LECTURES IN IOANINNA

FREDERICK R. COHEN®

ABSTRACT. One of the main themes of this conference addresses invariants, as
well as their connection to endomorphisms of functors. These endomorphisms
yield useful techniques for the analysis of certain natural problems in the subject.

At this point there is a dichotomy: Smith’s lectures focus on functors which re-
flect "abelian properties” of an object in Algebraic Topology while Cohen’s lectures
focus on functors which reflect "non-abelian properties” in Algebraic Topology.
Part of the role, and applications of these structures for classical homotopy groups
will be addressed in these lectures. The four topics considered are as follows:

Splittings of spaces,

Endomorphisms of tensor algebras, and self-maps of loop spaces,
Braid groups, and homotopy groups of the 2-sphere, and
Cohomology of symmetric groups, and other groups.
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1. SPLITTINGS OF SPACES

The basic objects of study here are loop spaces, and suspension spaces. One goal is to
obtain information about the homotopy groups, and homology groups of these spaces.
These constructions also provide a natural continuation of the themes in Professor
Smith’s lectures in which he discusses classifying spaces.

For example, Milnor [20] showed that the loop space of a path-connected simplicial
complex X has the homotopy type of a topological group G, and where BG has the
homotopy type of X. This construction will be used below.

Principle: Many useful spaces are homotopy equivalent to a classifying space. This
feature has informative consequences as illustrated below.

Theorem 1.1. Let X be a topological space which is a connected CW-complex. Then
there ezists a topological group G such that X is homotopy equivalent to BG.

Next consider the path loop fibration
QX - PX - X

where PX denotes the path-space, the space of continuous functions {f : [0,1] —
X|f(0) = %}, and X is the subspace of PX given by

{£:00,1] = X|f(0) === f(1)}.

iPartially supported by the National Science Foundation.
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Classically, there are isomorphisms
ﬂ'i(X) — Mi—-1 (QX)

Thus the study of the homotopy groups of a simply-connected space reduces to those for
its’ loop space. The point of view of these lectures is to regard X as a classifying space,
and to learn properties about X from the loop space of X. Many of these properties
are described in [30].

There are sometimes useful, and informative features of QX which then inform on
X. It will be seen below that certain choices of invariant elements under the action of
a symmetric group yield additional information about 2X. Thus to continue a second
theme in Professor Smith’s lectures of invariant elements arising from natural actions
of groups, the symmetric groups are used to give decompositions of certain loop spaces
which arise from such invariants.

The first example in this context arises from the classical Hopf fibrations: There are
homotopy equivalences

1. 0182 = 5lx Q8%
2. Q8% - S xQS7,and
3. Q8% - §7 x QS'5,

These decompositions represent reformulations of the classical Hopf invariant one
problem, and are the the only cases for which such product decompositions for loop
spaces of spheres exist. That these are the only spheres S™®*! such that QS"*! is
homotopy equivalent to S™ x Q52"*! is equivalent to the classical result on the non-
existence of elements of Hopf invariant one.

However, after localization away from 2, there are homotopy equivalences
QSZn - SZn—l x Qs‘m—l

given by classical results due to Serre. These decompositions will be reformulated
below in terms of invariants of actions for certain symmetric groups. A general context
together with applications to other natural spaces are given as well.

One method of proof here is as follows. Start with a principle G-bundle with a
cross-section. It is a classical fact that such bundles are trivial. This method provides
a process for showing that a loop space of X is sometimes homotopy equivalent to a
product.

Proposition 1.2. Let E — B be a fibration with homotopy theoretic fibre F'. Assume
that the natural map i : F — E admits a cross-section up to homotopy ( thus there
is a map o : E — F such that io o is homotopic to the identity ). Then there is a
homotopy equivalence

F— ExQB.

As an example, consider the natural homomorphisms S — S° to obtain a fibration
BS! — BS? with fibre §2. "Backing up” this fibration, there is an induced fibration
Q5% — S with homotopy theoretic fibre 253. Since there is a section for this last
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fibration, the product decomposition 252 — S* x Q5° follows at once. This gives the
product decomposition for 252 listed above. The other cases are similar.

Other important constructions which fit in this framework are the Whitehead prod-
uct, and the Samelson product. Here consider a topological group G. The commutator
map

[--]1:GxG—= G
is gotten by sending the ordered pair (a, b) to the commutator [a, b]= a~b~'ab. Notice
that if either a or b is equal to 1, then the commutator [a, b] is equal to 1. There is an
induced map
S:GAG— G

where G A H denotes the quotient G x H/(G x {1} U {1} x H).

Notice that S* A §® = S"**. There is an induced bilinear map for all i,7 > 1 on
the level of homotopy groups

Sy : G @G — ?Tj+kG.

Regarding QX as a topological group G, there are analogous pairings induced on the
level of homotopy groups for any simply-connected CW complex X. These pairings
satisfy the (graded) antisymmetry law for a Lie bracket if the prime 2 is a unit, as
well as the (graded) Jacobi identity if 3 is a unit. In the case of graded Lie algebras
over Fy, the element [z, z] is required to be zero, and over Fs, the element [[z, z], z] is
required to be zero. These last two properties fail in general for the Samelson product
S, without additional assumptions. In case z is of even degree, it is the case that [z, z]
is sometimes non-zero, and is of order 2. In case z is of odd degree, it is the case that
[[z, z], ] is sometimes non-zero, and is of order 3.

This pairing S. is known as the Samelson product [26]. This pairing is related
to the classical Whitehead product W by adjointness up to a sign, and gives the
following commutative diagram where o : g1 X — 70X is the adjoint yielding a
natural isomorphism, and the pairing [z,y] in the homology of QX is given by z®y —
(_l)degree(:c)degree(y),y @z [6], page 215:

w
Tp1X @ Tgp1 X —— Tppqp1 X

aga | a|

10X @ TQX —2 Mpy X

! !

HOX 9 H,0xX =7 1, 0x

These constructions give rise to product decompositions of loop spaces in much the
same way that elements of Hopf invariant one give rise to product decompositions
above. This feature will be seen after the next example for which a product decompo-
sition of a loop space arises from work of T. Ganea, and P. Hilton, and others.

Here consider the inclusion of the wedge X VY in the product X x ¥ with homotopy
theoretic fibre F. Let X*) denote the k-fold smash product where X A'Y denotes
X xY/X VY. The following is a theorem of T. Ganea [14].
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Theorem 1.3. Let X, and Y be connected CW complezes, with the homotopy theoretic
fibre of the natural inclusion X VY in X x Y denoted by F. Then

1. F is homotopy equivalent to the (X A QY).
2. There is a homotopy equivalence

Q(X) x QY) x QB(QX AQY) - QX VY).

3. Furthermore, the choice of map QE(QX AQY) — QX VYY) is the canonical
maultiplicative extension of the composition of the map

QEAQ) UX)AQUY) > UAXVY)AQX VYY),
with the commutator map
S:UXVYIAQUXVY)— QX VY)
wherei: X - XVY,andj:Y — X VY are given by the natural inclusions.

Thus for example, if X and Y are CP*°, then X, and ¥ have precisely one non-
vanishing homotopy group. Since QCP® is homotopy equivalent to S*, the theorem
implies a homotopy equivalence

Q(CP* vCP>®) —» S'x 8! x Q83

Thus the homotopy groups of CP* V CP* are those of the 3-sphere plus 2 other copies
of the integers ( in degree 2). However, the spaces CP* V CP*, and S° x CP> x CP>®
are not homotopy equivalent.

The next theorem is the classical Hilton-Milnor theorem in which the notation X (¥)
is used for the k-fold smash product as above.

Theorem 1.4. Let X, and Y be connected CW complezes. Then there is a homotopy
equivalence

QS(X VIY) — QB(X) x Q(Y) x QX (Vi j51 XD A YD),

How do these "fit” with invariants ? How do they arise in some further way ? What
are these good for 7 Some of these questions will be addressed next. Two examples for
which product decompositions have proven to be useful are listed next.

1. Product decompositions for the loop space of a mod — p™ Moore space for p prime
have useful applications. These decompositions impinge on the structure of the
homotopy groups of spheres as well as other finite complexes.

2. More general splittings will be illustrated where spaces are localized at a fixed
prime. For example, consider spaces X which are (1) double suspensions, and (2)
their homology groups are non-trivial, and entirely torsion. Then the loop space
of X admits a product decomposition with infinitely many non-trivial factors.
These decompositions then directly give non-trivial elements in homotopy groups.

In what follows below, it will be assumed that the reduced homology of the spaces
below are entirely torsion.

There are natural self-maps of X(*) given by elements in the symmetric group on k
letters £x. Thus, there is an action” of the integral group ring Z[Z]Jon £X *) given
by adding via the suspension coordinate. These self-maps have been used widely to
give decompositions of X (%), Some examples are listed below.

30



LECTURES IN IOANINNA

Example 1.5. Example: Let k = 2, and let G» denote the element in the group ring
given by 1 — (1,2) where (1,2) is the transposition which interchanges 1, and 2. Then
a direct computation gives (32)? = 203s.

Furthermore, if 2 is a unit in the reduced homology of X, then the elements (s, and
2 — B, give an orthogonal decomposition of the homology of X (2), In addition, if 2 is
unit in the reduced integer homology of XX (), then there is a homotopy equivalence

2X@ & L, v M,

where L» denotes the homotopy direct limit of 32, and M denotes the homotopy direct
limit of 2 — Bs. This example is expanded below.

The Dynkin-Specht-Wever elements [, are elements in the integral group ring of
the symmetric group Z[Z,], which can be defined as follows: Regard the n-fold tensor
product V®” as a module over Z[Z,]. Then (8, in Z[X,] is obtained by the linear
transformation which sends v; ® v» ® - - ®vy, to the element [[-[v1, v2]vs] - ~-|vn] Where
the bracket [z,y] means z @ y — (—1)29x)d00)y @ 7.

For simplicity, assume that a space Y is a suspension £X. There are induced self-
maps B, n— B : (EX)™ — (ZX)™. Let L,(EX) denote the homotopy direct limit
of 3, and M,(ZX) the homotopy direct limit of n — Sx.

Proposition 1.6. 1. The formula 8,08, =nfy holds in homology for the self-maps
&, : (B s (EX)),
2. If n is a unit in the reduced homology of X, then there is map which induces a
homology isomorphism (ZX)™ — L, (ZX)V M,(ZX).

The proof is that singular homology commutes with the direct limit construction
here, and that the maps are isomorphisms in homology with any field coefficients. The
proof is a special case of what follows below. These constructions were given in work
of the author, and J. Wu, and have been developed further in recent work of P. Selick,
and J. Wu.

Namely, let g : ¥ — V be an idempotent self-map of a vector space V. Thus ? =g,
and so g, and 1— g give an orthogonal idempotents of V, and there is an isomorphism of
vector spaces V — gV@(1—g)V. Notice that there is an isomorphism gV — injlim, V.
This proof has a topological analogue.

Proposition 1.7. Let f : X — XX be any map which is idempotent on the level of
reduced homology groups. Then there is a map

X — AVB
which induces an isomorphism on homology where
1. A=injlim;¥X, and
2. B =injlim;_,¥X
Thus if X has the homotopy type of a CW-complez, the map © is a homotopy equiva-
lence.

This basic idea has been exploited in many beautiful ways by G. Cooke, N. Kuhn, S.
Mitchell, G. Nishida, N. Ray, J. Smith, L. Smith, and R. Wood as well as many others.
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The main point here is that invariants in linear algebra give topological information by
exhibiting coalgebra decompositions of tensor algebras which can then be realized by
topological spaces. Using this principle, the following theorem was proven in [8].

Theorem 1.8. Fiz a prime p, and assume that n is unit in the reduced mod-p homology
of a CW-complex X. Then there is a homotopy equivalence
Q22X — Q¥iL,(X) x B(X)

for some choice of space B(X). In addition, the mod-p homology of L, (X) is isomor-
phic to the module of Lie elements of tensor weight n in the tensor algebra T[V] where
V is the reduced mod-p homology of X . Thus if the reduced mod-p of X has at least
two linearly independent elements, then L,(X) has non-trivial homology for every n
prime to p.

A specific example of the above theorem where X is a 2-cell complex given by a
mod-2 Moore space is described below. A sketch of the proof of this theorem is given
before this example as follows:

1. The Samelson product yields a map Y(® o Q%Y.
2. Specialize to ¥ = £X and appeal to Proposition 1.6 to obtain a map L, (XX) —
QXYY with canonical multiplicative extension

QZL,(EX) — QY.
3. The Hopf{ invariant construction discussed in the next section is a map
QzY - Qzy™),
Again, let ¥ = £X, and use Proposition 1.6 to project QXY () — QXL,(TX).
4. The composite
QZL,(ZX) » QE2X — QLL,(TX)

induces a homology isomorphism by a direct ( messy ) computation. Alterna-
tively, the composite can be shown to be homotopic to a loop map, and the
computation is then direct.

Let P"*1(2) denote =" 'RP? where RP? is the real projective plane. The next
theorem follows by substituting » = 3 or 5 in the previous theorem where P"(2)
denotes the (n-1)-sphere with an n cell attached by a degree 2 map. Thus there is a
homotopy equivalence X"~ 2RP? — P™(2).

Theorem 1.9. Assume that n > 2. Then there are homotopy eguivalences as follows:
QPHOm-2842(9) x X(n+1) fn+1=4m,
QPWBm-2R+2(9) x Y(n+1) ifn+l=4dm+1,
QP#mKE)+2(9) x Z(n + 1) fn+tl=4m+2,
QP4rBm+1k)+2 (2)x W(n+1) ifn+l=4m+3

for all k > 1, where p is defined by

QP™1(2) ~

k-2
p(n, k) =9"1n 4 Z 9.

=0
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It was proven by J. Mukai [23] or in [8] that if n > 4, and n is odd, then my,_2P™(2)
contains Z/8Z.

Proposition 1.10. Ifn > 3, then there are infinitely many elements of order 8 in the
homotopy groups of P™(2).

There are two outstanding conjectures in this subject:

1. Barratt’s finite exponent conjecture: Assume that the suspension order of the
identity for £2X is p". Then p™+! annihilates the homotopy groups of 325 o8

2. Moore’s conjecture: Assume that X is a simply-connected finite complex which
has finitely many non-zero rational homotopy groups 7; X ®Q. Then for any fixed
prime p, the p-torsion in the homotopy groups of X have a bounded exponent for
all i ( depending on p ).

The work above was directed toward considering these questions for mod-2 Moore
spaces, and was inspired by the following two theorems which were proven much earlier
using splitting techniques.

Theorem 1.11. [7] If p is an odd prime, then p™ annihilates the p-torsion in the
homotopy groups of S2"+L,

Theorem 1.12. [25] If p is an odd prime, then p™+! annihilates the homotopy groups
of a simply-connected mod — p” Moore space P"+1(p").

2. ENDOMORPHISMS OF TENSOR ALGEBRAS, AND SELF-MAPS OF LOOP SPACES

In the previous lecture, certain product decompositions for loop spaces arose from
natural coalgebra decompositions of the tensor algebra. This theme will be pursued
here where the collection of all natural transformations with respect to certain analo-
gous structures will be discussed.

Consider a graded free module V over the integers Z or a field F. The modules V'
considered here will usually arise as the reduced homology groups of a path-connected
space X. Thus it will be assumed that V is concentrated in degrees strictly greater
than 0. Let T[V] denote the tensor algebra generated by V.

Then T[V] = ,,5¢ V®". In addition, T[V] inherits the natural structure of a Hopf
algebra by requiring the elements in V' to be primitive, and thus A(v) =v®1+1®wv
for v in V where A denotes the coproduct. Hence, there is a natural diagonal map
which is a morphism of Hopf algebras:

A:T[V]— TIV]®T[V].

Notice that T[V] is a functor from graded modules to graded Hopf algebras. One
might ask for the natural transformations from this functor to itself which preserves
the underlying structure of a coalgebra.

Part of the motivation here is that the tensor algebra T[V] gives the homology of
certain families of topological spaces by the following:
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Theorem 2.1. (Bott-Samelson) Let X be a topological space which is a connected CW-
complex. Assume either that the integer homology is either (1) torsion free, or (2) the
homology groups are taken with field coefficients F. Let V' denote the reduced homology
of X. Then there is an isomorphism of algebras

0:T[V] » H.(QZX).

If in eddition, X is a suspension, then © is an isomorphism of Hopf algebras.

One could ask about self-maps of QXX. The action of such a map in homology
then gives a morphism of coalgebras of T[V]. One could ask further about the ”generic
self~maps”, those maps which are natural for all spaces X, or all modules V.

First notice that the set of coalgebra self-maps of T'[V],
Hom®*9(T[V], T[V])

forms a group where the product of two elements is defined as follows:

T[V] —2— T[V] e T[V]

[P

TV] —— T[V]®T[V]

lid multiplyl

Tv] L2, 1V

The basic point here is that T[V] admits natural self-maps which in fact correspond
to self-maps of spaces. The structure of these then inform on spaces. In addition,
Artin’s braid group arises, and plays a significant role within classical homotopy theory.

Next consider self-maps of T'[V] as follows:

Definition 2.2. Let g be an integer.

1. The map ¢4 : T[V] — T[V] is given by the multiplicative map which sends each
element v to guv.

2. The map 9, : T[V] — T|[V] is given by the ¢ — th power map

3. The map A, : T[V] — T[V] is given by that map induced in homology by the
composite

Q82X — QnEx)™ - onx

of
(a) the g-th Hopf invariant h, : Q52X — QX(ZX)@ with
(b) QE(EX)™ — OX2X, the looping of the g-fold Whitehead product.

These maps all give natural transformations of T[V]. The maps A, : T[V] — T[V]
are non-trivial, and intricate. Let H,., denote the group generated by these elements.

Theorem 2.3. The group Hy, is the inverse limit of a system
sov—> H,— H,_1— --- = Hy— Hj.

The maps H, — H,_; are non-split epimorphisms of groups with kernel given by the
center Lie(n) of H,. Furthermore, Lie(n) is a free abelian group of rank (n — 1)!.
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The algebraic maps above are all realized by self-maps of Q£2X. Thus there is a
group homomorphism from the free group F generated by the elements in Definition
2.2 to the group of homotopy classes of self-maps [2Z?X, QT?X], say

#(X): F — [Q22X,05%X]
together with an induced homomorphism
&: F/Nkerg(X) — [OT2X,Q5%X]

where the intersection is over every space X.

Theorem 2.4. The group Ho, is isomorphic to F/ N ker¢(X). Furthermore Hoo is
isomorphic to the group of natural transformations of the functor T[V] regarded as a
coalgebra.

The self-maps given by H., are those used for the splittings in section 1. This
group was introduced and analyzed by the author. Subsequently, Dwyer, and Rezk
showed that H., exhausts all of the natural transformations of T'[V] which preserve
the underlying coalgebra structure. The groups Lie(n) are given by the homology of
certain braid groups. Namely, the braid groups arise in the next section concerning the
homotopy groups of the 2-sphere in which P, denotes the n-th pure braid group. Then
Lie(n) is isomrphic as a module over the symmetric group to Hy,_1(Ppn;Z) tensored
with the sign representation [6]. The groups H, are also closely connected to low
dimensional topology, and the theory of "Brunnian” links. These connections will be
addressed elsewhere.

3. BRAID GROUPS, AND HOMOTOPY GROUPS OF THE 2-SPHERE

The purpose of this lecture is to outline a specific description of a group of invariant
elements by describing some work of Jie Wu concerning the homotopy groups of the
2-sphere. Namely, let G be a group acting on a set S, and let S€ denote the set
of fixed points under the action of G. The basic example here arises from a classical
representation constructed by E. Artin in 1924 [2, 3, 5] together with recent work of
Wu [31] relating this representation to the homotopy groups of the 2-sphere =,

Artin’s representation is a homomorphism from the n-stranded braid group to the
automorphism group of a free group with n generators in which the following notation
is used:

1. The group B, denotes Artin’s n-stranded braid group.

2. The group P, denotes the pure n-stranded braid group, the subgroup of B, which

leaves the endpoints of a braid unpermuted.

3. The group F,, denotes the free group on n-letters with basis {z1,z2,--- i

4. The groups B,(M), respectively P,(M) denote the n-stranded braid group,

respectively the pure the n-stranded braid group for a surface M. The n-
stranded pure braid group of a surface M, P,(M), is defined as the funda-
mental group of the configuration space F(M,n), the subspace of M™ given by
{(m1,mg,--+ ,mp)|m; # mj,i # j}. The n-stranded braid group of a surface
M, written B,(M) is the fundamental group of the quotient of F(M,n) by the
natural action of the n-th symmetric group F(M,n)/Z,.

Artin’s representation is given by
& : B, — Aut(F,)
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where
1. Artin’s map @ is faithful, and
2. the automorphisms f in the image of & are characterized by the following 2
properties which also characterize the braid group Bj:
(a) f(zy-zo- - zn) =121 -T2+ T, and
(b) f(z:) = w; - To(s) - wi! for all i, and where o denotes an element in the
symmetric group on n-letters.

Next, consider words given by commutators in the free group F;, of the form

["[y11y213y3]: £ '],yt]

where the commutator [a, b] is given by a~1b~1ab, and the y; satisfy the following two
conditions:

1. All of the y; lie in the set
{‘TO‘I L1, T2, ", ‘TTL}

where z¢ is the product =7 - 25 - - - =, arising in Artin’s representation, and
2. there is an equality of sets:

{y11y27y31 o 'yi} — {2:0:-3:1:2:21' e r"f!"ﬂ}'

Define the group W, to be the quotient of F,, modulo the smallest normal sub-
group containing all of the words [...[y1, y2], ¥3), - - - ]y:] as given above. Observe that by
the Hall-Witt identities, the smallest normal subgroup generated by all of the words
[--[y1,%2],y3] - - - Jy:] is invariant under the action of B, acting through Artin’s repre-
sentation. Thus there is a representation

©: B, — Aut(W,)
which descends from Artin’s representation.

Theorem 3.1. (J. Wu)

1. The group of invariant elements W~ is the center of W,,.

2. The group of invariant elements WP~ is the subgroup of the center of W,, gener-
ated by all elements of order 2.

3. For alln > 2, the center of Wy, is isomorphic to mp415% ( = mpe15%).

Thus Artin’s representation together with classical invariants contain the seeds of
the homotopy groups of the 2-sphere. The audience should be cautioned that this
theorem is not useful for direct computations as is traditional in homotopy theory.
The methods of proof involve simplicial groups together with the property that Artin’s
representation descends to an action on certain simplicial groups.

The determination of the fixed set of the action of the braid group on W,, by (com-
binatorial) group theoretic techniques is almost certainly beyond the reach of current
methods. On the other hand, braid groups have appeared in several areas of mathemat-
ics such as group theory, homotopy theory, low dimensional topology, Galois theory,
complexity of algorithms, and mathematical physics. The point is that group theoretic
methods will not inform on computations, but they may admit further applications.
It is the purpose of this lecture to indicate where certain structures "fit” with Wu’s
theorem.
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Since the methods of proof are via simplicial sets, a digression concerning basic
properties of simplicial sets is given now [17, 9]. First of all, a simplicial set S, is
a collection of sets S,, indexed by the non-negative integers n = 0,1,2, ... with face
operations d; : S, — Sp—1 with 0 < ¢ < n, and degeneracy operations s; : Sn — Sn+1
with 0 < j < n. The face, and degeneracy operations are required to satisfy certain
compatibility conditions sometimes called simplicial identities and which are described
next [9, 17].

1. didj = dj..]_d,‘_ for i < j,

2. §i5j = 8j8i—1 for i > 7,

3.
sj-1d: if:¢ <4,
d;s; = 4 identity if i=j or i = j+1, and
sjdsy ifi>5+1,

An example of a simplicial set is the singular simplices of a topological space which
arises in the definition of singular homology for a topological space. A second example
is listed next. The simplicial circle S* has n-simplices S} given by the set of all ordered
(n + 1)-tuples < 0,0, ...,0,1,1,1..,1 >=< 0* " 1 >=z; for 0<i<n+ 1

1. The face operations
d’ﬂ!"' sdn :SEL_> S’}L—l
are specified by the following formulas.
. T
s = {2 HIShT
Ti— ifj>n—i.
2. The degeneracy operations
S0, :Sn:Sfli—} Srl;.—l
are specified by the following formulas.

S(.‘L‘)— *; fj<n—q,
I zig1 i j>n—i

A simplicial group G, is a simplicial set such that

1. the simplices in degree n for every n given by G, is a group, and
2. the face and degeneracy operations are group homomorphisms.

The homotopy groups of a simplicial group were defined by J. C. Moore [22] in a purely
group theoretic way as follows:

1. Let G, be a simplicial group.
2. Define N,, the chains in degree g, as the intersection of the kernels of

di : Gq — Gq_l
for1<i<g,
Nq = ﬂlgiquer(d{: Gq i Gq_l).
3. Define the group of cycles in degree g by
Zg= ﬁggquer(di > Gq — Gq_l).
4. Define the boundaries in degree g by
By = do(Ngt1)-
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5. Then the group B, can be shown to be a normal subgroup of Z;, and the g-th
homotopy group of G, is defined by

7g(Gx) = Zg/By.

Any functor F from the category of pointed sets to the category of groups ” prolongs”
to a functor from the category of simplicial sets to the category of simplicial groups.
Two examples of such functors are given next.

(1) the functor A which sends a pointed set X with ”base-point” p to the free abelian
group generated by X with the single relation that the "base-point” p is the identity
element is denoted A[X].

(2) the functor F which sends a pointed set X with "base-point” p to the free group
generated by X with the single relation that the ”base-point” p is the identity element
is denoted F[X].

An example is as follows. Consider the simplicial set S given above. Then consider
A[S?], and F[S?], the simplicial groups obtained from the functors A4, and F .

It is easy to compute the homotopy groups of A[S]. They are given by {0} in all
degrees not equal to 1, and by Z in degree 1. ( This exercise is fun, and you might try
it.) The case of F[S?] turns out to contain more information.

This free group construction was developed by Milnor [21], and is discussed next
where one technical condition as well as the definition of ”geometric realization” is
required to state the result: a simplicial set S, is said to be "reduced” provided the set
of simplices in degree 0, Sy, is a single point. In addition, there is a functor from the
category of simplicial sets to the category of topological spaces given by ”geometric
realization” where |S| denotes the geometric realization of a simplicial set S. The
realization is defined by

1] = UgzoAlg] x So/R
where Alg] denotes the g-simplex, and "R” is the equivalence relation generated by
1. (v,d;x) is equivalent to (e;(v), z) for v in A[g—1], z in S,, and with ¢; : Alg—1] —
Alg] given by the inclusion of the i-th face, and
2. (v, 8;7) is equivalent to (7;(v), z) for v in A[g+1], z in S,, and with n; : A[g+1] —
Alg] given by the projection to the i-th face.

Theorem 3.2. (Milnor) Let K be a reduced simplicial set. Then the geometric real-
ization of F[K] is homotopy equivalent to QX|K|.

One corollary is the starting point of Wu's investigation.
Corollary 3.3. There is an isomorphism of groups
T FIK] = 7, QZ|K]|.

Thus w,F[S?] is isomorphic to m, Q8% = m,,1 5%

The point of this corollary is that one can view the homotopy groups of the 2-
sphere as a combinatorially defined object which can be studied through combinatorial
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methods. These methods are frequently quite interesting, although they rarely have
immediate computational value. Part of the features of the structure here is the next
theorem which indicates part of the role of the center in simplicial groups.

Theorem 3.4. If G is a reduced simplicial group, then m,G is contained in the center
of the quotient group G, modulo B,.

Wu then defines an ”r-centerless” simplicial group G, which is a simplicial group
for which the center of G, is trivial for n > r. An example of such a G arises in case
G, is a free group on at least 2 generators for n > r. A specific example is given by
F[SY] which is ”2-centerless”. In degree 1, the simplicial group F[S?] is isomorphic to
the integers, and is thus not ”1-centerless”.

Theorem 3.5. If G is a reduced "r-centerless” simplicial group, then m,G forn = r+1
is equal to the center of Gn/Bn.

Wu then applies this to F[S?] in order to prove his theorem on fixed points, and the
homotopy groups of the 2-sphere. There are further connections between this problem,
and other features of braid groups.

There is another simplicial group AP, which in degree n is Artin’s pure braid group
on n + 1 strands, and which gives some further information concerning Wu’s theorem.
Thus this simplicial group is isomorphic to the integers in degree 1. In joint work of
Wu, and the author, the unique homomorphism of simplicial groups

©: F[S'] — AP,

which sends a generator in degree one to a generator is studied. Some properties are
listed next:

1. ©: F[S'] — AP, is a monomorphism in each degree,

2. thus the g-th homotopy group of F[S?] is a subquotient of P,41,

3. the quotient simplicial set AP,/F[S'] has geometric realization which is homo-
topy equivalent to the 2-sphere, and

4. the (simplicial) loop space of AP, is isomorphic to Milnor’s free group construc-
tion F[A[1]] where A[1] is the simplicial one simplex.

The morphism of simplicial groups © : F[S!] — AP, is related to the set of isotopy
classes of n-component links, £,,, as follows. There is a morphism of sets from the n-th
pure braid group to the set of isotopy classes of n-component links as given in classical
work of Alexander, and Markov [5]:

APn. = .C-n,,

and
AP, — Unzoﬁn.

One question which arises in this context is as follows. Describe the image of F'[S A1
as well as the subgroups given by chains, cycles, and boundaries in the set of isotopy
classes of links. Two examples are given next.
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1. A cycle which represents the Hopf map 7 : S° — S? is given by [z1,z2] in the
set of 2-simplices for F'[S]. The image of this cycle in the set of isotopy classes
of 3 component links is the Borromean rings.

2. The cycle [z, z2]? represents the Whitehead product [i2, t2]. The image of this
cycle is a 3-component link where two circles are ”twisted around each other
twice” while the third circle links the other 2 as if they were the Borromean
rings. (Try it. It is interesting.)

Two important questions which arise in Wu’s work are given next. Consider the n
natural homomorphisms
di:Pp— Paa

obtained by deleting the i — th strand for 1 < i < n. Thus there is an induced
homomorphism

d: P, — H Pi.
1<ign
The kernel of this map is a free group. What is a basis for the kernel of this map ?

A second homomorphism is given by
v: P, = Pn(S?),

the natural quotient of the pure braid group for the plane to the pure braid group for
the 2-sphere S2. This homomorphism is obtained by applying the fundamental group
to the natural inclusion of the configuration spaces F(R? n) — F(S2,n).

What is the kernel of the natural homomorphism

YXd: Py Po(§%) x [[ Pa-1?

1<i<n

4. COHOMOLOGY OF SYMMETRIC GROUPS, AND OTHER GROUPS

This section addresses classical work on the cohomology of the symmetric groups,
certain subgroups of symmetric groups, and related groups. A smattering of informa-
tion about problems, and applications is included. First recall the ingredients required
for the definition of the homology, and the cohomology of a discrete group .

1. An abelian group A is said to be a trivial Z[r]-module, or a trivial m-module,
provided A is a module over the integral group ring of m, Z[n], such ¢(a) = a for
every element a in A, and every element o in 7.

2. Let Z be a trivial Z[r]-module, let M be a left Z[r]-module, and let N be a right
Z[r]-module.

3. Let

v++—= R3— Ro— Ry — Ry— Z — {0}

be a free resolution of Z by free left Z[r]-modules R;.

The definitions of group homology, and cohomology are as follows.
1. The homology of m with N coefficients is

H,(m; N) = TorZ(Z, N),
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and is the homology of the chain complex
-+ — N ®zjx) R3 = N ®z[x) R2 = N Qgjr] Ry — N ®z[n Ro.
2. The cohomology of 7 with M coefficients is
H*(m; M) = Extyy(Z, M),
and is the cohomology of the cochain complex
MO — M= oo Mo MU M2
where M* = Homgy)(Ri, M).

These functors are frequently informative, and frequently computable. They provide
useful ways of measuring interesting behavior. The first few classical results are as
follows.

Theorem 4.1. Let 7 be a finite group of order n.
1. Then n- Hi(m;M) = 0, and n - Hij(m; N) = 0 for all j > 0. Thus if j > 0,
Hi(m; M) respectively H;(m; N) is the direct sum of its p-primary components
pHI (m; M) respectively ,H;(m; N) for all primes p which divide n.
2. Let mp denote the p-Sylow subgroup m. Then the restriction map

pH"(m; M) — H*(mp; M)

is a split monomorphism.

3. If 7 is a finite group with abelian p-Sylow subgroup mp, then the mod-p cohomology
of m is given by H *(ﬂp,Z)N (@) the invariant elements under the action of the
normalizer N(m,) of mp in 7.

Again, the elementary abelian groups are basic examples, as we have seen in several
of the lectures. Their cohomology is classical, basic, and important.

Theorem 4.2. 1. The cohomology ring H*((Z/2Z)";F3) is a polynomial ring with
generators z1, ..., T, of degree 1.

2. Ifr > 2 or p is an odd prime, then the cohomology ring H*((Z/p"Z)™;F,) is the
tensor product of an exterior algebra with generators x1, ..., T, of degree 1 tensored
with a polynomial ring with generators yi,...,yn of degree 2. Furthermore, the
r — th Bockstein (3, of z; is defined and satisfies the formula B-(z;:) = y:.

A second important example is the symmetric group on n letters £,. The homology,
and cohomology of symmetric groups is addressed next. Let ¥, denote the colimit
of the ¥, under the natural inclusion. There are analogues for Artin’s braid groups
Br, — Brp41 with colimit denoted Br,. The homology of these groups is related to
the homology of certain useful topological spaces.

One connnection between the cohomology of the symmetric groups, and that of
elementary abelian p-groups is as follows: The regular representation of (Z/2Z)", a
homomorphism (Z/2Z)" — =, induces a map H*(Z2n;Fo) — H*((Z/2Z))™;F2)
which has image given by the Dickson algebra on n generators, the invariant subal-
gebra under the natural Gl(n,Fs)-action. There is a further connection to spaces of
continuous functions as described next.
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Consider the natural suspension map X — QXX which is the adjoint of the identity
TX — TX. Iterating, thereis amap Q"E"X — Q"H1E"1X with QX =lim Q"L X.
Write 23E™ X, and QoX for the respective path component of the identity. One feature
of the spaces QX is that if X is a CW-complex, then the i-th homotopy group of QX
is isomorphic to the i-th stable homotopy group of X. Thus properties of @X impact
the stable homotopy groups of X.

The following theorem concerning the symmetric groups has input from many people
including Araki, Kudo, Nakaoka, Dyer, Lashof, Barratt, Priddy, and Quillen [4, 1, 24,
10, 15]. The second part was proven in work of May, Segal, and the author [29, 6, 18].

Theorem 4.3. Assume that homology is taken with any trivial coefficients. (Namely,
the fundamental group of each space acts on the coefficients by the identity map.)

1. There is a map BEo — QoS® which induces a homology isomorphism.
2. There is a map BBro, — Q2S5% which induces a homology isomorphism.

A more general version is the Kan-Thurston theorem: If X is a path-connected CW-
complex, then there exists a K (m, 1) together with a map K (m,1) — X which induces
a homology isomorphism with any trivial coefficients. Thus, on the level of homology,
many reasonable spaces behave as if they are K(m,1)'s.

Some preparation for applications of the homological properties above are given
next. There are maps RP* — (§°S* which induce an isomorphism on the level of
fundamental groups given by Z/2Z. One such map is induced by reflection through
the hyperplane orthogonal to a given line through the origin. This gives a map to the
—1-component of O(n), RP*~! — O(n). Translating to the +1-component of O(n),
and letting n go to infinity gives P* — SO — QFS®. Let © : QRP>® — Q8>
denote any extension which is a loop map. The following is the 2-primary Kahn-Priddy
theorem. There is an odd primary version.

Theorem 4.4. The map © has a 2-local section. Thus after localization at p = 2, the
following is satisfied:
1. There is a 2-local homotopy equivalence
QRP*® — QS x X
for some space X .
2. The map © : QRP>® — QPS> gives a split epimorphism on the 2-primary
components of homotopy groups.

A non-stable analogue of this theorem is gotten as follows. Consider the cofibration
§% — S% - P3(2) where the map S — S2 is degree 2. Applying the pointed
mapping functor to this cofibration gives a fibration g : 025™ — Q25™ given by the
H-space squaring map with homotopy theoretic fibre denoted map, (P?(2), %), where
map.(A, B) denotes the space of pointed maps from A to B. Notice that P3(2) is
homotopy equivalent to the suspension of the projective plane TRP2. Let W,, denote
the homotopy theoretic fibre of the double suspension E? : 5271 — 2§2n+1

Theorem 4.5. 1. If p is an odd prime, then there is p-local equivalence
map.(P*(p), S#1) —» Q28% < 3> xW,.
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Thus map.(P3(p), $%1) — Q28% < 3 > induces a split epimorphism on the
p-primary component of homotopy groups, and p annihilates the p-primary com-
ponent of m;S% for any i > 3.

2. There is a 2-local equivalence

map,(SRP?, §°) — Q25° < 3 > xWh.

Thus map,(SRP?, §%) — 025% < 3 > induces a split epimorphism on the 2-
primary component of homotopy groups, and 4 annihilates the 2-primary compo-
nent of m;S° for any i > 3.

The method of proofs of these theorems is given by constructing maps, and then
appealing to the cohomological results in Theorem 4.2 above to prove that a map is an
equivalence. The Kahn-Priddy theorem is, of course, due to D. S. Kahn, and S. Priddy.
The odd primary result in Thorem 4.5 above is due to P. Selick while the 2-primary
theorem is due to the author.

Next consider further extensions given by the wreath product X, ! G which is the
group extension

1- G- Z,1G— E,— 1

which is specified as follows:

1. As a set £, 1 G is isomorphic to &, X G™ with elements written as (c; g1, ..., gn)-
2. The multiplication is specified by

(0391, 9)(T; Rty ey Bn) = (073 g--1(1)ha, ---:g'r-l(n)hn)‘

3. The fundamental group of EX,, x5, X™ is isomorphic to X,2G for path-connected
spaces X with m(X) = G.

There is a slightly more general, and useful definition of the wreath product which
fits in other contexts. Namely, given any homomorphism f : I —» X,, define the
wreath product II? G ( where the notation does not display the dependence of the
extension on the homomorphism f ) as a pull-back:

ImnGg —— 11

! l

Z.0G6 — I,

Thus there is a morphism of group extensions:

1 » G™ G II » 1
il | A
1 Gn » Lal G Yo 1

Consider the Lyndon-Hochschild-Serre spectral sequence for this extension with co-
efficients in a field F in homology. Then,

E?, = H(IL; H(G™,F)).
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A modification and interpretation of some earlier results of Steenrod are given in [6],
Lemmas 4.1-4.3, and these imply that E2 = E*°. A similar assertion applies in coho-
mology if H*(G;F) is of finite type.

Next, notice that H,(G™;F) is isomorphic to V®™ for V = H.(G;F). As a module
over ¥,, and hence as a module over G, V®" is a direct sum of cyclic £,-modules
which depend on choices of partitions of {1,2,...,n}, say Mj. For example, if G is the
trivial group, then V' = F concentrated in degree 0, and the modules M, are always
trivial.

As a second example, assume that the b, run over a totally ordered basis for
H,.(G;TF). Consider the cyclic ,-module generated by the element

A=b8" b8 --- @b

where
1. P is an ordered partition of n such that P = (nq,ns,--- ,ng) for n; > 0 with
ni+ngt-Fng=n,
2. B is a sequence of strictly increasing basis elements with B = (ba,, by, ; ba,)

for by, < ba, < -+ < by, , and
3. the pairs labelled by A = (P, B) run over all distinct such pairs (P, B).

Then a direct sum decomposition for the II-module V®" is given by
©a=(p,B)MAx.
Consequently, there is a homology isomorphism
H.(II1 G;F) — @©pH.(II; My).

Furthermore, if Il = £,, and F = Z/2Z, then H.(X,; My) is isomorphic, apart from a
degree shift given by the degree of 537 @ b2z - ® b?:“"‘ , to

H*(2n1 X Enz Xoeee Enq;Z/2Z)
where T, X I, X -+ Iy, is the subgroup of T, that fixes 8™ @ b7 .. @ ba.
Thus the mod-2 homology of the wreath product £, 1 G is given in terms of the mod-2
homology of subgroups of ¥,, with trivial coefficients in Fs.

There is an analogous description over a field of odd characteristic for which modifi-
cations using trivial coefficients or coefficients in the sign representation are used. This
case will not be addressed in these abbreviated notes.

Next notice that the Lyndon-Hochschild-Serre spectral sequence in cohomology with
trivial coefficients in F collapses for the extension

1-G-IIIG-1I-1

by a cochain level argument provided the cohomology of G with F coefficients is of
finite type. The resulting Fs-term is dually given in terms of (1) the cohomology of G,
and (2) ordered partitions of n. This remark is stated as the following theorem.

Theorem 4.6. The homology of 111 G with field coefficients F is given by
H,(IL; Hyo(G™; F)) = @a Ha(I; Ma).
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Furthermore, the homology is naturally bigraded by
H,(IT; H(G™ F))
in bidgree (s,t). The homology in total degree q is given by
H,(IT2 G;F) = @3+t=qHs(H;Ht{Gn§F))-
In case G = T, these homology groups are given in terms of

1. the additive structure of H.(G;F), and
2. ordered partitions of n as described above.

A second interpretation of E; fits with the subjects in this conference. This inter-
pretation will be illustrated in several cases below.

1. Assume that G = Z/2Z, and that the coefficient field is Fp = Z/2Z. Then
H*(BG™;Fs,) is a polynomial ring in n indeterminates of degree 1 with the -
action specified by the polynomials in the fundamental representation of X,
Fo[V,]. Thus the E3"-term of the Lyndon-Hochschild-Serre spectral sequence
abutting to the mod-2 cohomology of £, 1 G is given by

H*(Zn; H'((Z/2Z)™; F2).
By the above remarks, this spectral sequence collapses, and so E; = FE... Hence

H*(Z,;F2[V;]) is given in terms of the cohomology of subgroups and partitions
listed above.

In addition, the cohomology of X, ! G with field coefficients I is naturally
bigraded, and is given by H*(Z,; H*((G)™;F) in bidegree (s,t). The invariant
subalgebra H*(BG™;F3)=» is given by H%(Z,;F2(Va]). The ring of invariants is
precisely the mod-2 Dickson algebra, and has bidgree (0, *) where * denotes the
standard grading for the Dickson algebra.

2. A similar assertion follows for G = S, and where the coefficient field is F, =
Z,/pZ. The wreath product construction here is given by the normalizer of the
maximal torus in the unitary group U(n). Similarly, H*(BG™;F,) is a polyno-
mial ring in n indeterminates of degree 2 with the T -action specified by the
fundamental representation of X, Fp[Va]). Again, H*(Z,;Fp[V2]) is given in
terms of the cohomology of subgroups of the symmetric group with the trivial
representation, and partitions listed above. The resulting answer is (1) the co-
homology of the wreath product, and (2) identifies the ring of invariants as the
summand of cohomology group of the wreath product concentrated in bidegrees

(0, x).

3. Let G = Z/p"Z, with the coefficient field F,, = Z/pZ for an odd prime p. Then
H*(BG™;F,) is the tensor product of a polynomial ring in n indeterminates
of degree 2 with an exterior algebra in n indeterminates of degree 1, E[V,].
The T,-action is specified by that on the fundamental representation which is
extended multiplicatively to Fp[V,] ® E[V,]. Again, H*(Zn; Fp[Vn] ® E[Vh]) is
given in terms of the cohomology of subgroups of X, with coefficients in either
the trivial representation or the sign representation. The subgroups are of the
form T, X T,, X -+ Ty, and fix 6™ @ 6872 ---®b§:" up to a sign.

4. These constructions are useful in characteristic zero where symmetric groups are
replaced by other discrete groups such as SL(2,Z), Sp(2g,Z), mapping class
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groups, or braid groups. In these cases, some answers are given in terms of
constructions in analytic number theory. ( Please see the problems below.)

5. PROBLEMS

(1): Let G be a discrete group together with a representation p : G — GL{(n, R) for
R either a finite field or the integers. Write V;, for the direct sum of n copies of R, the
fundamental represention of GL(n, R).

Functors given by P[V,], E[V,], and T[V,,], the polynomial ring, exterior algebra,
and tensor algebra respectively generated by V,, are naturally GL(n, R)-modules. What
can be said about the cohomology groups of G with coefficients taken in P[V,], E[Vx],
and T[V,] ?

The motivation for this question is that there have been useful applications of known
examples as suggested below.

1. When G is the symmetric group on n letters, &, with the natural n-dimensional
representation, then the cohomology with coefficients in P[V,,], E[V,], or their
tensor product is known implicitly from work of Steenrod and others. For exam-
ple, over the field of 2 elements, H*(Z,;F2[V;]) gives the Es= E,, term of the
Lyndon-Hochschild-Serre spectral sequence abutting to the mod-2 cohomology of
the wreath product

En l Z.-:2

(where X, ! G is a group extension 1 - G" — £,1G — I, — 1).

The additive structure of the Fj,- term is given in terms of partitions, and
the cohomology of certain choices of subgroups of the symmetric groups obtained
from these partitions.

Related remarks concerning representations, as well as subgroups of the sym-
metric groups are recalled in Cohen’s lecture notes.

2. When G = SL(2,Z), and Vo = Z & Z, the rational cohomology of G with coeffi-
cients in P[V3], E[V5], or their tensor product is known in terms of classical mod-
ular cusp forms based on the standard SL(2,Z)-action on the upper 1/2-plane.
These calculations trace back to work of Eichler, and Shimura on automorphic
forms [11, 29, 13].

3. When G is GL(n, R), then S. Betley has proven a general vanishing theorem
for these coefficients as n goes to infinity. According to Betley, the analogous
question for the symplectic groups remain undecided.

4. When G is the mapping class group for a closed surface of genus g, I',, there is
an epimorphism
T, — Sp(2g,2).
The cohomology groups H*(T'y; Q[V2,]) have been studied by E. Looijenga who
has obtained a stability result. These groups as well as H*(T'y; Q[Va4] ® E[Vag])
inform on the cohomology of mapping class groups for punctured surfaces.
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5. In the special case of R = Z/2Z, there is an isomorphism Xg — Sp(4, R). What
is H*(Ze; R[Va] ®z/2z E[V4]) 7

(2): Describe the Dyer-Lashof algebra as a collection of natural transformations as
suggested by Bisson’s lecture, and in the spirit of Smith’s lectures. Selick, and Campbell
have given a construction which pieces together the Steenrod algebra together with
the Dyer-Lashof algebra into one giant natural algebraic construction. Is this object
describing the natural transformations of certain natural choices of functors ?

(3): Two important questions which arise in Wu’s work and which were stated above
are as follows: Consider the n natural homomorphisms

di:Pn—P P_.1

obtained by deleting the i —th strand for 1 < i < n. What is a free basis for the kernel
of the induced homomorphism

d: P, — H Poa?

1<i<n

What is the kernel of the natural homomorphism

yxd:Py— Pa(8%)x [] Pat?

1<i<n

(4): Characterize the image of F[S!], as well as the subgroups given by chains,
cycles, and boundaries in the set of isotopy classes of links.

(5): Find useful group theoretic characterizations of the homotopy groups of spheres.
Do these "fit” with the braid groups ? How does the structure of the isotopy classes
of n-component links impact the homotopy groups of the 2-sphere 7 Find interesting
analogues of the Kahn-Priddy theorem which apply to the (2n+1)-sphere and which
are natural extensions of the analogue for the 3-sphere.
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