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This course of lectures will make intelligible a number of problems, listed in
the last section, concerning the action of the Steenrod algebra on polynomials.
The subject matter is rather technical but we shall try to indicate how some of
the problems fit into the wider context of algebraic topology and invariant theory.
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The first section introduces the hit problem in a general algebraic setting for
graded left modules over a graded ring with a right semigroup action. A couple
of examples from topology and invariant theory illustrate the ideas. Then we
restrict attention to the main example which is to do with the Steenrod algebra
A at the prime 2 acting on the polynomial algebra P(n) = Fs[z1,...,Z,] in n
variables z; over the field F; of two elements, with the right action of the matrix
semigroup M (n,Fs).

The next section describes recent joint work with Ali Janfada on hit problems
for symmetric polynomials.

In the third section we explain some interconnections between modular rep-
resentation theory of the semigroup algebra Fo[M (n, Fs] and the splitting theory
of the stable types of the classifying spaces of certain groups. We describe some
recent work with Grant Walker on the Steinberg representation and more general
questions about the linkage of first occurrences of irreducible representations via
Steenrod operations in the polynomial algebra.

In the fourth section the scope of the investigation is extended to the differ-
ential operator algebra D, as the ring of operators, which is the natural setting
for studying hit problems over the integers and at odd primes. We refer to [49]
for a fairly extensive bibliography concerning the action of the Steenrod algebra
on polynomials.
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1 The hit problem

For any graded left module M over a graded ring R with unit, we write M¢ for
the elements of grading d. An element f € M¢ is called hit if it can be written

as a finite sum
F=Y 6fi

where the elements ©; belong to R and the f; are homogeneous elements in M of
grading strictly less than d. We refer to this representation of f as a hit equation.
The hit elements form a submodule N of M. The quotient Q = Q(M) = M/N
is essentially a graded abelian group because the ring acts trivially. A minimal
generating set for Q lifts to a minimal generating set for M as a module over
R. For the sake of brevity we shall sometimes say that f is equivalent to g in
Q and write f = g when, strictly speaking, we mean f — g is hit in M and the
equivalence classes of f and g are equal in Q.

In particular we can view R = R as left module over itself. In this case a hit
element is traditionally called decormposable and the hit problem is then concerned
with writing an element of R as a sum of products of elements of lower grading.

For present purposes we concentrate on the restricted situation where our
modules are vector spaces over a fleld F, have no elements of negative grading
and are of finite type, which means that dim(M?¢) is finite for each d. We also
assume that R is a connected algebra over F, which means that Ry = F. Topo-
logical motivation for studying these objects is provided by the example of the
cohomology M = H*(X;F;) of a complex X of finite type over F, under the left
action of the Steenrod algebra A.

It is worth pointing out here how decomposability can sometimes be the last
stage in an argument requiring several intermediate steps of a geometric or topo-
logical nature. A famous example is the solution by Frank Adams of the problem
about non-singular multiplications on Euclidean space. Early pioneers in topol-
ogy translated the problem through geometry and topology into a question about
the cohomology ring of a certain topological space under the action of the Steen-
rod algebra. Without going into details at this stage, we note that A is generated
by elements Sq” called Steenrod squares in gradings r > 0 subject to certain rela-
tions. It turns out that all Steenrod squares in positive grading are decomposable
in A except when r = 2% for some k. It was this fact which first led Adem to a
proof that non-singular multiplications on Euclidean space R™ cannot exist for
dimensions other than n = 2°. By extending the notion of decomposability into
the broader context of ‘secondary’ operations Adams succeded in decomposing
Sg** for k > 3, thereby proving the long oustanding conjecture that non-singular
multiplications on Fuclidean space can only exist for n = 1,2,4,8, where they
are realised by real, complex, quaternionic and Cayley multiplication.

We shall be concerned in this course with a number of related questions.
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Problems 1.1 1. Find a criterion for f € M¢ to be hit.
2. Find a minimal generating set for M or, equivalently, a basis of Q.
3. When is the dimension of Q% equal to zero?

4. Is the dimension of Q% bounded independently of d?

The hit problem can be enhanced by introducing a right action of a group
or semigroup I' on the module M compatible with the left action of R. To be
precise, we suppose that each M¢ is a right representation of I' and for each
© € R! the left linear map ©: M? — M9 is a map of right I-modules. For
© € R,z € M,n € T we can write ©z7 unambiguously. Hit problems then
receive an equivariant flavour. For example, the quotient Q becomes a graded
representation of I'. We can also study hit problems for the fixed point set ML
as an R-submodule of M. More generally, we can examine the decomposition
of M into summands afforded by idempotents in the semigroup algebra of T
Each such summand is then an R-submodule of M and the investigation of hit
problems for these summands is intimately related to the modular representation
theory of I over the ground field F. In the case of the Steenrod algebra and the
matrix semigroup, there are also topological implications to do with the stable
splitting of classifying spaces.

So we study the case where I' = M(n,F;) is the semigroup of n x n matrices
A = (a;;) over F, acting on the right of P(n) by linear substitution of variables,

;A = E Qig Ty
s

In this case, I contains the subgroup of non-singular matrices GL(n,F2), which
in turn contains the symmetric group X, consisting of matrices with a single non-
zero entry in each row or column. The action extends to the ‘rook’ semigroup
of all matrices over F, with at most one non-zero entry in each row or column.
Let B(n) = P(n)® be the ring of invariants, in other words the symmetric
polynomials in P(n). It turns out that the Steenrod squares commute with
the action of M(n,F;), in particular with ¥, and GL(n,F;). This raises some
interesting hit problems in B(n), and in the Dickson algebra D(n) = P(n)GL™F2),
Before embarking on the main topic, we consider a hit problem in which the
ring of invariants plays a different role, this time as the ring of operators R rather
than the module acted on. The example is taken from Larry Smith’s book on
invariant theory [37], recouched in the language of an equivariant hit problem.

Example 1.2 Let M = Q[z1, - -, Z,] be the polynomial algebra over the rationals
in n variables. Let T, act on the right of Ml in the usual way. Take for R the ring
of symmetric polynomials in M acting on the left of M by the usual multiplication
of polynomials. Clearly the R-action commutes with the X, action.
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For this example we can answer some of the questions posed in Problems 1.1.

1. All homogeneous polynomials of degree greater than n(n — 1)/2 are hit.

2. A basis for Q consists of the n! monomials zi'zy - -- 2,77, where 0 < LT

3. In fact Q is a graded version of the regular representation of .

For example, in the case n = 3, the monomials

1,21, 22,22, 22, T2Zo

generate Q. From elementary representation theory, it is known that the three
irreducible representations of £3 over the rationals must appear in Q with multi-
plicity equal to their dimension. Indeed, the trivial representation appears once,
generated by 1 in grading 0. The sign representation appears once, generated by
r2z, in grading 3, and the irreducible 2-dimensional representation of X3 appears
twice, generated by z1, 7, in grading 1 and by z?, 3 in grading 2. Every homo-
geneous polynomial f of degree at least 4 is hit; in other words, it can be written
in the form

= 0, + Bz + Osx0 + 94933 + 65.’23 + @512%.’172,

where the ©; are symmetric polynomials of positive degree.

This example has some special features which will not apply in general. For
example, the product of a hit element by a polynomial is also hit because the ring
of operators commutes with multiplication of polynomials. Hence the hit elements
form an ideal and Q is just the algebra of coinvariants [37] of the symmetric group.
We shall refer back to this example in the last section.

The algebras P(n) and subalgebra B(n) of P(n) are of particular interest
in topology because they realise respectively the cohomology of the product of
n copies of infinite real projective space and the cohomology of the classifying
space BO(n) of the orthogonal group O(n). This is the universal place for study-
ing Stiefel-Whitney classes of manifolds. Symmetric polynomials, divisible by
the product of the variables z1 - - - , also has a topological interpretation as the
cohomology M(n) = H*(MO(n),Fs) of the Thom space MO(n) in positive di-
mensions. Thom spaces are important in studying the immersion and embedding
theory of manifolds.

1.1 The action of the Steenrod algebra on polynomials

In this section we explain how Steenrod squares act on polynomials and state
some facts about the hit problem for P(n).

N.B. Throughout these lectures we adopt the non-standard convention of
writing numbers in reversed dyadic expansion. For example 0101 is the reversed
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dyadic expansion of the number 10. Dyadic positions are counted from 0 on the
left. It is customary to denote by a(d) the number of digits 1 in the expansion of
d. We call this the a-count of d. For future reference it should be noted that if 4
has a digit 1 in position k then a(d + 2*) < a(d) and there is strict inequality if
d also has a digit 1 in position k£ + 1 because of the carry forward effect of binary
addition.

Another numerical function that features frequently in this subject is u(d),
which is the least number £ for which it is possible to write d = ZLI(QE* —1).

The Steenrod algebra A is defined to be the graded algebra over the field
Fa, generated by symbols Sq*, called Steenrod squares, in grading k, for k > 0,
subject to the Adem relations [40] and Sq° = 1. For present purposes we need to
know that the Steenrod algebra acts by composition of linear operators on P(n)
and the action of the Steenrod squares S¢*:P¢(n) — P%*(n) on monomials
f,9 € P(n) is determined by the following rules [49].

Proposition 1.3 1. S¢*f = f? if deg(f) = k and S¢*f = 0 if deg(f) < k.
2. The Cartan formula qu(fg) = Zosrsk Sqr(f)qu—r(g)-

In principle these rules enable the evaluation of a Steenrod operation on any
polynomial by induction on degree.
The next results are elementary consequences of the rules in Proposition 1.3.

Proposition 1.4 Let f = zf*---1% be a monomial in P(n) and z o typical
variable.

1. 8q"(f) = Z'r1+---+rn=r Sq™ (g;tlil) oo Sqr (g,

2. Sq"(z%) = 0 unless, for each position j where there is a binary digit 1 of
there is also a binary digit 1 of d in position j. In this case Sq"(z?) = =™+
In particular, S¢ (z?) = 22" +¢ if and only if d has a digit 1 in position k.

3. The power z" is in the image of a positive Steenrod square if and only if r
15 not of the form 2¢ — 1.

4. If r is odd then Sq"(f?) = 0, whereas Sq*"(f?) = (Sq"(f))?. Consequently
the action of the Steenrod algebra on P(n) is ‘fractal’ in the sense that

a copy of the algebra acts on squares of polynomials by duplication of the
suffices of the operators.

5. Steenrod squares commute with the right action of the symmetric group L.,
which permutes the variables z1, ..., Z,.

6. Steenrod squares commute with the right action of the full semigroup of
n X n matrices acting by linear substitution in the variables [{9].
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Itemn 5 explains algebraically why B(n) is a submodule of P(n). Item 6 is a
stronger statement and explains why the Dickson algebra D(n) is a module over
A. There are topological reasons why B(n) and M(n) are modules over the
Steenrod algebra because these are cohomology algebras of certain topological
spaces. For D(n), however, this is not the case if n > 5 [38]. So invariance of
D(n) under A is an algebraic bonus. We shall say more about this matter in
section 3.

We recall {49] that a monomial gt -+ -z~ is called a spike if every exponent d;
s of the form 2¢ — 1. It follows from items 1,3 of Proposition 1.4 that a spike can
never appear as a term in a hit polynomial in P(n) when written irredundantly.
Hence the spikes must always appear In any set of minimal generators of the
module P(n).

There are a few deeper facts about the Steenrod algebra which are needed
later to analyse the hit problem. A string of Steenrod squares

qulsqu ___qut

of length ¢ > 1. is called admissible if k; > 2k;yq for 1 < i < t. This includes all
Sq¢* as admissible for i > 0.

Proposition 1.5 As a vector space, A is generated by the admissible strings of
Steenrod squares.

Also important for hit problems is the following result already referred to earlier.

Proposition 1.6 As an algebra, A is generated by the Steenrod squares Sq?* for
k=0

In the first place a hit equation for f € P(n) has the general form F=5.51
where the elements ©; € A have positive grading, but because the 5S¢t generate
A there must then be a hit equation of the form f = 3_,.,5¢’g; and, in the light
of Proposition 1.6. f will also satisfy a hit equation of the form

=Y 5¢h,
k>0

where f;, g;, hx are homogeneous elements of P(n).
The Steenrod algebra is a Hopf algebra with diagonal defined by

W(Se*) = > Sq' ®Sq".
0<i<k

It then admits a conjugation operator x, which is an anti:automorphism of order
9. For an element © € A we use the notation x(©) = ©. Conjugation satisfies
the recursion formulae

k
> Sq'Sg*— =0,

i=0
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for £ > 0, from which it is possible, at least in principle, to work out 5&2 in terms
of Steenrod squares by induction on %.
The following formulae are useful for handling conjugate squaring operators.

Proposition 1.7 There is a conjugate Cartan formula

S (fa)= Y. 5q(f)Sd(g)

0<r<k

and evaluation of a conjugate square on powers of a single variable is given by

2m : m k
2y _ 2, frp=2m 2% m >k,
S¢(e”) { 0, otherwise.

As with Steenrod squares themselves, these formulae enable the evaulation of
a conjugate operation on any polynomial by induction on degree.
The next result plays a major role in solving hit problems [12, 13, 49].

Proposition 1.8 Let u,v denote homogeneous elements in P(n). Then
uSg*(v) - SF(w)v = Y_ S¢'(uSg*= ().
i>0

An immediate consequence, known as the x-trick, is that uSq®(v) is hit in
P(n) if and only if Sg*(u)v is hit in P(n). By iterating the formula of Proposition
1.8 on compositions of Steenrod squares and using linearity, we obtain a more
general statement.

Proposition 1.9 Let u,v denote homogeneous elements in P(n). Then, for any
© € A, there is a hit equation of the form

uO(v) ~ B =) 5¢ (Zeﬂ

>0

for certain elements ©;, ®; € A. In particular we have the equivalence u©(v) =
O(u)v in Q(P(n)).

The ezcess of an element © in A is defined as the smallest positive integer s
such that ©(z;z2- - - z,) # 0. The following result goes back to Milnor [30, 35, 49].

Proposition 1.10 The ezcess ofg“q“’hc is u(k).

This result has been improved in [26, 35].

Theorem 1.11 The ezcess of @@d c+ . SqeTtd G2 g (2% — 1) u(d).

From 1.8 and 1.11 we obtain the following corollary [35, 49].
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Theorem 1.12 Let f = w2 be a monomial in P(n) and suppose deg(u) <
(2F — 1)u(deg(v)). Then f is hit.

To prove this statement, we write
@ = Sq'.!"—ldsq?k"zd L. ngdSqd

and observe that v2° = O(v) where d = deg(v). The x-trick of Proposition 1.9
and Theorem 1.11 then complete the argument.

1.2 Binary blocks and order relations

As an intuitive aid to understanding many of the processes involving the action of
Steenrod operations in P(n) it is useful to exhibit a monomial f as a binary block
of digits 0 or 1 [8]. This means the matrix whose rows are the reversed binary
expansions of the exponents of the variables z1,...,Z, in f. We shall adopt the
convention of denoting a monomial by a lower case letter and its binary block by
the corresponding upper case letter. For example, the monomial f = z2a3 is
represented by the binary block

F=

— O
O =

1

Normal matrix notation will be used, except that the columns are counted from 0
to be consistent with 2-adic exponents. It should be noted in particular that the
juxtaposition of two blocks UV corresponds to the monomial wv?®, where k-1
is the position of the last column of U. The double suffix notation Fl; ) refers to
the entry of the binary block F in row i and column k. It is the digit in position
k of the reversed binary expansion of d; in the monomial f = a:‘fl co.xdn. We
shall occasionally use the notation F;) to refer to row i of F.

There are several ways of ordering monomials of P(n) to be compatible with
the action of the Steenrod algebra. The order relation used in [8, 49], called
the w-order, is defined as follows. Let w;(F) = >, Fi;; denote the sum of
the digits in column j of the binary block F. Now form the w-vector w(F) =
(wo(F), w1 (F),...,wk(F),...) and order such vectors in left lexicographic order.

The transpose of the w-order, which we shall call the a-order, is defined
as follows. For a block F the a-counts of the rows of F' are arranged as the
components of a vector in non-decreasing order of magnitude from left to right.
Such a-vectors are then compared lexicographically. This process defines the
a-order relation on monomials and is again symmetric in the variables. For
example, if the smallest a-count of the exponents in the monomial f is less than
the smallest a-count of the exponents in the monomial g then f <, g. If these
numbers are equal we look at the next smallest and so on.
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The following statement explains the compatibility of the action of the Steen-
rod algebra with the order relations and is an easy consequence of items in Propo-
sition 1.4.

Proposition 1.13 Any monomial produced by the action of any positive element
in the Steenrod algebra on a monomial f has strictly lower w-order than that of
f and no greater a-order.

We shall say that a monomial f is w-reducible if there is a hit equation of the
form
Fe=g= Z ©:fi,

for positively graded elements ©; € A, where the w-order of every monomial in
g is lower than the w-order of f. There is a similar definition for the a-order
relation.

In the next couple of propositions the x-trick is used to show how in certain
situations the w-order of a monomial can be reduced. Statements are sometimes
more transparent when phrased in the language of binary blocks.

Proposition 1.14 Let F = UV be a binary block corresponding to a monomial
f=w? in P(n), where k — 1 is the last column position of U. Suppose that v
is hit. Then F is w-reducible in P(n). In fact the w-vector of the reduction can
be assumed to be reduced in some position prior to k.

To prove this result formally we first write
v=> 6if:)

for elements ©; of positive grading in the Steerod algebra and polynomials f; in
P(n). We then appeal to the fractal nature of the Steenrod algebra as explained
in item 4 of Proposition 1.4 to write

’U2k _ Z‘i’;(ffk),

where the ®; are constructed from the ©; by iterated duplication of suffices in
compositions of squaring operations. Then by the x-trick of Proposition 1.9 we
obtain the equivalence

w” =) udi(fF) =) (Ba)ff

Finally we apply Proposition 1.13 to see that the the w-order of every monomial
in @;u is lower that the w-order of u, indeed in a position prior to k. It follows
that all monomials in (®;u) f2* have w-order lower than f as required.

We shall sometimes paraphrase proofs of this kind by saying simply that
F = UV is reducible because V is hit.

The following result is an immediate corollary.
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Proposition 1.15 Let F be a binary block with a zero column in position k,
but with a non-zero column in some higher position. Then I is w-reductble.
Furthermore the reduction may be taken with no higher a-order than that of F.

To demonstrate this result, suppose that the first zero column of F occurs at
position k. Then split the block F'= UV vertically between positions & — 1 and
k. as in the previous proposition, where now the first column of V is zero. Then
V is a perfect square and therefore hit. Proposition 1.14 completes the argument
as far as reduction is concerned. The hit equation for V effectively moves all
columns of V back one place, which does not change the a-count of the rows of
V. An appeal to Proposition 1.13 finishes the proof.

1.3 Results for P(n)

We shall now list a number of results about the hit problem for P(n) in answer to
some of the questions posed in Problems 1.1. Most of these results are well known
and can be found in various sources [1, 2, 8, 11, 22, 23, 31, 32, 34, 36, 44, 45, 46,
47, 49]. It should be mentioned a this point that we are taking the ‘cohomology’
approach to the hit problem. For the alternative ‘homology’ approach, we refer
to [1, 11], where the problem is treated in terms of kernels of the adjoint action
of Steenrod squares.

The solution of the Peterson conjecture [46, 47, 49] gives the following answer
to question 3 of Problems 1.1.

Theorem 1.16 The quotient space Q*(P(n)) is zero if and only if u(d) > n.

To prove this result we note first of all that in degree d, when p(d) < n, there
is a spike which shows that the dimension of Q*(P(n)) is non-zero. In the other
direction, when p(d) > n, consider splitting a block F' = UV between column
positions 0 and 1. Then d = degU +2deg V. It can be seen that u(deg(V)) >
deg(U), otherwise we would be able to write

deg(U)
deg(V) = 3 (2 - 1),
i=1
in which case
deg(U)
degU +2degV = Z [2e — 1),
i=1

contradicting u(d) > n, since degU < n. The result now follows from Theorem
1.12 in the case k = 1.

An answer to the second and fourth question in 1.1 can be found in in [22,
23, 8] for low values of n. The first three questions in 1.1 are answered in detail
by classification results for hit monomials in P(2) and P(3), which can be found
in Kameko's thesis [22] and more recently in Janfada’s thesis [21].
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Theorem 1.17 The dimension of Q¥(P(n)) is bounded independently of d for
all n. The best bounds for n = 1,2,3 are respectively 1,3, 21.

Kameko conjectures that the best bound for the case of P(n) is (1)(3) - - - (2" —1).
The following table, taken form [22, 2], shows the dimensions of Q%(P(3)) in
terms of d.

Theorem 1.18 The dimension of Q%(P(3)) is zero unless d = 25T1T% 4 2!+ 4
2v — 3, where s > 0,t > 0,u > 0. In this case the dimension is independent of u
when u > 0 and depends on s,t as follows.

dim g =1 u>0
QiP@B3)) | s=0|s=1]|s=2]|s=3|s=4|s>4
=0 1 3 7 10 13 14
t=1 3 8 15 14 14 14
t=2 6 14 21 21 21 21
t>2 7 14 21 21 2l 21

The following result [8] provides a set of generators for P(n) as an .A-module but
is not minimal.

Theorem 1.19 The A module P(n) is generated by monomials z7* - - - " where,
up to permutation of the variables, a(e; + 1) < 1.

This result leads to a proof of Theorem 1.17 [8] . We quote one final result [36]
in this section which narrows down the scope of a minimal generating set and
refines Theorem 1.16.

Theorem 1.20 If a monomial in P%(n) has w-order less than that of a minimal
spike in degree d, then f is hit. A generating set for P(n) can be chosen from
monomials whose w-order is between that of a minimal and mazimal spike in any
degree.

There are degrees for which there is only one spike up to permutation of the
variables. In such degrees d it can be verified that the dimension of Q4(P(n))
is bounded by the product 1(3)---(2® — 1) and a generating set can be written
down. The difficulty in proving the Kameko conjecture in general seems to be in
degrees where there are spikes of various w-orders.
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2 The symmetric hit problem

An element 7 in the symmetric group £, acts on the right of a polynomial
f € P(n) by permuting the variables and the action is clearly multiplicative l.e.
(fg)m = (fr)(gm) for two polynomials f,g € P(n). A hit equation in B(n) may
always be taken, when convenient, in the form of a finite sum

o= Z ngkbi,

k>0

where a and the b; are symmetric polynomials.

As we shall explain in the next section, B(n) is generated additively by the
symmetrised monomials. The w-order and a-order are symmetric in the variables
and apply therefore to monomial symmetric functions in B(n).

2.1 Symmetrisation

Given a monomial f in a subset of the variables zi,...,Zn, We can form the
symmetrisation of f which means the smallest symmetric function o(f) in B(n)
containing f as a term. To be more precise, let my,---, ™ be a set of left coset

representatives for the stabiliser of the monomial f in X,. Then o(f) = S [
For example, if the exponents of the variables z,,...,z, in f are all distinct then
the stabiliser of f is trivial and o(f) = Y, fm, where the summation is taken
over the whole of ¥,. This is the classical transfer of invariant theory. At the
other extreme, if all exponents of f are the same then the stabiliser is the whole
of &, and o(f) = f. If m,---, 7 are left coset representatives for a subroup
of the stabiliser of f it is still true, of course, that Z;=1 fm; is symmetric but
the expression may be zero. It should be emphasised that the meaning of a(f)
depends on the set of variables over which symmetrisation is taking place. For
example o(z;) means ; +z2 in P(2) but z; +z5+z3 in P(3). The symmetrised
monomials form a vector space basis of B(n). In recent literature on invariant
theory [37] the symmetrisation operator ¢ is referred to as the first Chern class.

What we would like to do is convert hit equations in P(n) into hit equations
in B(n) by symmetrisation. The following example shows that a naive approach
to this problem does not always work.

Example 2.1 In P(2) we have the hit equation
r2rl = Sqt(z,73).

If we symmetrise this equation we obtain

0= Sql(:rlzng =+ $:12.’172)
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because we are working modulo 2. So we cannot prove this way that Tiz3 is
symmetrically hit. But, as it happens, there is a symmetric hit equation in B(2)
namely

S¢*(2122) = ziz3,

which shows that z2z3 is indeed symmetrically hit.

It is this phenomenon which prompts the questions raised in Problems 5.7 about
whether the symmetrisation of a hit monomial in P(n) is symmetrically hit.
There are examples of monomials which are not hit in P(n) but whose symmetri-
sations are hit in B(n). There are also examples of polynomials in B(n) which
are hit in P(n) but not symmetrically hit in B(n).

However, there are circumstances in which we can symmetrise hit equations
in P(n), based on the following observation.

Proposition 2.2 Let f be a monomial and g a polynomial in P%(n). Suppose
there is a hit equation

f—g= Z ©; fi
in P4(n), satisfying the condition that the stabiliser of f is a subgroup of the
stabiliser of g and a subgroup of the stabiliser of each polynomial f;. Letmy,...,m

be a collection of left coset representatives for the stabiliser of f in the symmetric

group ¥,. Then
o(f) - Zgwg Ze me

Jj=1

is a symmetric hit equation in B(n).

The reason is that o(f) is equal to Z;=1 fm; by definition, and the expressions

Zgﬁji Zfzﬂ'g

7=1
are symmetric by our earlier discussion about stabiliser subgroups. Under the
given conditions we have the equivalence o(f) = 23.:1 gm; in Q(B(n)).
2.2 The symmetrised y-trick

We now develop some useful symmetric hit equations by exploiting Proposition
2.2

Proposition 2.3 If the exponents of a hit monomial f in P(n) are all distinct.
Then o(f) is symmetrically hit.
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In this case o(f) is the transfer of f and the stabiliser of f is the trivial group.
The conditions of Proposition 2.2 are obviously satisfied with g = 0.
We can form a symmetrical version of Proposition 1.14

Proposition 2.4 Let f = w? be a monomial in P(n), with w;(u) = 0 for
j > k. Assume that u is symmetric and that o(v) is symmetrically hit. Then
o(f) is symmetrically w-reducible in B(n). In fact the w-vector of the reduction
can be assumed to be reduced in some position prior to k.

To prove this result we note first of all that o(f) = uo(v?") because u is sym-
metric. Since o(v) is symmetrically hit, the argument in the proof of Propostion
1.14 goes through when applied to o(v) in place of v, maintaining symmetry at
each stage.

We continue with a symmetric analogue of Proposition 1.9.

Proposition 2.5 Let f = uv be a monomial in P(n) with the property that the
stabiliser of f also stabilises u and v separately. Let m1,..., 7 be a collection of
left coset representatives for the stabiliser of f in the symmetric group Zn. Then
for any element © € A there is a symmetric hit equation in B(n) of the form

t t

S (we))m; - Z(é(u)’u)ﬂ'j =5"5¢ 3" (Bu(w)@a(v))m;,

=1 >0 i=1
for certain elements ©4, y € A. In particular we have the equivalence

t t

S (wOw))m; 2> (B(u)v)m;

=1 =1

in Q(B(n)).

The proof follows immediateley from Propositions 1.9 and 2.2. We apply this
result to obtain the symmetric analogue of Proposition 1.12.

Theorem 2.6 Let f = wv® € P(n) be a monomial and suppose deg(u) < (2F —
D u(deg(v)). Then o(f) is symmetrically hat.

To prove this statement, we first observe that the stabiliser of f also stabilises
u and v. Hence Proposition 2.5 applies to the choice

£ e quk-idsqzk-zd ... Sq*Sq¢,

where d is the degree of v. The rest of the argument follows the same pattern as
the proof of Theorem 1.12, noting that

o(f) =) (uO())m;



for the particular choice of coset representatives ;.

Before stating the next corollary, we need to make a few more remarks about
symmetrisation. Consider a monomial f in P(n) expressed in the form f = gh
where g involves only the variables zy,...,z, and h involves only the remaining
variables Zp.1, . . ., Tptq, Where p+g =n. Let us suppose also that no exponent in
the monomial g is equal to any exponent in the monomial A. Then the stabiliser
of f is a subgroup of the cartesian product X, x L, which permutes the first p
variables and last g variables separately. There is a set of left coset representatives
for the stabiliser of f of the form (p; x 7;)Cx, Where the p; run through a set of
coset representatives for the stabiliser of g in ¥, the 7; do the same for the
stabiliser of A in £, and the (i are the shuffle permutations which preserve the
orders of the two separate lists of variables z1,...,Tp, and Zpt1,...,Tprq- WE
then have the following lemma.

Lemma 2.7 The symmetrisation of f = gh in the n variables 1, ..., T 1s given
by
o(f) = 3(0 ()" (W))G,
k
where o', 0" denote symmetrisation in the subsets T1,...,ZTp and Tpi1,.- -, Tpiq

separately, and the (i run through the shuffles of the first set in the second set.

The next corollary may be viewed in terms of a horizontal splitting of a block.

Proposition 2.8 Let f = gh in P(n) be a monomial factorised such that g
involves only the variables z1,. .., T, and h involves only the remaining variables
Tpil,-- -, Tp+q, Where p+q=n. Assume also that no exponent in the monomial
g is equal to any ezponent in the monomial h. Suppose there is a symmetric hit
equation in B(q) of the form

=3 Qh,

for positively graded elements Q. in the Steenrod algebra. Then there is a sym-
metric equivalence in B(n) of the form

NEDIDICNCIC)) AN
k T

The proof of this result follows the line of argument in Proposition 2.5, once we
observe that the stabiliser of f must stabilise g and h individually because these
monomials have no exponents in common. We have

ZO’ Q h —Z( h +ZZSQ Z: zkr(u)®ik‘r(v))a

T r 1>0
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for certain elements Ok, Pt in the Steenrod algebra. Now all terms in this
equation are stabilised by the stabiliser of f. It follows that an application of the
shuffie operators {;, to both sides of the equation, and adding over k, produces a
symmetric hit equation. By Lemma 2.7 the left hand side becomes o(f) and the
result is established.

2.3 Results for B(n)

We now state answers to some of the basic Problems 1.1 about B(n) in parallel
with the corresponding answers for P(n). First of all, the Peterson conjecture
remains true for B(n), with the same condition as for P(n).

Theorem 2.9 The quotient space Q¢(B(n)) is zero if and only if p(d) > n.

The proof is an immediate consequence of Theorem 2.6 and the arguments used
in the proof of Theorem 1.16.

It should be emphasised what this result actual says. It follows immediately
from Theorem 1.16 that a homogeneous symmetric polynomial is hit in P(n) if its
degree d satisfies u(d) > n. It is not so obvious, however, why this should imply
that the polynomial is symmetrically hit in these degrees, in other words why it
should be hit as an element of the module B(n). It was only by constructing
the specially adapted hit equations that we were able to prove the symmetrised
Peterson conjecture. This leads once again to the more general questions about
symmetric hit elements posed in Problems 5.7.

For small values of n we have an analogue of Theorem 1.17.

Theorem 2.10 For n = 1,2,3, the best upper bounds for the dimension of
Q%(B(n)) are respectively 1,1, 4.

We ask in Problem 5.8 for a bound for the dimension of Q*(B(n)) in general and
some sensible upper estimate of it, analogous to the Kameko conjecture.

As far as minimal bases are concerned, the situation for n = 1 is straightfor-
ward since B(1) = P(1) and B(1) is generated by the spikes 1Ay

In the 2-variable case, the answer is also quite simple.

Theorem 2.11 The collection of symmetric functions

or_1_or—1 9s_1 9t—1 , 9t—1 29—
Ty Ty o, T I3 T +I i

?

forr >0 and s >t >0, forms a minimal generating set for B(2).

Theorem 2.11 indicates that the symmetrised spikes are enough to furnish a
generating set of the module in the case of two variables. The situation for three
variables is more complicated. We provide a table, by analogy with Theorem
1.18, showing the dimensions of Q?(B(3)) in degrees d where the dimensions are
NON-ZEro.
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Theorem 2.12 The dimension of Q*(B(3)) is zero unless d = 2°TH% + 2% +
2% — 3. where s > 0,t > 0,u > 0. In this case the dimension is independent of u
when s > 0 and depends on s,t as follows.

dim u=0 u >0
Q4B(3) | s=0|s=1[s=2[s=3]s>3
t =10 1 1 2 3 4
t>0 i} 1 2 2 2

The form of the degree d in the above theorem implies of course that p(d) <3
in accordance with Theorem 2.9. The next statement exhibits a list of minimal
generators for B(3).

Theorem 2.13 A minimal generating set for B(3) as a module over the Steenrod
algebra comsists of the symmetrised spikes together with the symmetrisations of
monomials z*z2z3 of three types.
=211 g=eg=2+2*""2_1  foru>0,s>2
=212 _1 e==22"T"1_2_1  foru>0,8>3
€ = —142uttteml o W] =2l 1 foru>0,6>0,5>1

The three types of monomials exhibited in Theorem 2.13 can be visualised in
terms of their binary block diagrams as exhibited below.

1 =11-= 11 1 -111
Ai=1 -10 —-101 Ao=1 - 1011 -1
1 - 10 -01 1 -1011-1
Il — 1L 0 =< 0080 =01
dg= T = 1 1 = 1
1 =1 1 = 1 1 =1

The first two monomials A;, Ay lie in degree 2%+ + 2¥*! — 3 for u > 0,s >
2, where there are also two symmetrised spikes. The third monomial Az lies
in degree 2uttts 4 9w+t 4+ 2% — 3 for u > 0,t > 0,s > 1, where there is just
one symmetrised spike. There are alternative sets of generators for B(3) which
serve various purpose. For more details on the classification of symmetrised
monomials into hits and non-hits, in answer to question 1 of Problems 1.1 we
refer to Janfada’s thesis [21].

82



2.4 The submodules M(n)

We note that B(n) splits as a module over A into a direct sum of certain sub-
modules T(r) for r < n. To be precise

B(n) = @ T(r),
r=1

where T(r) is generated by the symmetrisation of monomials involving precisely
r of the n variables i, ... zn. One sees therefore that T(r) is isomorphic to M(r)
as a module over the Steenrod algebra and we deduce the following dimension
formulae.

Proposition 2.14 dim Q¢(M(n)) = dim Q4(B(n)) — dim Q¥(B(n — 1))
dim Q4(B(n)) = >_r_, dim Q4(M(r)).

There are topological problems [39, 29] associated with these algebraic statements
that we shall discuss later.
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3 Modular representations and hit problems

As general references for this section we cite 3, 15, 16, 17, 27, 28, 44].
There are 2" distinct irreducible modular representations of M(n,F3) over the
natural field F», parametrised by sequences of non-negative integers

A=A 2Z2A2... 2220,

subject to the constraints A; — Aiy1 < 1for1 < ¢ <nand A, <1, called 2-
column regularity. The irreducible representations of GL(n,[F;) correspond to
those A with A, = 0.

In the literature on the representation theory of symmetric groups and general
linear groups, the sequence A is usually referred to as a partition of length n of
the number |A| = A, + Ao + - - + A, and depicted by a Ferrers diagram, which is
a matrix with a mark at each position (4, 7) for 1 < 7 < A;, and other positions
empty. The non-empty positions are called the ‘nodes’ of the diagram. The
transpose of the Ferrers diagram of ) corresponds to the conjugate sequence X',
where ), is the number of rows k such that Ax > i. The sequence X is again
a partition of |A] = |X| but does not necessarily correspond to an irreducible
representation of M (n,Fy). If X is 2-column regular, then X' is strictly monotonic.
Such sequences are also referred to in the literature as 2-regular. For example,
the diagram of A = (3,3,2,2,1) and its transpose are shown below.

1
1

(PR

N =

>
Il
L
— =
N
—

The nodes of a Ferrers diagram are sometimes replaced by squares in which other
information is inserted.

The empty diagram corresponds to the trivial representation of M(n,F2),
where every matrix acts as the identity. The Ferrers diagram with just one entry
is the natural representation of n x n matrices on n-dimensional vectors. More
generally, the diagram with just one column containing 7 entries is the r-th exte-
rior power of the natural representation. In particular, when r = n, we obtain the
determinant representation in which all non-singular matrices act as the identity
but singular matrices act as 0. The Ferrers diagram with the maximal allowable
number of entries, corresponding to the triangular partition (n,n —1,...,1), is
referred to as the Steinberg representation for the semigroup M (n,Fs). The par-
tition (n—1,...,1,0) is the Steinberg representation for the group GL(n, Fs). If
a Ferrers diagram with A\, = 0 is interpreted as a representation of GL(n,F,),
then adding 1 to each \; produces a full Ferrers diagram (now A, = 1), which
corresponds to tensoring with the determinant representation, where the singular
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matrices now act as 0. Conversely, a representation of M(n, F3) corresponding
to a full Ferrers diagram may be interpreted in this way, as arising from a rep-
resentation of GL(n,F3). Of course any Ferrers diagram with )\, = 0 may also
be interpreted as a representation of M (n,F3) but it is not obvious how this is
related to the group interpretation, except in cases like the natural represention.
For more explanation on this point see Harris and Kuhn [17].

For further discussion of the representation theory of M(n,F;) we need to
work with the equivalent theory of the representations of the semigroup algebra

]FQ[M(naF2)]

An element e in an algebra is called idempotent if e? = e. The elements
0,1 are the trivial idempotents. Two idempotents e, f are orthogonal if ef =
fe = 0. An idempotent e is primitive if it cannot be written as a sum two non-
trivial orthogonal idempotents. The idempotent is central if it commutes with all
elements of the algebra. A central idempotent is centrally primitive if it is not
the sum of non-trivial orthogonal central idempotents. In the finite dimensional
algebras that concern us, there is a uniquely determined finite set of centrally
primitive idempotents whose sum is the identity of the algebra.

Example 3.1 There are three centrally primitive idempotents in the semigroup
algebra Fo[M (n,F2)].

Then we see that

l=2zp4+ 21+ 20

and it can be checked that these idempotents are orthogonal. The display is ar-
ranged to highlight the sums of the non-singular matrices in z; and z3, which pro-
vide the two centrally primitive idempotents in the group algebra Fo[GL(2,Fy)].
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In the semigroup algebra Fo[M(n,F2)] each central idempotent decomposes
into a sum of orthogonal primitive idempotents. This decomposition is not
unique. It turns out that the conjugacy classes of the primitive idempotents
are in bijective correspondence with the irreducible representations A. Let 8(A)
denote the dimension of the representation associated with the partition A. Then
there is a decomposition of the identity of the algebra into a maximal set of
orthogonal primitive idempotents

()

1= ZZ Es s,
A i=1

where the ey ;, for 1 <7 < §(A), is a set of conjugate primitive orthogonal idem-
potents associated with the same irreducible representation A. It is customary to
write, somewhat inaccurately,

1= Z 5()\)6)\,
A

where e, stands for a typical idempotent associated with A. Although the de-
composition of 1 into orthogonal primitive idempotents is not unique, any two
such sets of idempotents are conjugate by an invertible element in the semigroup
ring in a way that matches idempotents associated with the same irreducible rep-
resentation. In particular, in any decomposition of 1 into orthogonal primitive
idempotents, there will be some way of grouping the idempotents into subsets
which add up to the central idempotents but exactly how this works is a com-
plicated matter to do with block theory of modular representations. We content
ourselves here with an illustration of how it works for one particular decomposi-
tion in the case of 2 x 2 matrices over Fs. '

Example 3.2 There are siz elements in any choice of a mazimal set of primitive
orthogonal idempotents decomposing 1 in Fo[M(n,Fy)]. Such a set can be chosen
to refine the central idempotents in the following way.



ooy, (00 10 01
w=(10)+(0 1)+ (o) (0 1)
11 L1 01 10
(18)+Go)(To)+(o1)
, (10 00 11 00
“321’(0 0)+(1 o)t loo)T\11
01 11 01 10
(21)+(o1)+(T0)+(s 1)
Then we have the following decompositions of the central idempotents
w=¢ey, z=e1t+e +en, 2z2=en+ey
and the mazimal decomposition of the identity
1=ep+el+€ +e + e+ ey

Note that the eg,e1,€; are the singular parts of e11, €21,€h . On the other hand,
the non-singular parts go, 91,91 of €11, €2, ey, provide a mazimal set of three or-
thogonal primitive idempotents for the group algebra Fo[GL(2,TF,)).

The idempotent eg corresponds to the trivial representation of Fo[M (n,F2)]
with empty Ferrers diagram. The conjugate idempotents e; and e} are associated
with the natural representation, ej; with the determinant representation and the
conjugate idempotents es1, €y with the Steinberg representation. For GL(2,F,),
the idempotent go corresponds to the trivial representation and gi, g; are conju-
gate idempotents corresponding to the Steinberg representation, which happens
to coincide with the natural representation in case n = 2.

The action of M(n,Fs) on P(n) extends naturally to an action of the semi-
group ring Fy[M(n,F,)] and the idempotents induce a corresponding decompo-
sition of the polynomial algebra

P(n) = & 6(\)P(n)es,

compatible with the left action of the Steenrod algebra. Each ‘piece’ P(n)ex
occurs §(\) times in the decomposition and is an indecomposable A-submodule
(but no longer a right Fo[M(n, Fy)]-module). The dimension

va(X) = dim(P%(n)e,)

is the number of occurrencies of A as a composition factor in P%(n). One can
think of the action of e, on P%(n) as picking off a 1-dimensional vector subspace
of P4(n) for each occurrence of A as a composition factor.
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One way of tackling the hit problem for P(n) over A is to solve the hit
problem for each piece separately. If an element of P4(n)e, is hit in P(n) then it
is already hit in P¢(n)e,, as can be seen by applying the idempotent to both sides
of a hit equation in P(n). This approach to the hit problem demands good control
over the idempotents, which is lacking in general, but there are some interesting
particular cases where progress can be made. In particular, we see that the central
idempotents preserve symmetric functions and induce a decomposition of B(n)
into A-module summands. By following through the action of the idempotent
splitting in Example 3.2 on symmetric functions, we obtain a splitting of B(2)
into four A-submodules

B(2) =B(2)eo @ B(2)e; ® B(2)e1; ® B(2)ea,

where B(2)e; is isomorphic as an .4-module to B(1), generated by z% + z§ for
a > 0: the module B(2)e;; is isomorphic to the Dickson algebra D(2), generated
by

(21 + 22)* (2] +23) + (21 + 22)° (2% + 25) + 2z} + 235,

for a,b > 0: the module B(2)ey; is generated by
(z1 + 22)%(2} + 75) + (z1 + 2)b(2% + 22),

for a,b > 0. We note that B(2)e}, B(2)e),; are 0 and B(2)ey is trivial, concentrated
in dimension 0. By restricting to symmetric functions divisible by by z;z; we
obtain a splitting of the A-module M(2) into two pieces

M(2) = M(2)en; © M(2)eq,

where M(2)e;; is the Dickson algebra D(2).

It is debatable whether the attempt to solve the hit problem for B(2) by
decomposition methods is any better than the direct approach in arriving at
Theorem 2.11 but it does raise a number of interesting Problems 5.9, 5.12 and
5.11 about the algebraic splittings of P(n), B(n), M(n) and hit problems for
individual pieces.

We now turn to some topological aspects of the problem.

3.1 Modular representations and topological splittings

We use the notation L(A) for a M(n,Fs)-module which affords the irreducible
representation corresponding to A. It is known that L()\) occurs as a composition
factor in P4(n) for some value of d. Indeed, it actually occurs as a submodule
of P%(n) for some (usually higher) value of d. The following statements indicate
when these phenomena first happen [6].
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Theorem 3.3 The irreducible M(n,Fy)-representation corresponding to the 2-
column regular partition A\ occurs for the first time as a composition factor in

Pé(n) in degree
=3 2-1
and for the first time as a submodule in Pé(n) in degree

n(\) = Z jarl

In the above formulae we note that the (()\) < n()\) except when X is a triangular
sequence (m,m — 1,...,2,1). Note also that n(A) = ((X).

Since a singular matrix must annihilate some non-zero element in Pé(n) for
d > 0, it follows that the trivial representation of M(n,F3) can only occur once,
namely in dimension 0. This is consistent with the fact that the trivial repre-
sentation corresponds to the empty Ferrers diagram where all \; = 0, in which
case ( =7 = 0. On the other hand the determinant representation, where A; =1
for 1 < i < m, occurs for the first time in degree ( = n as a composition factor
headed by the product of the variables z;---z,. As a submodule it appears for
the first time in degree n = 2" — L.

Little is known about the odd prime analogue of the first occurrence problem
as a composition factor, although a few cases are resolved [4]. The first occurrence
as a submodule is known for all primes [25]. Even where we have explicit models
for the irreducible representations of M (n, F2) as submodules of P(n), there seems
to be no known closed formulae for their dimensions.

We now explain how the numbers §(}), va(}),{(A),n(A) can be interpreted
topologically. For an early reference on the use of idempotents in splitting sus-
pended spaces we cite [9].

Recall that P(n) is the cohomology of the product of n copies of infinite
real projective space, otherwise known as the classifying space B (Z/2)" of the
group (Z/2)". Let Y denote the suspension of B(Z/2)". For each irreducible
representation A of M(n,F,) there is an associated topological space Y, such
that, up to homotopy type, ¥ decomposes into the one-point union

bl V,\ﬁ(A)Y,\,

each Y, occurring §()\) times in the splitting. The cohomology H* (Y3, Fa) can
be identified with P(n)ex, with a shift in grading. In particular the dimension
of H4(Y3,Fy) is v4(\) and ((A) corresponds to the connectivity of the piece Y,.
None of the pieces Y3 can be further split stably into a one-point union of non-
trivial spaces. The piece associated with the idempotent corresponding to the
trivial representation, given by the empty Ferrers diagram, is a single point. In
practice, therefore, there are 2" — 1 interesting spaces in the splitting of Y.
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We refer to [15, 27, 28, 33] for a detailed analysis of the topological pieces
obtained for the case n = 2 in the stable splittings of B(Z/2) and BO(2). In the

terminology of Example 3.2 there is a stable homotopy equivalence
Y’:%VZHVK;VZ}ZQL

We have topological Problems 5.15, 5.16, analogous to the algebraic Problems
5.9.5.12.
We now look at a few particular problems related to the general discussion
above. ‘

3.2 Linking first occurences by Steenrod operations

In this section we shall describe an explicit Steenrod operation which links the
first occurrence of the irreducible representation A as composition factor with its
first occurrence as submodule in P(n). We need some preliminary notation.

In the Ferrers diagram of ), the kth anti-diagonal of A consists of the nodes
(,7) such that i + j = k + 1. Suppose the nodes of the k-th anti-diagonal are
(k,1),(k—1,2),...,(k—s+1,s). The associated van der Monde determinant is
defined by

T Tg-1 .- Tg—s+l
2 2 2
T Tl o Tkestl
ve(A) = ) . .
23—1 2:—1 25—1
T Teo1 -+ Tr_sy1

The product of these expressions is denoted by
v() = [ o).
k

For example, when A = (2,1,1),
'U(A) =1 [371:33%] * T3 = ﬁ’xzmg -+ :rf:c%:z:g

In general, the ‘leading’ term of v(}), i.e. the monomial with highest expo-
nents in the left lexicograhic order, is [ ], xi“"“‘l, which is a spike. The polynomial
v(A) is therefore not hit.

We shall also use following notation for the particular van der Monde deter-

minant

:E]_ .’L‘2 P xn
2 2 2
: g omect iy Zr  ses B
’w(‘n)=[3:1,232,-“,$n ]: )
21'1.-1 21’1—1 211—1
3 T3 ae BB
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where the shorthand form in square brackets lists just the diagonal elements of
the determinant. Then we associate with A the polynomial

w(A) = Hwk(}‘k)-

For example, when A = (2,1, 1),
w()) = [z1,23)z2zs,  w(N) = [z, 23, 7570

Note that deg(v())) = n(\),deg(w(X)) = ((A). We now state the main results
[41].

Theorem 3.4 Let A be a 2-column reqular partition of length n. Then the cor-
responding irreducible M (n,F2)-module L(\) appears as a top composition factor
of the module generated in Pcxy(n) by v(A) and also as the submodule in P,oy(n)
generated by w(X').

Theorem 3.5 Let ) be a 2-column regular partition of lengthn. For1 < k < Ay,
let T = (2)\% — ]_) — ZiSI\L 2Ai—k. Then

x(5¢Sq™ ... Sg™ )v(A) = w(XN).

The sequence of numbers (71,72, ...,7s,) can be conveniently calculated from
the tableau obtained by inserting integers into the Ferrers diagram of A as follows:
if the (4, ;) is the highest node in its antidiagonal, insert 2~* — 1 in that position
and continue down the diagonal by doubling the number entered at each step.
The sum of the numbers entered in column k is then 7.

Example 3.6 For A = (3,3,2,2,1) we obtain (ry,rs,73) = (18,9,1) using the
tableau shown below.

0(0|0
010(1
012
4 |7
14

The statement of Theorem 3.5 in this case is
X(Sqlgsqgsql)(ml : [Il%mg] : [11:1,:13%,2%] ! [1'2’53%1:32] ) [SL‘4,:C§])

= [zl,mg,x‘é,xi,xés] ' [xlvmgaxgsxi] ’ [231,5133].
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3.3 The Steinberg piece

The Steinberg representation of GL(n,F), corresponding to the triangular se-
quence
St =(n—1;:::;1,0)

plays a special role in the representation theory of the general linear group. Every
occurrence of St is a submodule. The following statement solves the hit problem
for the Steinberg piece [41] arising from the general linear group.

Theorem 3.7 There is a choice of indecomposable idempotent eg; in the group
algebra Fo[GL(n, Fy)] associated with the Steinberg representation St of GL(n,Fs)
such that the piece P(n)es; is generated minimally by the symmetrised spikes

o223 - 257),

for distinct exponents dy,ds, . .-, dn.

The actual choice of idempotent eg; is constructed as follow_s. Let U, denote
the sum of the upper triangular matrices in GL(n,F2) and I';, the sum of the
elements in the symmetric group ¥,. Then

Egt — Unzn.

By construction we see that the action of this particular choice of Steinberg
idempotent on P(n) preserves symmetric functions and therefore splits B(n) into
a Steinberg piece and another piece. We refer to [27, 28, 33] for the topological
realisation of this splitting and to (39, 29] for the stable splitting of BO(n) into
pieces corresponding to the submodules T(r) mentioned in Proposition 2.4.

3.4 The trivial piece

Recently, Hung and Nam [19] have proved Hung’s conjecture that all elements in
the Dickson algebra D(n) are hit in P(n) for n > 3. Now the Dickson algebra
is only a part of the piece P(n)gy , corresponding to the trivial representation
of the group GL(n,F3). The Dickson algebra affords the submodule occurrences
of the trivial representation in P(n). The hit problem for the Dickson algebra
itself is difficult and has only been solved for small values of n [20]. It would
be interesting to give a a minimal generating set for P(n)go by analogy with the
Steinberg case. The Hung-Nam result says that all submodule occurences are hit
by earlier composition factors in the determinant piece at least for n > 3.

We saw earlier how, in the case n = 2, the idempotent e:; splits off the Dickson
algebra D(2) from M(2). Now D(2) is topologically realisable by H*(BSO(3))
over the field of two elements. This raises again the question concerning the
topological splitting of Thom complexes MO(n).
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4 The hit problem for the differential operator
algebra

The action of the Steenrod square Sg* on P(n) can be lifted to the action of an
operator SQ on the polynomial algebra

W (n) = Z[z1,22, . - -, Tn]

over the integers. Integral squaring operators are members of a larger ring of
operators D, called the differential operator algebra. The formal definition of D
and some of its properties can be found in [49, 48]. Topologists know D as the
Landweber-Novikov algebra. For present purposes we recall from [49, 48] some
of the main features concerning the action of D on W(n). An additive basis for
D is formed from wedge products of the primitive partial differential operators

0
De=D o g

i>1

for k > 1, acting in the usual on W(n). Although Dy is formally an infinite
sum, its action on a polynomial involves only a finite number of variables in
any instance. The wedge product V of two differential operators, with variable
coefficients, is defined by allowing the derivatives of the first operator to pass the
variable coefficients of the second operator without acting. The wedge product is
commutative and gives the term of highest differential order in the composition
of the operators. For example, the composite D, o D, is given by

9 Y 0 e
et (g = 2wty + X Aol

i>1 i>1 i>1 (1,2

where the last summation is taken over all 2-vectors of non-negative integers
(i1,42). Hence Dy o Dy = 2Dy + D1 V D, It should be noted that D; V D is
divisible by 2 as an integral operator. More generally, an iterated wedge product
is given by the formula

T

D,V D, V-V Dy, = z x;clﬁ-l - xf:ﬂ_é_xu_aéx_tr,

where the summation is taken over all r-vectors of non-negative integers. It can
be seen from this that the iterated wedge product D)" is divisible by 7! as an
integral operator. By definition, D is generated over the integers by the divided
operators D)7 /r! under wedge product. For convenience we use the multiset
notation K = kJ*ky? ... k% to denote a set of positive distinct integers k; repeated
r; times. Then

DVrl DV'rz Dv-ra
D(K):LV__@_\/...V_’CE_.
7! rol 7,
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denotes the iterated wedge product of divided differential operators. For example,

VT
D(k)= Dy, D)= 24

rl

The collection D(K), as K ranges over multisets of distinct integers, forms an
additive basis for D. A significant fact is that D is closed under composition of
operators. Furthermore, the natural coproduct ¥(D,) = 1® D,+D,®1 makes D
into a Hopf algebra with respect to both the composition and the wedge products.

We define the integral Steenrod squares by SQ™ = D(17). It is shown in [49]
that the modulo 2 reduction of SQ* is Sq*. For example

SQ'=D(1) = Zz?i.

Additively, the Steenrod algebra is generated by the modulo 2 reductions of those
D(K) for which the elements K have the form k; = 2% — 1. This is called the
Milnor basis of the Steenrod algebra.

Since D is defined over the integers we have the possibility of reduction at
any prime as well as rational reduction. For example, the collection of modulo p
reductions of those D(K) for which the elements of K have the form k; = p* —1
constitute the Milnor basis of the Steenrod algebra of p-th power operators at
an odd prime p. The analogue of SQ™ = D(1") in the odd prime case is P" =
D((p—1)).

We can pose the hit Problem 5.19 for the action of the differential operator
algebra D on W(n) over the integers, but this would seem to be a very difficult
question to answer in more than a few variables. For n = 1 the answer is simple
because Di(z) = z**!. Hence Q(W(1)) has rank 1 generated by z;. This result
generalises in the following way. Note first of all that the action of D commutes
with the right action of the symmetric group because the differential operators
are themselves symmetric in the variables and partial derivatives. On the other
hand it does not commute with the action of all matrices over the integers. We
lose the analogue of the Dickson algebra but retain the representation theory of
the symmetric group. In particular we can study the hit problem for symmetric
polynomials over the integers, viewed as a D-module.

Theorem 4.1 Any symmetric polynomial in W(n)*~ divisible by z, - - -z, and
of degree strictly greater than n is hit by a differential operator in D.

Problems 5.20 remain for representations of the symmetric group other than

the trivial one. Since integral representation theory of X, is difficult, we look
instead at modular and rational reductions.
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4.1 The hit problem for D modulo 2

Integral results about the action of D on W(n) can be passed down to modular
reductions. For example the statement of Theorem 4.1 is true for the action of
D ® F, on P(n). As observed earlier D ® F, contains A as a sub-algebra. To
solve the hit problem for the action of A on P(n), we might ask a prior question
about the hit problem for P(n) as a D ®F,;-module, where we would expect fewer
elements in a minimal generating set than in the Steenrod algebra case.

For two variables, the answer has been worked out by Walker and Xiao and
appears in the second author’s doctoral thesis.

Theorem 4.2 For the action of D@ Fy on P(2) a basis for Q(P(2)) is given by
the monomials 1,.’12]_,22,33%2:2,.’13?“_1332 forn > 1.

For comparison we quote the corresponding result for the Steenrod algebra.

Theorem 4.3 For the action of A on P(2), a basis for Q(P(2)) is given by the
the monomials 2 'z ~* for k,7 > 0, and :rf“'lxga_l_lﬂa(zb—l) fora,b>1.

In the general n-variable problem spikes are never hit under the action of the
Steenrod algebra but can be hit under the action of differential operator algebra.
There is a question about the exact relationship between the the two hit Problems
5.18.

4.2 The rational hit problem for D

In this section we shall write Q(n) as a temporary notation for Q(W(n) ® Q). It
can be shown that D ® Q is generated under composition by the operators D.
In fact Dy, D, form a minimal algebraic generating set. The hit problem in this
case reduces to the question of finding criteria on a polynomial g such that the
differential equation

Difi+Dyfa=g

can be solved for polynomials fi, fo. In the two-variable case, it can be shown
that 1, z1, T, Z1 29, ToTo form a basis of Q(2). In particular, the quotient is finite
dimensional, as in Example 1.2. Furthermore, the differential equation Dy fi +
D, fs = g can be solved for any homogeneous polynomial g of degree at least 4.
Another similarity with Example 1.2 is that the monomials z,z, z2zo generate
the regular representation of Xy in Q(2). The monomial z,z, generates the
trivial representation, and the equation Dy (z1z2) = 1239 + 1172 shows that T31s
generates the sign representation of ¥y in Q(2).
In the case of three variables, n = 3, it is shown in [43] that the monomials
1,21, 22, T3, T1Z2, T1T3, T2T3,
23x9, 2323, T2T3, T1Z2T3, T1T5Ts, T1T2T3, TAT2LE, T1 7223, T1 5T
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generate Q(3). The regular representation is generated by those monomials in
the list which are divisible by z:1z5z3. This time, the differential equation D1 f1+
D, fs = g can be solved if the homogeneous polynomial g has degree at least 7.
In the general case of n variables, it is known that Q(n) is finite dimensional.
However, the following conjecture, suggested by the above particular cases, seems
harder to prove.

Conjecture 4.4 For the action of the differential operator algebra D ® Q on
the polynomial algebra Q[zy,- -+, Zn), Q(n) contains the regular representation of
the symmetric group T, generated by the monomials divisible by the product of
the variables T, - - T,. In particular, the highest grading of Q(n) is d = n(n +
1)/2 and, in this grading, Q%(n) is the 1-dimensional sign representation of Zn,
generated by the z,2% - --z%. Furthermore, monomials of the form

R

where 1 < i, < r, form a basis of the part of Q(n) divisible by z1 - - - ZTn.

This conjecture implies, in particular, that every homogeneous polynomial f
of degree greater than n(n + 1)/2 is hit; in other words, the differential equation

Difi+Dafa=g

can be solved for any g in these degrees. There is clearly a close connection
between the representation theory of the symmetric group and the hit problem
for the differential operator algebra. The decomposition of W ® Q by a complete
set of orthogonal idempotents associated with the irreducible representations of
¥, is preserved by the action of D ® Q. The piece of W ® Q corresponding to
the trivial representation is the subspace of symmetric polynomials.

4.3 Remark

The algebra D preserves rings of invariants of permutation groups. More precisely,
if T' C £, is a subgroup the symmetric group, then W' is a left module over D.
It would be interestind to investigate such modules both rationally and in the
modular cases.
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5 Problems

The following list of problems refers mainly to the prime 2 unless otherwise stated.
There are of course analogous problems at any prime.

Problem 5.1 Find o minimal generating set for P(n) as a module over A for
n > 4.

Problem 5.2 Is the best bound for dim Q#(P(n)) the product (1)(3)--- (2" —1)?

Problem 5.3 Is it true that the product of two non-hit polynomials in disjoint
sets of variables is non-hit over A?

Problem 5.4 Is it true that if a monomial in P(n) is non-hit over A, then some
matriz transformation of it contains a spike?

Problem 5.5 Find a formula for the ezcess of O, where © is a composite of
Steenrod squares, with a view to enhancing the use of the x-trick.

Problem 5.6 Find a minimal generating set for B(n) as a module over A for
n > 4.

Problem 5.7 If f is a kit monomial in P(n) over A, is its symmetrisation o(f)
hit symmetrically in B(n)?

Problem 5.8 What is the best bound for the dimension of Q*(B(n)) as a func-
tion of n independent of d?

Problem 5.9 Describe, for general n, the pieces of the mazimal splitting of P(n)
afforded by a complete set of orthogonal primitive idempotents in the semigroup
ring Fo[M(n,F,)]. How many distinct pieces are there? How many times does a
piece occur. Find the Poincaré series of the pieces.

Problem 5.10 How do we write down the central idempotents in Fa[M(n,F2)]?
How do they decompose into primitives?
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Problem 5.11 Describe the subalgebra of the semigroup algebra
FQ[M(TL, IFQ]

whose action on P(n) preserves symmetric functions. In particular find idempo-
tents in this algebra.

Problem 5.12 Describe, for general n, the pieces of the mazimal splitting of
B(n) and M(n) afforded by a complete set of symmetry preserving orthogonal
idempotents in the semigroup algebra Fo[M (n,F2)]. How many pieces are there?
How many times does a piece occur?

Problem 5.13 Solve the first occurrence problems for the irreducible modules

of general linear groups as composition factors in the polynomial algebra at odd
primes.

Problem 5.14 Solve the first occurrence problems for the irreducible modules of
the symmetric groups in the polynomial algebra at odd primes.

Problem 5.15 Find the Poincaré series of the pieces Yy in the splitting of
Z(RP*® x ... x RP%)
afforded by the irreducible representations A of the matriz semigroup M(n,Fs).

Problem 5.16 What is the mazimal splitting of the stable homotopy type of
BO(n)? How does it relate to the central idempotent splitting of B(n)?.

Problem 5.17 Does the Thom complez MO(n) split stably forn > 22

Problem 5.18 What is the relation between the hit problems for P(n) as a mod-
ule over A and as a module over D?

Problem 5.19 Solve the hit problem for the action of D on W(n) for n > 2
over the rationals.

Problem 5.20 Investigate hit problems for the action of D on the pieces of W (n)
split off by idempotents associated with irreducible representations of the symmet-
ric group ¥, in the modular case.
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Problem 5.21 Is it true that the product of two non-hit polynomials in disjoint
sets of variables is non-hit over D7

Problem 5.22 What is the best bound for dim(Q%(P(n)) for P(n) as a module
over D?

Problem 5.23 Investigate rings of invariants of permutation groups as modules
over D.
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