC(X, K), in: P-adic Functional Analysis, edided by W. H. Schikhof, C. Perez- Garcia and J. Kakol, Lecture Notes in Pure and Applied Mathematics, vol. 192, Marcel Dekker, New York (1997), 1-9.
- [2] J. Aguayo, N de Grande-de Kimpe and S. Navarro, Zero-dimensional pseudo-compact and ultraparacompact spaces, in: P-adic Functional Analysis, edided by W. H. Schikhof, C. Perez- Garcia and J. Kakol, Lecture Notes in Pure and Applied Mathematics, vol. 192, Marcel Dekker, New York (1997), 11-17.
- [3] J. Aguayo, N de Grande-de Kimpe and S. Navarro, Strict topologies and duals in spaces of functions, in: P-adic Functional Analysis, edided by J. Kakol, N. de Grande-de Kimpe and C. Perez- Garcia, Lecture Notes in Pure and Applied Mathematics, vol. 207, Marcel Dekker, New York (1999), 1-10.
- [4] G. Bachman, E. Beckenstein, L. Narici and S. Warner, Rings of continuous functions with values in a topological field, Trans. Amer. Math. Soc. 204 (1975), 91-112.
- [5] N. de Grande-de Kimpe and S. Navarro, Non-Archimedean nuclearity and spaces of continuous functions, Indag. Math., N.S. 2 (2) (1991), 201-206.
- [6] A. K. Katsaras, Duals of non-Archimedean vector-valued function spaces, Bull. Greek Math. Soc. 22 (1981), 25-43.
- [7] A. K. Katsaras, The strict topology in non-Archimedean vector-valued function spaces, Proc. Kon. Ned. Akad. Wet. A 87(2) (1984), 189-201
- [8] A. K. Katsaras, Strict topologies in non-Archimedean function spaces, Intern. J. Math. and Math. Sci. 7(1) (1984), 23-33.
- [9] A. K. Katsaras, On the strict topology in non-Archimedean spaces of continuous functions, Glasnik Mat. Vol. 35 (55) (2000), 283-305.

- [10] A. K. Katsaras, Separable measures and strict topologies on spaces of non-Archimedean valued functions, Technical Report, Vol 5 (2001), University of Ioannina, Greece.
- [11] A. K. Katsaras, Strict topologies and vector-measures on non-Archimedean spaces (Preprint)
- [12] A. K. Katsaras and A. Beloyiannis, Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian J. Math. Vol. 6, No 1(1999), 33-44.
- [13] C. Perez-Garcia, P-adic Ascoli theorems and compactoid polynomials, Indag. Math., N. S. 3(2) (1993), 203-210.
- [14] J. B. Prolla, Approximation of vector-valued functions, North Holland Publ. Co., Amsterdam, New York, Oxford, 1977.
- [15] W. H. Schikhof, Locally convex spaces over non-spherically complete fields I, II, Bull. Soc. Math. Belg., Ser. B, 38 (1986), 187-224
- [16] A. C. M. van Rooij, Non-Archimedean Functional Analysis, New York and Basel, Marcel Dekker, 1978.