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During the month of June 2000 Fred Cohen (University of Rochester, USA) and I, directed,
and lectured to, a summer school at the University of Ioannina in Greece. The purpose of the
summer school was to make some of the recent developments on the interface of invariant
theory and algabraic topology accesible to students. This proved not to be an easy undertak-
ing, and in the year before the summer school, Fred and I spent many hours discussing in
person, and weeks exchanging e-mail mesages, the problems connected with organizing a
coherent program, i.e., selecting from the material with which we were familiar to create a
program that hung together well.

One topic that seemed central to our planning was the Steenrod algebra. Beginning with the
paper of J. F. Adams and C. W. Wilkerson [1], it has had a significant influence on the devel-
opment of invariant theory (see e.g. [21], [22], [18], and [17] and their reference lists). This
presented us with the problem of explaining the Steenrod algebra to non algebraic topologists
in a concise, motivated, and nontechnical ! algebraic manner. A decade ago at Yale I was
confronted with the same problem when teaching a course on invariant theory to an audience
consisting primarily of algbraicists, group theorists, and number theorists. I explained how I
did this to Fred: the basic idea was to regard the total Steenrod operation as a perturbation of
the Frobenius map, and to define the Steenrod algebra as a subalgebra of the endomorphisms
of a certain functor gotten from this perturbation.

This got Fred to thinking about some things he was familiar with, which had a similar nature.
These he explained to me. In the course of doing so, we found that a common, but not well
brought out theme, in many of the topics we felt to be relevent for the summer school, was
the structure of a subgroup, or subalgebra, of automorphisms of a functor: generally a simple
and easily understood functor, where the subgroup, or subalgebra, had a natural origin. We
decided to organize the summer school around this theme. '

The purpose of these notes is to provide an introduction to the Steenrod algebra in this man-
ner, i.e., presented as a subalgebra of the algebra of endomorphisms of a functor. The functor
assigns to a vector space over a Galois field the algebra of polynomial functions on that vector
space, and the subalgebra is specified by means of the Frobenius map.

The material presented here is not new: in fact most of the ideas go back to the middle of the
last century, and are to be found in papers of H. Cartan [6], [7], J.-P. Serre [19], R. Thom [28]
and Wu-Wen Tsiin [33], with one key ingrediant being supplied by S. Bullet and L. Macdonald
[5] (see also T.P. Bisson [3]). My contribution, if there is one, is to reorganize the presenta-
tion of this material so that no algebraic topology is used, nor is it necessary to assume that
the ground field is the prime field. This way of presenting things appeared in print spread
through Chapters 10 and 11 of 2 [21]. (See also [20].) For the summer school I collected all
this, stripped it of the applications to algebraic topology, and expanded it to include the Hopf
algebra structure of the Steenrod algebra due to J.W. Milnor [13] for the prime field.

I have kept these notes to a minimum, and can only encourage the reader to consult the
vast literature on the Steenrod algebra. For orientation in this morass the reader can do no
better than to consult the excellent survey artical [31]. In addition to the references already
mentioned, the course notes from the lectures of Prof. R. Wood at the Summer School [32] in
Toannina provide an excellent list of accesible papers and problems (sicl).

In what follows we adhere to the notations and terminology of [21] and [18]. In particular,

1No Eilenberg-MacLane spaces, no vy products, etc.

2 The emphasis in Chapter 10 of [21] is on certain topological applications: in these notes, and at the summer school in Ioannpina,
I replaced this with some examples from invariant theory.
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if F is a field and V =EB" is an n -dimenaional vector space over F, then F[V] denotes the
graded algebra of polynomial functions on V. This may be regarded as the symmetric algebra
on the dual vector space V* of V', where the elements of V*, the linear forms, have degree
1. Note carefully we ignore the usual topological sign conventions, since graded commutation
rules play no role here. (For a discussion of gradings see e.g., [18] Appendix A Section 1.)
The correspondence V ~~ F[V] defines a contravariant functor from vector spaces over F to
graded connected algebras, which is at the center of what follows.

§1. The Steenrod Algebra

We fix once and for all a Galois field F, of characteristic p containing g = p” elements.
Denote by F,[VI1[[¢]] the power series ring over F,;[V] in an additional variable ¢, and set
deg(£) = 1- g . Define an F, -algebra homomorphism of degree zero

P (&) :Fy[V1— B, [VIIIE]L
by requiring
P(E)L) = £+ 29¢ e Bg[VI[[¢]], V linear forms Le V™.

For an arbitrary polynomial f € F,[V], we have after separating out homogeneous compo-
nents, 3

S Pi(f)El ifpis odd,
i=0

(%) PN =R
L 8q'(e’ ifp =2

This defines #*, resp. Sq’, as F, -linear maps
P, 8q" 1 Fy[V]— Fy[V].

These maps are functorial in V. The operations &*, respectively Sq', are called Steenrod
reduced power operations, respectively Steenrod squaring operations, or collectively,
Steenrod operations. In order to avoid a separate notation for the case p = 2, with the
indulgence of topologists,* we set Sq' =&* forall i e Ny.

The sums appearing in (%) are actually finite. In fact P(£)(f) is a polynomial in £ of de-
gree deg(f) with leading coefficient 9. This means the Steenrod operations acting on Fg[V]
satisfy the unstability condition

iy - [ 9 ifi=deg(f),
PHf)= {0 it > deglf), V feRI[V]
Note that these conditions express both a tﬁviality condition, viz.‘, PH(f)=0 for all i >deg(f),
and, a nontriviality condition, viz., pleelf ") = f9. 1t is the interplay of these two require-
ments that seems to endow the unstability condition with the power to yield unexpected con-
sequences.

Next, observe that the multiplicativity of the operator P (¢) leads to the formulae:
- Q)k(f'f”) = Z Fj’i(f')“})j(f”), Vfr,f" EIFQ[V].
i+j=k
These are called the Cartan formulae for the Steenrod operations. (N.b., in field theory, a

family of operators satisfying these formulae is called a higher order derivation. See, e.g.,
[12] Chapter 4, Section 9.) '

3 Let me emphasize here, that we will have no reason to consider nonhomogeneous polynomials, and implicitly, we are always
assuming, unless the contrary is stated, that all algebras are graded, and if nonnegatively graded, also connected. The algebra
F[VI[{¢]] is graded, but no longer connected.

4 This is not the usual topological convention, which would be to set ¥* = Sq? . This is only relevant for this algebraic approach
when it is necessary to bring in a Bockstein operation.
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As a simple example of how one can compute with these operations consider the quadratic
form

Q= x2+xy +y2 e Bylx, yl.

Let us compute how the Steenrod operations Sq' act on @ by using linearity, the Cartan
formula, and unstability.

Sql(Q) = Sq*(x%) + Sq*xy) + Sa*(y®)
= 2xSq (x) + Sq*(x) -y +x - Sq'(y) +2ySq'(y)
=0+ 2%y +xy? +0 = 2%y + xy?,
S (@) =Q%=x*+ x2y? ¢ y4,
Sq'(Q) =0 for i > 2.

Since the Steenrod operations are natural with respect to linear transformations between
vector spaces they induce endomorphisms of the functor

B, [-] : Vectp, — ﬁlgmq

from F, -vector spaces to commutative graded F, -algebras. They therefore commute with the
action of GL(V) on F,[V]. If G & GL(n,Fy) isa faithful representation of a finite group
G then the Steenrod operations restrict to the ring of invariants F, [V]€, i.e., map invariant
forms to invariant forms. Hence they can be used to produce new invariants from old ones.
This is a new feature of invariant theory over finite fields as opposed to arbitrary fields (but
do see in this connection [10]). Here is an example to illustrate this. It is based on a result,
and the methods of [23].

EXAMPLE 1: Let F, be the Galois field with g elements of odd characteristic p, and con-
sider the action of the group SL(2,F,) on the space of binary quadratic forms over Fy by
change of variables. A typical such formis Q(x,y) = ax? +2bxy +cy?.

The space of such forms can be identified with

T [a b ] the vector space Maty’y (F,) of 2x2 symmetric

b e matrices over F, . Under this identification the

form @ corresponds to the matrix Tg at the left, and the action of SL(2,F,) is given by

TqH— STgSY™, where S e SL(2, Fy), with St the transpose of S. The element -l & SL(2, Fg)

acts trivially. By dividing out the subgroup it generates, we receive a faithful representation

of P28L(2, F,) = SL(2, Fy) i {il} on the space of binary quadratic forms. This group has order
qlg=-1)2.

The action of PSL(2, F,) on Mat35 (B,) preserves the quadratic form det: Matgy (Fy) — Fq
and since there is only one, up to isomorphism, nonsingular quadratic formin 3 variables over
F, (cf., [9] §169-173), we receive an unambiguous faithful representation o : PSL(2, Fg) &
©(3, Fy). Denote by

x5 s *
[y . ] e Mat3" (Fy)
a generic linear form on the dual space of the 2x2 symmetric matrices over F, . Per definition
the quadratic form

det=xz-y2 <R, Mat3;" (F,)l = Fqlx, y, 21

is O(3, F,)-invariant. If we apply the first Steenrod operation to this form we receive the new
invariant form of degree q +1, viz.,

PU(det) = 292 + 227 - 2y 7! & Bylx, 3, 2177,

The full ring of invariants of the orthogonal group ©(3,F,) is known (see, e.g., [8] or [23]). To
wit

Folz, y, 21%®F = F, [det, 9 (det), Eget-
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Here Eg4e is the Euler class (see e.g. [26] or [18] Chapter 4) associated to the configuration of
linear forms defining the set of external lines to the projective variety ¥g4e¢ in the projective
plane PF,(2) over F, defined by the vanishing of the determinant 5 (see [11] Section 8.2 and
[23]). The form Eg. has degree g(g —1). The three forms det, Pl(det), Eq € Fylx, v, z] O3 F)
are a system of parameters [23].. Since the product of their degrees is |O(3, IE"q)l it follows
from [21] Proposition 5.5.5 that F,[x, ¥, zZ]°®F) must be a polynomial algebra as stated.

The pre-Euler class 4. of the set of external projective lines to X4, is an ©(3,F,;) det-
relative invariant, so is SO(3, Fy)-invariant. It has degree (J), and together with the forms

det and P(det) it forms a system of parameters for F,[x,y, z]S9°@F) so again we may
apply Proposition 5.5.5 and conclude that F,[x, y, z]S®3F<) is a polynomial algebra, viz.,
Fylx, y, 2]S0BF) = F,_ [det, P (det), e4er] -

Finally, PSL(2, F,) is the commutator subgroup of SQ(3, F,;) and has index 2 in SO(3,F,),
so by a Proposition in [25] the ring of invariants of PSL(2, F,) acting on the space of binary
quadratic forms is a hypersurface. It has generators det, $'(det), €4; and a certain form ©
which satisfies a monic quadratic equation over the subalgebra generated by the first three.

A choice for @ is the pre-Euler class of the configuration of interior projective lines to the
variety ¥g.; < PF(3).

The Steenrod operations can be collected together to form an algebra, in fact a Hopf algebra
(see Section 4), over the Galois field F, .

DEFINITION: The Steenrod algebra &°(F,) is the [, -subalgebra of the endomorphism
algebra of the functor F,[-], generated by PO=1,9 9% ..

NOTATION: In most situations, such as here, the ground field F, is fixed at the outset,
and we therefore abreviate &"(F,;) to &".

The next sections develop the basic algebraic structure of the Steenrod algebra

§2. The Adem-Wu Relations

The Steenrod algebra is by no means freely generated by the Steenrod reduced powers. For ex-
ample, when p =2 itis easy to check that Sq'Sq’ =0 by verifying this is the case for monomials
2F = z{',..., z&: to do so one needs the formula, valid for any linear form, Sql(z*) = k2*+1,
which follows by induction immediately from the Cartan formula. ¢

Traditionally, relations between the Steenrod operations are expressed as commutation rules
for PP/, respectively Sq'Sq’ . These commutation relations are called Adem-Wu relations.
In the case of the prime field F, they were originally conjectured by Wu Wen-Tsiin based on
his study of the mod p cohomology of Grassmann manifolds [33] and proved by J. Adem in [2],

H. Cartan in [6], and for p =2 by J.-P. Serre in [19]. These relations are usually written as
follows:

[i/g] ((q =1=R)=1

PP =3 (=L i~ gk )9*’*]’*@* Vi, j20,i<gj.
k=0

Note for any Galois field F, the coefficients are still elements in the prime subfield F, of F;.

The proof of these relations is greatly simplified by the Bullett-Macdonald identity, which
provides us with a well-wrapped description of the relations among the Steenrod opera-
tions, [5]. To describe this identity, as in [5], extend P(§) to a ring homomorphism P (§):

5 The projective plane of B, is defined by PF(2) = (F3 \ {0})’" where F* acts via scalar multiplication on the vectors of F3
In this discussion we are identifying FS with Mat35"(Fy), so this is the same as the set of lines through the origin in Mat3’" .
The pre-Euler class ey, may be taken to be the product of a set of linear forms {{.} ,indexed by the (3) external lines {L} to
%4et , and satisfying ker(£.) =L. The Euler class Ege is its square.

6In fact every element in the Steenrod algebra is nilpotent: but the index of nilpotence is known only in a few cases, see e.g.
[15], [16], [29], [30] and [31] for a resumé of what is known.
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R(V]In] — B[V1Inll¢] by setting P(£))(n)=n. Next, set u =(1- 391 = 1 Gpa soakd 9 and
s = tu . Then the Bullet-Macdonald identity is

P(s)oP(1)=P(u)oP(£?).

Since P(§) is additive and multiplicative, it is enough to check this equation for the basis
elements of V*, which is indeed a short calculation. Rumor says, Macdonald, like most of
us, could not remember the coefficients that appear in the Adem relations, so devised this
identity so that he could derive them on the spot when J. F. Adams came to talk with him.

REMARK: For p = 2 T.P. Bisson has pointed out (see [4]) that the Bullet-Macdonald may
be viewed as a commutation rule, viz., P(£)P(n) =P (n)P(£). For a general Galois Fy, one
needs to demand GL(2, B,)-invariance of P({), where ¢ = Spang,_ {£,7}.

To derive the Adem-Wu relations we provide details for the residue computation’ sketched
in [5]. First of all, direct calculation gives:

P(sP(D) =) s*P°P*
a, k

PPt =Y ut+bipaigertg
a, b, j
which the Bullett-Macdonald identity says are equal. Recall from complex analysis that

1 1 m=-1
Manil md =
21’1’1%,2 z {0 otherwise

where v is a small circle around 0 € C. Therefore we obtain

Soegh o L POy,
3 ¥

Tfi sa+1

ds

T omi sa+l

1 f P(u)P(t?)
Y

1 ua+b—thj 2 g

— pa+b=j¢

=5 E f—-—sml ds&¥ @
a, b,j"7

The formula s = ¢(1 - ¢)?"! gives ds = (1-¢)7%(1- qt)d¢ , so substituting gives
ua-:-b-jtqj (1~ t)(q—l)(a+b-j)tqj(1 _ t)q—Z(l - qt)
ga+l = [t(l _ t)q—l]“"’l
= {1 — t)(b-j—l)(q—1)+(q—2)tqj—a—l(l _ qt)dt
= (1 —¢)eNa-1-Dygj-a-1(1 _ a4)d¢

- | Tt ((b hg == 1) tk} (Y1 _ gt)dt
k

dt

k

=S 1t ((b = )(‘i" b= 1) e gthve| d .
k

Therefore

+b—j+q]
gt =3 1 fut7t | pavsig
~ |27 J, ga+l

J

1 b (b —J)(q —1)—1 k+qj-a-1 k+gj—a a+b=i¢pJ
=Zz—ﬂ—”{;(-1) ( : [t =gt ]dtﬂ’ P,
)

7 The following discussion is based on conversations with E.H. Brown Jr. I do hope I have come close to getting the indices correct
for once.
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Only the terms where
k+gj-a-1=-1 (k=a-q)j)
E+qj-a=-1 (k=a-qgj-1)
contribute anything to the sum, so

.‘Paf})b _ Z [(_l)a_qj) ((b '_J)(q — LY 1) + (_l)a—q_j—lq ((b _J)(q - 1)~ 1)} Ej)a+b-j£pj
; a-qj a-gj-1

and since

((b -jq —1)—1) _q((b ~iXg -1)~1)
a-gqj a-qj-1

we conclude

((b -Jj)Ng - 1)—1) mod
a-gqgj

g)aEPb — Z(_l)a—qj ((b —Jg - 1) - 1) g)a+b—-jg)j.
F a-=-qj
Thus there is a surjective map from the free associative algebra with 1 generated by the
Steenrod operations modulo the ideal generated by the Adem-Wu relations,

Pl Z(*-l)“"” ((b —J;(ﬁ ;jl) a I)EP'”b'j.‘J’j a,beNanda<gb,
dJ

onto the Steenrod algebra. Denote this quotient algebra by $*. In fact, this map, 8" — 2~
is an isomorphism, so the Adem-Wu relations are a complete set of defining relations for the

Steenrod algebra. The proof of this, and some of its consequences, is the subject of the next
section.

§3. The Basis of Admissible Monomials

In this section we show that the relations between Steenrod operations that are universally
valid all follow from the Adem-Wu relations. To do so we extend some theorems of of H. Cartan,
(6], J.-P. Serre, [19], and Wu Wen Tsiin, [33] from the case of the prime field to arbitrary Galois
fields. We also rearrange their proofs so that they do not make any direct use of topology.

An index sequence is a sequence I = (i, ip,..., i3,...) of nonnegatwe integers, almost
all of which are zero. If I is an index sequence we denote by ?' e #* the monomial
P .Pi2.. P ... in the Steenrod operatlons &' | with the convention that trailing 1s are
ignored. The degree of the element P is (g - 1)(]1 +jo 4 -+ +jp +--). These iterations of
Steenrod operatlons are called basic monomials. An 1ndex sequence I is called admissible
if is 2 qige; for s=1,.... Wecall k the length of I if i, #0 but i; =0 for s > k. Write £(I)
for the length of I. It is oﬂ:en convenient to treat an index sequence as a finite sequence of
nonnegative integers by truncating it to £(I) entries.

A basic monomial is defined to be admissible if the corresponding index sequence is admis-
sible. The strategy of H. Cartan and J.-P. Serre to show that the Adem-Wu relations are a
complete set of defining relations for the Steenrod algebra is to prove that the admissible
monomials are an F, basis for .

Recall that 8" denotes the free, graded, associative algebra generated by the symbols P*
modulo the ideal spanned by the Adem-Wu relations. We have a surjective map 8° — &,
and so with his notation our goal is to prove:

THEOREM 3.1: The admissible monomials span 3" as an B, -vector space. The images of
the admissible monomials in the Steenrod algebra are linearly independent.
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PROOF: We begin by showing that the admissible monomials span 3~ .

For a sequence I = (i1, is,..., iz), the moment of I, denoted by m(I), is defined by m(I) =
S % | 5-is. We first show that an inadmissible monomial is a sum of monomials of smaller
moment. Granted this it follows by induction over the moment that the admissible monomials
span B".

Suppose that ¢! is an inadmissible monomial. Then thereis a smallest s such that is <gis.1,
l.e.,

9l = @' Pplgpisn g
where @', 9" are basic monomials, and Q' is admissible. It is therefore possible to apply
an Adem-Wu relation to ¥’ to obtain

.
P =3 q;@ girrisnigig"

g

for certain coefficients aj € Fp. The terms on the right hand side all have smaller moment

than #! , and so, by induction on s we may express P! as a sum of admissible monomials.
(N.b. The admissible monomials are reduced in the sense that no Adem-Wu relation can be
applied to them.)

We next show that the admissible monomials are linearly independent as elements of the
Steenrod algebra #* . This we do by adapting an argument of J.-P. Serre [19] and H. Cartan
[6] which makes use of a formula of Wu Wen-Tsiin.

Let ey = x1x9 -+ x, € Bylx1,..., xp] be the n-th elementary symmetric function. Then,

P(&Xes) =P @[] =] P &)=

i=1 i=1

- H(xi +x?$) = Hxi * ln_I(l +x?'1€)
i=1 i=1 i=1

n
= = ]
=en(x1,..., xn)- (Zei(xf yeeny xg I)EI) ’
i=1

where e;(x1,..., x,) denotes the i-th elementary symmetric polynomial in xj,..., %n- So
we have obtained a formula of Wu Wen-Tsﬁn:

Pie,) = e, -e,-(xf_l,..., xg‘l).
We claim that the monomials
{sff | 7 admissible and deg(9”) < 2n}

are linearly independent in Fg[x;,..., x]. To see this note that in case 2(IN < n, each entry
in I is at most n (so the following formula makes sense), and

s
I = 21
(‘J’(en)=en-Hegj(xf peen I+

. J=1
where I =(iy,..., is), PT =P ---&P* and the remaining terms are lower in the lexicographic
ordering on monomials. So e, - Hj=1 eij(xg"l, e, xﬁ_l) is the largest monomial in ¥"(e,) in

the lexicographic order. Thus

[9Men | &1 admissible and deg(@')<2n},
have distinct largest monomials, so are linearly independent.
By letting n — ¢ we obtain the assertion, completing the proof. (]
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Thus the Steenrod algebra may be regarded (this is one traditional definition) as the graded
free associative algebra with 1 generated by the Sq° respectively ¥ modulo the ideal gener-
ated by the Adem-Wu relations. This means we have proven:

THEOREM 3.2: The Steenrod algebra &" is the free associative R, -algebra generated by
the reduced power operations 9°, ¥, &2 ... modulo the Adem-Wu relations. O

COROLLARY 3.3: The admissible monomials are an R, -basis for the Steenrod algebra & .
G

Since the coefficients of the Adem-Wu relations lie in the prime field F, , the operations ¥” '
for { 20 are indecomposables in &?°. In particular, over the Galois field F,, the Steenrod
algebra 22" is not generated by the operations 99" for i >0: one needs all $#' for i >0.

This will become even clearer after we have developed the Hopf algebra structure of " in
the next section.

EXAMPLE 1: Consider the polynomial algebra Fy[@Q, T] over the field with 2 elements,
where the indeterminate @ has degree 2 and T has degree 3. If the Steenrod algebra were
to act unstably on this algebra then the unstability condition would determine Sq*(€) and
S¢/(T) apart from i =1 and j =1 and 2. If we specify these as follows

Sql(@) =T, SqT)=0, Sq¥T)=QT,

and demand that the Cartan formula hold, then using these formulae we can compute Sqf
on any monomial, and hence by linearity, on any polynomialin @ and T'. For example

SqUQT)=Sq%(Q) T +Q -SqMT)=T?+0=T?,

and so on. Note that since Sq* - Sq! = 0 is an Adem-Wu relation, Sql(T) =0 is forced from
Sq'(Q) = T. To verify the unstability conditions, suppose that

[%]
b-1-
Sqasqb = Z ( C)Sqa+b--csqc’ O<a<2b,

a-2¢
c=0

is an Adem-Wu relation. We need to show that
i%] b-1
— — C » »
Sqasqb_z ( )Sqa+b—csqc (QLTJ) =0

a -—
=~ 2ec

for all i, j € N . By a simple argument using the Cartan formulae, see, e.g., [27] Lemma 4.1,
it is enough to verify that these hold for the generators @ and T, and this is routine. Itisa
bit more elegant to identify @ with x%+xy +y2 and T with x2y + xy? e Falx, y]. The action
of the Steenrod operations on @ and T then coincides with the restriction of the action from
Fy[x, y]. This way, it is then clear that Fy[@, T'] is an unstable algebra over the Steenrod
algebra, because with some topological background we recognize this as just H (BSQ(3); F2).

§4. The Hopf Algebra Structure of the Steenrod Algebra

Our goal in this section is to complete the traditional picture of the Steenrod algebra by prov-
ing that &'(F,) is a Hopf algebra 8 and extending Milnor’s Hopf algebra [13] structure the-
orems from the prime field F, to an arbitrary Galois field. It should be emphasized that this
requires no new ideas, only a careful redoing of Milnor’s proofs avoiding reference to algebraic
topology and cohomology operations, and carefully replacing p by ¢ where appropriate.

8 One quick way to do this is to write down as comultiplication map
vieh= Y vew, k=12...

t+j=k

and verify that it is compatible with the Bullett-Macdonald identity, and hence also with the Adem-Wu relations.
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PROPOSITION4.1: Let p be a prime integer, ¢ = p¥ a powerof p, and F, the Galois field
with g elements. Then the Steenrod algebra of B, is a cocommutative Hopf algebra over F,
with respect to the coproduct

V.F — P
defined by the formulae _
vt =S fed, k=12,....

i+j=k

PROOF: Consider the functor V ~~ F,[V] ® F,[V] that assigns to a finite dimensional
vector space V over F, the commutative graded algebra F,[V] ® R,[V] over Fy. Thereisa
natural map of algebras

P ® F — End(V ~ R [VI@F,[V])

given by the tensor product of endomorphisms. Since thereisan isomorphism Fq[V]®F,[V]=
F,[V @ V], that is natural in V, the functor End(V - F,[V]®F,[V]) isa subfunctor of the
functor End(V ~ B,[V]) that assigns to a finite dimensional vector space V over B, the
polynomial algebra F,[V]. Hence restriction defines a map of algebras

F*— End(V ~F [VI®F,[V]
and we obtain a diagram of algebra homomorphisms
PP
2 % End(V v F,[VI®F[V])
What we need to show is that Im(p) & Im(7), for since T is monic V = 'r“lg would define
the desired coproduct. Since P* for k=1,2,..., generate & it is enough to check that

p(ka) e Im(7) for £ =1,2,..., . But this is immediate from the Cartan formula. Since V is
a map of algebras the Hopf condition is satisfied, so 2" is a Hopf algebra. U

If J is an admissible index sequence then

e(J) ='ZUS — @Jjs+1)
s=1
is called the excess of J . For example, the sequences

M, =(qk'1,..., g,1), 2=1,2,::

are all the admissible sequences of excess zero. Note that

k
deg(EPM") = qu'j(q wy=g® 1, for k=12, v
J=1
Recall by Corollary 3.3 that the admissible monomials are an F, -vector space basis for 2",

Let £.(B,) denote the Hopf algebra dual to the Steenrod algebra 2"(F;). We define §;

2.(B,) to be dual to the monomial PMr = 9" .. 97 . P with respect to the basis of admis-
sible monomials for #°. This means that we have:

<97 | &> = {1 if 7 = My,

-0 otherwise,

where we have written <& | £> for the value of an element ¥ € Z°(Fy) on an element
£ € P.(F,). Note that deg{ék)-_-qk—l for k=1,...,.
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If I =(iy,is, .‘.., It,...) is an index sequence we call £ the length of I, denoted by £(I),
if i =0 for £ > £, but i&#O. We associate to an index sequence I = (iy, ig,..., I},...) the

element ¢/ = gi‘ . 5;2--'51; e P.(Fy), where £ = £(I). Note that

&I

deg(¢1) = is(g® - 1.

s=1

To an index sequence I = (i1, i3,..., i,...) We also associate an admissible sequence J(I) =
(G1,J2,---» Ja,...) defined by

o = >
(@) 1= 6sq% Ja=) 0, Jh=) isgth
s=1 s=2 s=k

It is easy to verify that as I runs over all index sequences that J(I) runs over all admissible
sequences. Finally, note that deg(ﬂ"m)) = deg(¢!) for any index sequence I.

The crucial observation used by Milnor to prove the structure theorem of #.(F,) is that the
pairing of the admissible monomial basis for *(,) against the monomialsin the £ is upper
triangular. To formulate this precisely we order the index sequences lexicographically from
the right, so for example (1,2,0,...) <(0,0,1,...).

LEMMA 4.2(J. W. Milnor): With the preceding notations we have that the inner product
matrix <$/D | ¢K> is upper triangular with 1s on the diagonal, i.e.,

<01 %> (3 12K

PROOF: Let the length of K be £ and define K' = (kq, kg,..., k
K=K g e 2B,
If V denotes the coproduct in #°(F,), then we have the formula
(+) <PID| eE> =<PTP | K¢, > = <v@' D) | K 0 ¢, >
If JUI)=(1,j2,---5 J&,---) then one easily checks that
v’ D= Y 97 e9”.

2-1)5 SO

J'+J" =J(I)
Substituting this into () gives
=) KPP eE>= T <97 | > <97 | g,>
J'+J"=d(I)

By the definition of ¢, we have

<97 | ¢ >={1 if J" = M,,
£ 0 otherwise.

If J' = M, then unravelling the definitions shows that J' = J(I'), for a suitable I', so if K
and I have the same length £, we have shown :

<g)J(I) I EK> = <EPJ(I') ] éK'>’
and hence it follows from induction over the degree that

PID | ¢K ={1 ifl =K,
< |$ e 0 ifI <K.

If, on the other hand, £(I) < £ then all the terms
L | £ >

in the sum (%) are zero and hence that <#7" | ¢€> =0 as required. O
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THEOREM4.3: Let p be a prime integer, g = p¥ a power of p, and B, the Galois field
with q elements. Let P.(B,) denote the dual Hopf algebra to the Steenrod algebra of the
Galois field B, . Then, as an algebra

P =Byler, .., Enren il
where deg(¢,) = ¢* — 1 for k e N. The coproduct is given by the formula

Vi)=Y EF @8, k=12....
i+j=k
PROOF: By Milnor’s Lemma (Lemma 4.2) the monomials {£7} where I ranges over all
index sequences are linearlyindependent in Z.(F;). Hence F, (€10, &py- - ] E Pu(Fy). But
P.By) and Fgléy,..., &k, -- .] have the same Poincaré series, since deg(EPJm) = deg(§ Iy for

all index sequences I, and the admissible moniomials P7D are an IR, -vector space basis for
P'(Fy). So Fyléy,..., £k, -..1= Pu(By), and it remains to verify the formula for the coproduct.

To this end we use the test algebra B, [u], the polynomial algebra on one generator, as in [13L
Note that for admissible sequences we have

(%) P (u) = { ud" if J =My,
0  otherwise.

Define the map

A" Bglul — Fylul ® 2.
by the formula

ANwh=Y 2" Puhed!
where the sum is over all index sequences I . Note that in any given degree the sum is finite
and that \* is a map of algebras. Moreover

A" @ DA () =(1® VA (u),

i.e., the following diagram

F, (1] ® 2.0F,) ® Zu(F,) — Fylul® 2.

© ATel R
F,lul® #. > — Folul
is commutative.
From (%) it follows that
N =Y u’ ek
which when raised to the g” -th power gives
At(ur) - Z uqk+r ® sgf,
and leads to the formula

Ao W)=\ e1)(due )= u? @ £4" @ 4.
k r k

Whereas, the other way around the diagram © leads to
1® V)N @)= u? ® Vulés),

J

and equating these two expressions leads to the asserted formula for the coproduct. [l
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As remarked at the end of the previous Section the operations ¥* for i >0 are indecompos-
ables in #*, so " is not generated by the operations $? for i >0; we need all the $*

for i > 0. This ¢an be readily seen on hand from the dual Hopf algebra, where, since F; has
characteristic p, the elements £ f " for i >0 are all primitive, [{14]. The following Corollary

also indicates that passing from the prime field F, to a general Galois field F, is not just a
simple substitution of g for p.

COROLLARY4.4: Let p be a prime integer, ¢ = p¥ a power of p, and F, the Galois field
with g elements. The indecomposable module Q(Z?") of the Steenrod algebra of Fq has a
basis consisting of the elements $? " for i e Ny, and the primitive elements P(&") has a basis
consisting of the elements $* for k € N, where, for k € N, P s dual to ¢, with respect
to the monomial basis for . . U

§5. The Milnor Basis and Embedding one Steenrod Algebra in Another

If I =(iy,is,..., ip,...) is an index sequence we denote by $(I) € &*(F,) the element in the
Steenrod algebra that is dual to the corresponding monomial ¢7 in £.(F;) with respect to
the monomial basis for #.(,). This is not the same as the monomial Pl=gphr. ...
these two elements do not even have the same degrees. As I ranges over all index sequences
the collection £(I) ranges over an F, -basis for &2*(F,) called the Milnor basis.

To give some examples of elements written in the Milnor basis introduce the index sequence
A which has a 1 in the k-th position and otherwise 0s. Then P* is P(kA,), and, as noted
at the end of Section 4, the Milnor primitive elements 9% = @(A;), for k>0, form a basis
for the subspace of all primitive elements. In terms of the reduced power operations these
elements can also be defined by the inductive formulae

1 .
P = {EP ) ifk=1
(97" 98] for k>0,

where [#', ?"'] denotes the commutator & -9 -¢" -9’ of ¢’ and ¥ . In Milnor’s paper one
can also find a formula for the product $(I) - $(J) of two elements in the Milnor basis. The
basis transformation matrix from the admissible to the Milnor basis and its inverse is quite
complicated, so we will say nothing more about it.

To each index sequence I we can make correspond both an admissible sequence over F, and
one over F, via the equations (¢) from the previous Section. This correspondence gives us a
map ¥ : F(Fy) — F'(F,) ®p, Fy -

THEOREM5.1: Let p be a prime integer, q = p¥ a power of p, and F, the Galois field
with q elements. The map

9 : F(F,)— F'F,) @, F,

embeds the Steenrod algebra &"(By) of B, as a Hopf subalgebra in the Steenrod algebra of
F, extended from F, up to F,.

PROOF: It is much easier to verify that the dual map
1.9: 3 g*(IFp) ®']Pp ]Fq = ?s(IFq),
which is defined by the requirement that it be a map of algebras, and take the values

= ¢m(q) ifk =mv(sopk—1=qm_1)
el @ { 0 otherwise,

on algbera generators, is in fact a map of Hopf algebras. This is a routine computation. [

The Steenrod algebra over the prime fleld B, has a well known interpretation as the mod p
cohomology of the Eilenberg - MacLane spectrum. By flat base change F(Fp) @p, Fq may
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be regarded as the F, -cohomology of the same. By including the Eilenberg - MacLane spec-
trum K(F,) for the prime field into the Eilenberg - MacLane spectrum K(B,) we may view
the elements of &*(F,) ®g, F, as defining stable cohomology operations in F, -cohomology.
By Theorem 5.1 this also allows us to interpret elements of &"(F,) as stable cohomology op-
erations acting on the F, -cohomology of a topological space. Which elements appear in this
way is described in cohomological terms in [24].

§6. Closing Comments

Algebraic topologists will of course immediately say “but that isn’t the Steenrod algebra, it is
only the algebra of reduced power operations; there is no Bockstein operator unless g = 2.”
This is correct, the full Steenrod algebra, with the Bockstein, has not yet played a significant
role in invariant theory, so I have not treated it here. But, if one wishes to have a definition
for the full Steenrod algebra in the same style as the one presented here, all one needs to do
for g # 2 is to replace the functor V ~~ F[V] with the functor V ~~ H(V), where H(V) is
defined to be H(V) =F[V] ® E[V], with E[V] the exterior algebra on the dual vector space
V* of V. Since V* occurs twice as a subspace of H(V), onceas V*®F  F[V]®F and once
as F® V* = E[V], we need a way to distinguish these two copies. One way to do this is to
write z for a linear form z € V* when it is to be regarded as a polynomial function, and dz
for the same linear form when it is to be regarded as an alternating linear form. This amounts
to identifying H(V) with the algebra of polynomial differential formson V.

Next introduce the Bockstein operator 8 : H(V)— H(V) by requiring it to be the derivation
where, for an alternating linear form dz one has §(dz) = z, where z is the corresponding
polynomial linear form, and for any polynomial linear form z one has §(z)=0. The operators
P* for k e N, together with 8 generate a subalgebra of the algebra of endomorphisms of the
functor V ~~ H(V), and this subalgebra is the full Steenrod algebra of the Galois field Fq .

Finally, at the summer school T.P. Bisson spoke about his work with A. Joyalon a universal al-
gebra approach to both the Dyer-Lashof algebra and the Steenrod algebra [4]. The interested
reader should consult this paper which contains many informative facts.
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