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ABSTRACT. This modest work provides some insight into the sub-
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1. INTRODUCTION.

I have gathered here some of the results and problems of invariant
theory that I find found particularly interesting and exciting together
with some of the necessary background material. Of course, the sum-
mer school is intended for graduate students, so these lectures are aimed
at them. These are the lectures that I would use to introduce a new
student to the subject. My goal has been to illustrate that there are
many interesting and fascinating problems that can be tackled with
only a modest knowledge of the techniques of modern algebra. The
books of Benson [B] and Smith [Sm(a)] are appropriate references.

In addition to my own interests, I have tried to track to some degree
the lectures of the other speakers, and this led to several revisions of
the original material while at the school.

The second and third sections of this note are intended to give stu-
dents an idea of the elements of invariant theory: homogeneous sys-
tems of parameters, resolutions by syzygies, Poincaré series, and several
examples: the symmetric and alternating groups in their usual repre-
sentation, permutation groups, the general linear and upper triangular
groups, as well as a few selected examples. An example of the MAGMA
code needed to do a specific calculation is given here. The first lecture
covered much of the second and third sections of this note.

The fourth section concentrates on the two fundamental questions,
namely, given a group or a class of groups, what can be said about the
structure of its ring of invariants: when is the invariant ring polynomial,
a hypersurface, a complete intersection algebra, Gorenstein, or Cohen-
Macaulay? Alternately, we’d like to be able to describe generators for

such rings of invariants, and the relations among those generators.
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Section five is a discussion of the case of the cyclic group of order p
and its representations in characteristic p.

Section six consists of two distinct open problems in invariant theory.
I included the second of these because it involves the Steenrod algebra
and so related well to Smith’s lectures.

I include here two lists of references, one from the literature at large,
and a list of invariant theory papers I've been involved in over the past
few years.

Acknowledgements. I would like to extend my warmest thanks
to the participants in the summer school on connections between alge-
braic topology and invariant theory. Their enthusiasm and energy for
the school made the week a fantastic and wonderful experience. I'd also
like to congratulate Dr Epiminondas Kechagias, the University of Ioan-
nina, and the City of loannina, whose hospitality and warmth made
the conference a joy to attend, and a joy at which to speak. Thank
you, Nondas.

2. LECTURE ON ELEMENTS OF INVARIANT THEORY

Suppose R is any non-negatively graded, finitely generated, con-
nected commutative algebra over a field F, so that R = @4>0R4. Here,
of course, Ry denotes the elements of R of degree d, and we are assum-
ing that Ry = F. Please refer to [B] and [Sm(a)] as needed.

The Krull dimension is the maximal number of algebraically inde-
pendent elements in R, denoted here by n.

In our situation, we start with a (fixed representation of a) finite
group G C GI(V) for V a vector space of dimension n over a field F of
characteristic p > 0. We let F[V]¢ = {f € F[V] | o(f) = f,Vo € G},
denote the ring of invariants, R = F[V]¢ C F[V]. We denote the order
of G by |G|: in this note, we only consider finite groups. The Krull
dimension of F[V] is n.

We denote a monomial 2! - - - zi» by z! for the sequence I = (21, . . ., i5)
and we denote its degree by |I| = i; +- - - +14,. We note that the action
of G on F[V] preserves degree, and therefore, in this series of lectures
we always consider homogeneous polynomials, that is, f = Zl Ij=d @ rxl,
where a; € F.

Homogeneous Systems of Parameters. A homogeneous sys-
tem of parameters for R is a set {fi,..., fo} With the property that R
is finitely generated as an module over H = F[f1, ..., f»]. Equivalently,
R/(H,) is a (graded) finite dimensional algebra. Here, of course, (H,)
denotes the ideal of R generated by the positive degree elements of H.
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The Noether normalization lemma (see [S(a), pg 112]) guarantees that
such a homogeneous system of parameters always exists.

If F denotes the algebraic closure of F, then {fi,..., fn} is a ho-
mogeneous system of parameters if and only if the only common zero
of this set over I is {0}, see [S(a), pg 114]. This is not, in general,
all that easy to check. There are, however, some handy homogeneous
systems of parameters available. If F is finite then we may always use
the Dickson invariants as a homogeneous system of parameters, see
section three. If our group is a permutation group, then the elemen-
tary symmetric functions form a homogeneous system of parameters,
see section three. If our group is p-group represented over a finite field,
then Mui has constructed a homogeneous system of parameters, see
section three.

If our group is non-modular, that is, if |G|™* € F, then there are
regular sequences of maximal length n, and any such will form a ho-
mogeneous system of parameters. Recall that a sequence {fi,..., fn}
is regular if f; is not a zero divisor in the quotient R/(f1,..., fi-1), for
each 7, 1 < i < n. This may be difficult to check.

I note as well that we may form the Jacobian

ofi
T =T f) = del(5H.
If 7 # 0 then {fi,..., fo} is algebraically independent. However, this
is a weaker condition: if F(V") denotes the field of fractions of the do-
main F[V], and J(fi,..., fn) # 0, then F(V) is finitely generated over
F(fi1,..., fa) but F[V] need not be finitely generated over F[fi,..., fa].
For example, the set {z,zy} in R = F[z, y] has non-zero Jacobian, but
R is not finite as a module over F[z, zy]. However, it is easy to check
whether or not the Jacobian is non-zero, and so its computation may
be used to rule out certain sequences. See Benson, [B, pg 64] for more
details.

Finally, we note that there is a construction due to Dade which pro-
vides a homogeneous system of parameters all of degrees less than |G|
provided the field is infinite. If the field is finite, we may extend the
coefficients to F, use Dade’s argument and then restrict to a finite ex-
tension of the original field. The construction can be found in Stanley’s
paper [S].

The Poincaré series. We define the Poincaré series of R as
P(R,t) = dimp(R;)t"
>0

This series is sometimes called the Hilbert series of R as well.
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Suppose R = F[hy,...,hs] is a polynomial algebra on generators of

degrees d;. Then
G |

P(R,t)= || ——=-
This is apparent when we consider that
b 1+ 4828 4. ™.
1—¢d

Suppose R is a free module over H = F[hy, ..., hy] on generators f;,
of degrees m;, i =1,...,7. Then
Y AL S SER NS Ak
EBlR A= \

RO =T
Structures. If R is free over one homogeneous system of parame-
ters, then it is free over all such, and we say that R is Cohen-Macaulay.
Because we can average polynomials over the group, it can be shown

that all non-modular groups have Cohen-Macaulay rings of invariants.
In more detail, we can form the trace or transfer map

Tr : F[V] — F[V]¢

by the rule Tr(f) = 3 ,cq0(f). The transfer is a map of F[V]%-
modules, and if G is a non-modular group, then the transfer is onto.
This is false for modular groups, but there is still a lot of information
imbedded in the image of the transfer, and the map is the subject of a
fair amount of current research.

It seems to be rare that modular groups have Cohen-Macaulay rings
of invariants, you’ll read more about this later on.

You know what is meant if R is a polynomial algebra. If R is gen-
erated by n + 1 elements then we say R is a hypersurface. If R/H, is
a Poincaré duality algebra, then R is said to be Gorenstein. If R is a
quotient of a polynomial algebra by the ideal generated by a regular
sequence, then we say R is a complete intersection algebra.

All of these definitions deserve much fuller exploration, but we won'’t
have space for much.

Resolutions by means of syzygies. We let Q(R) denote the
vector space of indecomposables R/R%. Any lift of any basis for R
determines a minimal generating set for R as an algebra.

Let {f1,.-., fs} denote a minimal algebra generating set for R. Let
A = Flzy,...,2s) denote the polynomial algebra on generators z; of
degree |f;| and p the obvious map from A to R. The map p provides R
with the structure of an A-module. A resolution of R as an A-module

is called a resolution of R by means of syzygies. The resolution has
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length at most s. If R is Cohen-Macaulay then the resolution has
length exactly s — n

O—-M;,—:---—- M —A—-R—0.
We note that

P(R,t) =Y (-1)'P(M;1).
=0
Since A is a polynomial algebra, we have that P(4) = [];_, ﬂTtl'fm
And, as a free A-module, M; = GB’“ _1A¢; for some {¢; € M;} of degrees
mj. Therefore, P(M;,t) = t™ + - +¢™ /[[;_, (1 — tHf:l).

Molien’s Theorem. Suppose |G|~! € F, that is, G is a non-
modular group. Elements of representation theory give us a complex
representation of G which shares the same Poincaré series as F[V]¢,
see [Si, pg 504]. Over the complex numbers, the elements of character
theory give us the following.

Theorem. (Molien)

[V]6,t
PEVT.?) = IG]Zdetl—-tg

As an example, we note that any permutation g of n variables is a
product of cycles g;, - - - g;,. Here I mean that g;, is a cycle of length i;.
It can be shown that det(1 —tg) = HLl(l — t4).

As a further example, if g has eigenvalues A, ..., )\, then

det(1 —tg) = [ (1 — Aa).

i=1

Construction of invariants. Given G C GI(V) and an element

[ € F[V] we define the G-orbit of f, to be {g(f) | ¢ € G} denoted

Oc(f). A slightly different way to define the orbit of f is to de-

fine Stabe(f) = {g € G | g(f) = f}. Then Og(f) = {9(f) | g €

G/Stabe(f)}. Here G/Stabg(f) denotes a set of coset representatives.

Suppose, then, that |Og(f)| = m. From here, we can form the
polynomial

Pit)= [ (t-h) =D (-1)st™,
heOg(f) i=0

where s; € F[V]€. The coefficients are elementary symmetric functions

in the elements of Og(f). That is, if we write Og(F) = {f1,..., fm}
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then

51 = fubeo fon s2=fifat e Frctfmaeos
Smo= fiofm

Smith [S(a)] refers to the invariants so constructed as orbit Chern
classes.

3. EXAMPLES.

Suppose G = C; acts on V* = (z,y) by

10 01
We observe that we have g(z'y?) = z7y". In particular, (zy)* is invari-
ant. If i # j then x*y’ +27y" is invariant. This suggests that ifi = j+k
then we write

2y’ + a2y’ = (ey)’ (= + )
= (zy)/(z + y)* + other terms.
It isn’t difficult to show from here that
F[V]¢ = Flz + v, zy)].

This is the best possible situation in invariant theory, in which the
ring of invariant polynomials is again polynomial algebra. We see from
this calculation, or from Molien’s theorem, that
1

(1-t)(1—1¢t2)
Hand Calculations. Suppose G acts on V* = (z,y) by the ma-

trices {| é 2 l, g=] _01 _(_)1 ]}. We note that g(z') = (—1)'z" so

that z¢ is invariant if and only if ¢ = 2j. Similarly, 3* is invariant if
and only if 4 = 2j. We have z% = (z2)’. Moreover, we observe that
g(z*y?) = r'y* is invariant.

It isn’t hard to prove from here that F[V]¢ = F[z?,y?, zy]. There
are a variety of ways we can parse this, One view is that

F[V]¢ = Fla, b, d/(c* — ab)
where |a| = |b| = |¢| = 2. In another, we observe that {z? y*} forms
homogeneous system of parameters for F[V]¢, and that F[V]€ is a free

module over H = F[z?,%?] on the basis {1, zy}.

Q What is the Poincaré series of this ring of invariants?
7
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Example: Calculations in Magma. Magma is a computer pro-
gram that is, at the moment, the language of choice of the Invariant
Theory Group at Queen’s. It incorporates algorithms due to Gregor
Kemper and others. Here is an excerpt from a Magma session that com-
putes the example of Bertin. The example itself is important in the
history of commutative algebra as the first example of a unique factor-
ization domain which was not Cohen-Macaulay, answering a question
of Kaplansky.

In what you read below, you will find the user input next to the

>

prompt, and the replies from Magma without such a prompt. Most
of the Magma commands are self-explanatory. However, the reader
should know that the command Primarylnvariants computes a homo-
geneous system of parameters, while Secondarylnvariants computes a
set of module generators for the ring of invariants over the polynomial
algebra generated by the homogeneous system. The command To-
talDegree reports on the degrees of the polynomials in the set given as
its argument, while Fundamentallnvariants computes a minimal gen-
erating set for the ring of invariants as an algebra.

[eddy@noether] $magmaV2.5
Magma V2.5-1 Mon Nov 1 1999 08:09:07

[Seed = 1416756397] Type ? for help.
Type <Ctrl>-D to quit.

> G := MatrixGroup<4,GF(2) |

(0,1,0,0, 0,0,1,0, 0,0,0,1, 1,0,0,0] >;

> #G;

4

> R := InvariantRing(G);

> time prim := PrimaryInvariants(R);
Time: 0.019

> [TotalDegree(f): f in prim];
[ 1, 2, 2, 4]
> 8<x,y,z,w> := PolynomialRing(R);
> prim;
[
T+t ytz+ow
x*y + xX*xw + y*z + Z*y,
X*z + yruw,
XHRYRZHY



]

> time sec := SecondaryInvariants(R);
Time: 0.029

> [TotalDegree(f): f in sec];

[0, 3, 3, 4, 51

> IsCohenMacaulay(R) ;

false
> time fun := FundamentalInvariants(R);
Time: 0.000

> [TotalDegree(f): f in funl;

[1,2, 2, 3, 3, 4, 4, 5]

Symmetric Functions. Consider G = £, C GI(V) acting as all

permutations of a basis {z1,...,z,} for V*. We note that Og(z1) =
{21,...,2,} and that Pz, () = [Ti=, (¢ — 2:) = 2_5_o(—1)7s;t". Here,

the s; is the j-th elementary symmetric function
§; =X1ZT2---Tj T & SR Tn—j4+1Tn—j42 " Tn-

Of course, the elementary symmetric functions enjoy many beautiful
properties, and symmetric functions occur in many different situations
in mathematics.
Exercise Prove that {sj,...s,} are algebraically independent, and
hence that F(sy,..., s,) has transcendence degree n.

Now we note that F(V)¢ c F(V) is a Galois extension, with Galois
group G, hence of transcendence degree |G| = n!. Further,

]F(S]_, sstmn ,Sn) s ]F(V)

has transcendence degree [[~_, |s:|. Therefore, F(s,...,s,) = F(V)C.
However, a polynomial algebra is integrally closed and hence

Fls1,...,8] = F[V]C.

The paragraph just above provides a general template for proving
that rings of invariant are polynomial algebras, if, in fact, they are.

Of course, this is far from the end of the story. For example, given a
symmetric function, how can it be written in terms of the elementary
symmetric functions? As well, there are other generating sets for the
symmetric functions, for example, the power sums

i i
hy=z] +. . &,

for 1 < ¢ < n. The sum of all monomials of a given degree d is called the
complete symmetric function of degree d. There is great fun to be had
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in trying to understand how to rewrite symmetric functions expressed
in one way or another in a different way.

The Alternating groups. We study A, the sub-group of X,, con-
sisting of all even permutations. We know that an alternating function
is the sum of a symmetric function together with a symmetric function
times the discriminant. Here the discriminant may be described as

Ap, = H (mj""mi)a

1<i<j<n

if p=0 or if p > 2. Otherwise take the orbit sum of 712}~ 2 .- z,_;.
In modern language, we have

F[V]# = F[V]® @ F[V]*"A.

Hence, F[V]#" is generated by n + 1 elements as an algebra, and so
F[V]4~ is a hypersurface. It is easy to see that A? is invariant under
Y, whenp=0orp>2.

All of this is nicely described in [S(a), pg 10].

For now we note that we have two Galois extensions

F(v)™ C F(V)* C F(V).

The one on the right has Galois group A,, hence has transcendence
degree |A,|. The Galois group from one end to the other is |Z,| = n!.
Further, the index [E, : A,] = 2, and we have F(V)**[A*!] has degree
two as an extension of the field of fractions of the ring F[V]*~. Therefore
F(V)2[A$] = F(V)4a,

Exercise. Prove F(V)*[A*!] = F(V)#» implies F[V]4» = F[V]* @
F[V]Z=A.

This kind of argument will work more generally for Cohen-Macaulay

rings.

Invariants of Permutation Groups. Suppose G C T, C GI(V).
That is, G is a permutation group. A key observation is that every ele-
ment of G takes monomials to monomials. Therefore, given a monomial
z!, we form the orbit sum s(I) = 3 co/stapg(ar) 9(27)-

Lemma. The orbit sums s(I) of degree d form a basis for F[V]§.

Proof. Any f € F[V] may be written as sum of monomials f =
2 in=a@z’. But for any g € G we have g(f) = 3 arg(z’). It fol-
lows that, if f is G-invariant and 27 € Og(z’), then ay = a;. The
result is immediate. &
Corollary. The Poincaré series of F[V|¢ depends only on G C I,
and not on the field F.
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Theorem. (Gébel) If G is a permutation group then F[V]C is gener-
n
ated in degrees less than or equal to | 2

Key idea. We say that a sequence I has no 2-gaps if the entries of I,
viewed as a set, are consecutive, and include 0. We can show that any
invariant of the form s(I) where the entries of I are not consecutive, or
are all positive, can be decomposed — shown to be a sum of product
of elements of smaller degree — by subtracting 1’s from every entry
above the largest gap. Here are some of the details.

Proof. We are going to induct on the following order. Given an ex-
ponent sequence, I, of degree d, we think of I as a partition of d and
write M(I) = (Mo(1), \i({), ..., Aa(I)) where ); is the number of entries
of I equal to . We compare exponent sequences / and J of the same
degree by the lexicographic order on A(I) and A(J) from right to left,
that is, by comparing the number of largest entries, and if they are
equal, the number of next largest entries, and so on. Note that any
two sequences of the same size in this order are permutations of each
other.

In this notation, a sequence I has no 2-gaps if Ag(/) # 0 and if
Aey1(I) # 0 implies Ag(I) # 0.

A stronger version of the theorem is that the sequences s(I) with no
92-gaps, together with s(1,...,1), generates F[V]®. The version given
here follows when we note that a sequence of largest degree with no
2-gaps is

(n—1n—2,...,2,1,0).

Let A C F[V]¢ denote the subalgebra generated by all elements s(I)
with no 2-gaps, together with s(1,...,1). We wish to show that, if I
is a sequence with a 2-gap, then s(I) € A. The argument given below
can be used to start the induction, but the details are omitted.

Let r denote the largest 2-gap in I, that is, there is no entry of I
equal to r, but there is at least one entry of I equal to r + 1, and r is
the largest integer with this property. That is, we assume that r is the
largest integer with A.(J) =0 and A.4; # 0.

Let K denote the sequence which has a 1 wherever [ has an entry
bigger than 7 and 0’s elsewhere. Let J = I — K. We observe that
Stabg(J) C Stabg(K), although, to my amazement, we don’t need
this observation.

Consider the product s(J)s(K). We observe that the exponent se-
quences which arise in this product are of the form o(J) + 7(K). We
show that s(I) occurs with coefficient 1 in the product and, simulta-

neously, that o(J) + 7(K) is smaller than I in our order, provided
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o(J) + 7(K) ¢ Og(I). Suppose then, that I = o(J) + 7(K), for some
o, and 7€ G C By

Now I has largest entries k in certain places, and therefore o(J)
must have entries k£ — 1 in those same places, and 7(X) must have 1’s
in those same places, or o(J) + 7(K) will be smaller than I in our
order. The same argument also applies in turn to those places where
I has entries k — 1,...,7 + 1. But our argument shows that o(J) = J
and 7(K) = K, but this cannot happen for non-trivial o and 7. &

The Dickson Invariants. Suppose F is a finite field of order
g = p°. Then consider G = GI(V). Then any vector v € V*\ {0} has
Og(v) = V*\ {0}. Now we obtain

Pot)= [I t-w) =) (-D)"dint™".

weDg(v) =0

The d;, are known as the Dickson invariants, and they enjoy many
beautiful properties.
For example, when p = 2 and n = 2 we have

Po(t) = t(t+2)(t+y)(t + 2 +y)

so that dy 2 = 22 + zy + y* and do» = zy(z + y) = 2%y + 7%
Exercise Develop recursive formulae for the Dickson invariants. That
is write d;, in terms of d; ,—; and z,.

For now we note that |d; »| = ¢"—¢"~*. Therefore, we have [[}., |d; »| =
| GL(V)].

This latter calculation is very pretty. There are g™ vectors in V, and
any one of them may be identified with the first row of a matrix in
Gl(V) excepting the zero vector. Hence there are ¢" — 1 choices for the
first row. Similarly, the second row corresponds to vectors in V' that
are linearly independent of the first, and there are ¢ — g choices for
these. And so on.

Exercise Prove that {d , ..., d,} are algebraically independent. Carry
on with an argument similar to the one given for the symmetric groups
to show that Fldin, ..., dn.] = F[V]C.

Upper Triangular Invariants. Suppose F, is a finite field of
order ¢ = p°. Consider G = U,(F,), the group of upper triangular
matrices with 1’s along the diagonal acting on V* with respect to the
basis {z1,...,2,}. Note that Og(z;) = z; + V;_; where V,_; denotes

the subspace of V* with basis {z1,...,z;_1}. Therefore, we define
h; = H (z: +v).
veVi—y
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Note that the degree of h; is ¢"~!. Therefore, Hz—l |hi| = |Un(F)|.
When p = 2, we get by = 7, he = y(y + z) = y* + zy. For arbitrary

p, we have hy = [[ o5, (v + ax) = 3° — P 1y.

Exercise Carry on with an argument similar to the one just given to

show that Fylha,. .., hs] = Fg[V]C.

Exercise Prove that U, (F,) is a g-Sylow subgroup of Gl,(Fy).

A 2-dimensional representation of Cs, p = 2, [B, pg 103.]
Suppose G acts on V* = (z,y) by

{hog=13 11

over the field F,. Note that |G| = 3, and, in our conventions, ¢ acting
on Fy[V] = Fa[z, y] sends z to y and sends y to z + y.

It is straightforward to calculate the ring of 1nvar1ants for G Flrst
we observe that the Dickson invariants r = 2 + :cy +12, 5 = 2%y + zy°
form, as always, a homogeneous system for ]FQ[ 744 Second we observe
that G has index 2 in Gly(FF3), and that t = z° + 22y + ¢® is invariant.
It isn’t hard to see using Galois theory that

Fa[z, 9]¢ = Foz? + zy + o2, 2%y + oy, 2° + 2y + 4%,

and, therefore, this ring is a hypersurface. As part of this calculation,
we note t2 = r3 + s% + rs.

Therefore, we obtain a resolution over the ring A = Fa[a, b, ] with
la| =2, |b| = |¢| = 3, and p(a) = 2* + zy + %, p(b) = 2’y + 217,
p(c) = z% + 2%y + y®. We obtain

0 — A(P +a® + b2+ be) = A — Fofz,9]¢ — 0.

It follows that
1+1% 4+

P(F[V]C,t) = TS

4. LECTURE ON STRUCTURES AND FUNDAMENTAL (QUESTIONS.

There are two sorts of problems to be considered

(1) Find generators for F[V]¢. Failing that, find a bound for the
degrees of a generating set.

(2) Determine the structure of F[V]¢. For example, determine for
which groups G is F[V]€ a polynomial algebra, a hypersurface,
Gorenstein or Cohen-Macaulay?

13



Both questions are interesting for either specific groups, or for classes
of groups. In general, much more is known when p = 0 and in the non-
modular case than in the modular case. These differences are the focus
of this lecture.

Bounds for Generating Sets. Noether showed that generators
of degree at most |G| are required when p = 0. For non-modular groups
with p > |G|, this theorem is still true. Richman, Smith and others have
shown Noether’s original bound, |G|, applies if G is solvable. Smith
[S(a), pg 175], Fleischmann [F1], and others have shown that for non-
modular groups F[V]€ is generated in degrees at most dimg(V)(|G|—1),
see also [FL]. Here I need dimg(V) > 1 and |G| > 1.

Up until last fall, it was a conjecture that non-modular groups have
rings of invariants that are generated in degrees less than or equal |G|.
The difference between the known bound and this conjectural bound
was known as the problem of Noether’s Gap: is there a non-modular
group in the gap or not? In the fall of 1999, Peter Fleischmann gave
a beautiful and clever variation of Noether’s original argument that
showed the conjecture was true (see below). Independently, Fogarty
proved the same result.

It is proved in [2] that if F,[V]€ is a hypersurface, then this ring is
generated in degrees less than |G| while if F,[V]¢ is Gorenstein, then
the bound dimg,(V)(|G| — 1) applies. More generally, Broer [Br] has
shown that this latter bound applies if F,[V]¢ is Cohen-Macaulay.

Kemper conjectures that Noether’s bound, |G|, applies whenever
F[V]€ is Cohen-Macaulay.

Dade has shown that there exists a homogeneous system of parame-
ters all of whose generators may be taken to be either from V¢ or of de-
gree |G|. This may involve a finite extension of the original field. Then
dimp(V/VC)(|G| — 1) is the degree of a top module generator of F[V]C
over this homogeneous system of parameters. In general, one would
expect to find algebra generators in degrees somewhat less than this.
However, there are examples where the bound dimy(V/VE)(|G| - 1) is
sharp (see below).

There is no explicit bound for modular groups known. It is easy to
see that there is a bound that depends on dimg(V') and g, for G1,(F,)
is a finite group, hence has finitely many subgroups, hence there are
finitely many rings of invariants to be calculated, for any given n and

q.
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Fleischmann on non-modular groups. Suppose G = {g1,- -,k }
is a non-modular group. Consider the vector space Z with basis

z|1<i<n, 1<j <k}
J

together with the map p : Z — V defined by p(z;;) = g;z:. We extend
to a map

F[Z] — F[V].
Note that G acts on Z by permuting the columns of the matrix z;;
in the obvious way, via the regular representation of G. This is the
original construction of Emmy Noether.

We obtain p : F[Z]®* — F[V]®. For f € F[V] we may define
a,j(le, sttty an) = f(zlj, . ,an), with p(aj) = gjf(:cl, o ,.’En). There-
fore, if f € F[V]® we have £+p(3" a;) = f. Further, }_a; is the orbit
sum of a; over L.

Fleischmann’s proof works as follows.

First, note that a; is concentrated in a single “row” of the matrix
Ziq.

JHe shows that the orbit sums of such row polynomials may be written
as sums of products of the form ab where a is in F[Z]®*, has positive
degree, and is a product of invariants of degree less than or equal to %,
and b is in F[Z].

Therefore, f € F[V]® may be written as a sum of terms of the form
ab where a € F[V]% has positive degree, is a product of invariants of
degree less than or equal to k, and b € F[V].

But 1 Tre(f) = LS gi(f) = £, for f € F[V]C. Applying the trace
to each of the terms ab gives the result.

Vector Invariants. Consider the coordinate ring of mV = V&™
with the diagonal action of G. The ring FimV]€ is called the ring of
vector invariants of G, a terminology used by Weyl. Rings of vector
invariants provide an important class of examples and counterexamples.

Hughes and I in [6] give generators, as conjectured by Richman [R],
for F,[mV]% where C, denotes the cyclic group of order p, and V' de-
notes its 2-dimensional indecomposable representation. An easy corol-
lary is the fact, first observed by Richman, that this invariant ring
requires a generator of degree m(p — 1). Therefore, Noether’s bound
does not hold for p-groups, and the bound dimg, (V/V®)(|G| — 1) is
sharp in this example.

If G is a pgroup and m > 3 then F,[mV] cannot be Cohen-
Macaulay, see [2]. Kemper has proved that, if G is any modular group,
then F,[mV]€ is not Cohen-Macaulay for all sufficiently large m. We

know of no examples where “sufficiently large” is bigger than 3.
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As an example of the kind of argument used here, consider F,[3V;] =
Fplz1, y1, 22, Y2, 3, ys) With an action of o(z;) = z; and (y;) = ¥ + ;.
We note that u;; = |y 3 | = z:y; — z;¥; is invariant. Further, we have
that the matrix

Ty Tz I3
Ty T2 I3
Y1 Y2 Ys

has zero determinant, since two rows are equal, and, on the other hand,
is equal to iUz — Touiz + T3u19. At Queen’s, we call this the equation
of the three amigos, and with a little work, it can be used to show that
the ring in question is not Cohen-Macaulay. Generalizations of it are
used in the papers listed above.

If we consider now Fp[mVa] = Fplz;,y; | 1 <4 < m] with the action
of C, described above, then we find, after a great deal of hard work (see
[6]), that Fp[mVy] = Fplas, N(v:), wi, Te(m) | m|(y1-- - ym)P~*]. Of
course, this ring is far from Cohen-Macaulay, but at least this collection
of invariants appears to be understandable.

Kemper has also proved that, if G is a p-group and F,[V]¢ is Cohen-
Macaulay, then G is generated by elements that fix a subspace of
codimension at most 2 (such elements are known as bi-reflections).
This theorem shows us how rarely we may expect to encounter Cohen-
Macaulay rings as the invariants of p-groups.

On the Structure of F[V]®: classical results. The invariant
theory of finite groups is much better understood in the non-modular
case.

For example, in this situation, it is a famous and beautiful theo-
rem that F[V]% is a polynomial algebra if and only if G is generated
by pseudo-reflections (Shephard-Todd, Chevalley, Serre, Clark-Ewing,
Steinberg, Kane).

There are other beautiful and wonderful theorems concerning char-
acterizations of hyper-surfaces (Nakajima), Gorenstein (Watanabe), or
Cohen-Macaulay (Hochster and Eagon) in the non-modular case.

Structure of F[V]®: modular case. It is known (Serre) that
groups with polynomial rings of invariants must be pseudo-reflection
groups, and many groups are known to have polynomial rings of in-
variants — the symmetric groups, and the parabolic groups.

Nakajima has characterized those p-groups with polynomial rings of
invariants when F = FF,. Roughly speaking, he shows that such groups

resemble the ring of invariants of the Upper Triangular group, the last
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example of section 3. He gave examples of elementary Abelian reflec-
tion p-groups with non-Cohen-Macaulay invariant rings, a somewhat
simpler example is given below. Nakajima’s characterization fails over
larger fields, as shown by an example due to Stong, see below.

Roughly speaking, Nakajima’s characterization is as follows. Let G
be a p-group represented over the finite field F, on a vector space, V,of
dimension n. Since U, (F,) is a p-Sylow subgroup of Gl,(F,), we may
find a basis for V with respect to which G is a subgroup of Up(Fp).
The theorem asserts that ]FP[V]G is a polynomial algebra if and only
if there is a (upper triangular) basis {zi,...,2,} of V with respect
to which G “stands up straight”, that is, for each generating pseudo-
reflection of G, there is a basis element of V, say z;, such that o fixes
the hyperplane spanned by zi,...,%s, ... ,Zn, where &; indicates z; has
been deleted. Then we have that o(z;) = z; + v where v is a vector
in the span of z1,...,z;_;. The implication < is easy, but the other
direction is much harder.

Kemper and Malle have examined the class of irreducible representa-
tions of modular pseudo-reflection groups and determined which have
polynomial rings of invariant. Unfortunately, irreducible representa-
tions are few and far between.

Much work remains to be done on characterizing groups with poly-
nomial rings of invariants.

A cautionary tale concerning p-groups. Consider the group

& Ty

G={

o =22 4+

0 Y
1 +
0 ﬁDFy | a, B, v€Fp}
0 1

OO

Our convention is that G acts on V* with basis {21, Z2, %1, y2} with z;

and z, as fixed points. Then G has order p®. Let H be the subgroup of

G of order p? determined by the elements with v = 0. Both G and H, of

course, are elementary Abelian groups generated by pseudo-reflections

(elements that fix a hyperplane). However, only H is a Nakajima group.
Let N;(v:) = v — xf_lyi for 1 <4 < 2. It isn’t hard to see that

IFP[V]H = Fp[xla T2, N(yl):' N(y2)]

Further, since H is normal in G, we have an action of G/H = C, on
F,[V]H.
We let
17



o e B e I
oo =O
O =
= O

and we calculate o(N1(y1)) = Ni(y1)—N1(z2), and o (No(y2) = Na(yz)—
Ny(z,). From here we can construct three new invariants:

Ni(y1)? — Ni(z2)? " N1 (1),

No(ya)? — Na(z1)P~  Na(y2)
and

Ni(z9) Na(y2) — Na(z1) N1 (ys).

It can be shown without a great deal of difficulty that F,[V] is the
hypersurface generated by these three invariants together with z; and
Is.

Stong’s example. We work over the field F, with ¢ = p®. We
may suppose the field has basis over F, consisting of {1,w, u}. Let H
be the group generated by the matrices

(

and let G be the group generated by H and the matrix

with respect to the basis {z, y, 2} of V*. We note that both groups are
generated by psuedo-reflections, but that G is not a “Nakajima” group,
since we cannot choose a basis with respect to which each generating
pseudo-reflection is concentrated in a single column.

It is not hard to see that F,[V]¥ = F,[z, N(y), N(z)], where N(t) =
tP — zP~1t. We calculate o(N(y)) = N(y) — (w? —w)z?, and o(N(z)) =
N(z) — (#? — p)p. From here we can construct two G invariants f; =
(47~ )N (y) ~ (WP~ w)N(z) and f, = N(y)P - (wP —w) D (y)z26~D).
It isn’t hard to see that these form a homogeneous system of parame-
ters, and that F[V] = F,[z, f1, fo]

0
0} and
1

OO
O =
oo
o= O
=

o O =

w
1
0

=~
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5. LECTURE ON THE CYCLIC GROUP OF ORDER p OVER F,

There are p indecomposable representations of C, over Fp, one of
dimension n for each n less than or equal p. We have a tower V3 C
Vo C --- C V,, and the matrix of the generator for V; may be taken to
be the n X n matrix

1 10 .00
0 11 .00
0 01 .00
T=le 2 7 &, 31 =
000 ... 11

00O0..0°1

It isn’t hard to compute the rings of invariants associated to the
three lowest dimensional representations. The first two are polynomial
on “top” Chern classes of the basis elements (use the basis assumed
above) and the third is a hypersurface. Shank [Sh]| has given alge-
bra generators for the rings of invariants associated to the four and
five dimensional representations. Also, using techniques and results
of Almqgvist and Fossum, it can be shown that any representation V'
of C, has its invariant ring generated in degrees less than or equal
dimg, (V)(p — 1). Kemper and Hughes have a very nice paper about
this.

We conjecture that the rings of invariants of all representations of
C, are generated by elements we call norms, traces and rational invari-
ants. This latter class of invariants is obtained from certain classical
invariants of binary forms studied by Hilbert and others working in the
last century. We must show that the invariants of degree less than p
are either traces or rational invariants. While this result seems to be
in reach, we haven’t yet proved it.

Conjectures about Modular Groups. Do norms, traces and
rational invariants form a generating set for the invariant rings of all
p-groups? Well, there are cohomology classes as well. I hope to say
something about this at the end of the lecture.

I (and many others!) conjecture that modular groups are generated
in degrees less than or equal to

dime, (V/VE)(IG| - 1).

Of course, this bound is known to hold in all known examples, provided,
of course, that dimg, (V) > 1 and |G| > 1.
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Generators for p-Groups? Take N to be a normal subgroup of a
p-group G with quotient group G/N =~ C,. Then F,[V]¢ = (F,[V]")¢*
Suppose that we know F,[V]Y = F,[fi,-. ., f], perhaps by induction.
Let A =Fp[z,..., 2, mapping onto F,[V]" by the rule z; — f;, with
kernel the ideal I. Suppose that C, acts on A. This need not happen,
and there may be a paper subsequent to this one in which this issue is
explored.
Write A = 1 — o and Tr = 577 0 where o a generator of C,.
Because Tr = AP~!, we obtain a resolution of F, as the trivial module
over the group ring F,C, as follows:

o O S B G 5 B@, s te B0 = Bl W

where € : F,C, — F,, is defined by €(3"77) a;o?) = 307 as.
Then we have exact sequences of Cp-modules

01 — A = F[VIVN = 0
U U U
0— ICP — ACP — F [V]G—> Hl(cp,I) = HI(CIHA) -

Hence the problem of determining elements of F,,[V]¢ not determined
by A% amounts to understanding the right-hand side of the long ex-
act sequence above. Of course, because of the periodic nature of the
resolution of F,, we have

H(C,, M) = Kernel(M -2 M) = M%
Kernel(M =5 M)

HY(Cp, M) =
‘ Im(M -2 M)
= HOdd(Cp, M)
A
HY(C,, M) = Kernel(MT—> M)
Im(M — M)

— Heven(crp, M)

Now the cohomology of Cp-modules is well understood. In partic-
ular, let’s try and understand H*(C,,V,) for V, an indecomposable
representation of C;. Let us denote a basis for V! by {3, ...,z,} and
note that A(z;) = z;—; for 1 < ¢ < n, A(x;) = 0, and, therefore, that
Tr(z;) = 0 for 1 <4 < p, and Tx(z,) = z;.

We have that z; € Im(A) for 1 < ¢ < n. Further, we have Im(Tr) = 0
for n < p and Im(Tr) =< 2; >, for n = p. Finally, H(C,, V;) = V% =
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F,, on the cohomology class associated to z;. Putting all of this together
we obtain

I O(Cp, V) = Fp, on the class associated to z;
HYCp, Vp) = 0= H*(Cp, V)
HY(C,,V,) =F,, n <p, on the class associated to z,,

In our situation we must first understand the decomposition of (each
graded piece of ) I and A into Cp-modules, study the effect of mapping
from one to other, and find the kernel of the induced mapping.

Shank and Wehlau have a recent preprint [SW(b)] in which they
make use of this technology to prove the following. Suppose U is a
sub-module of the Cp-module V. Suppose F,[V] is generated in degrees
less than or equal 7. Then F,[U] is generated in degrees less than or
equal 7. They further obtain a lower bound for 7.

6. Two PROBLEMS FROM INVARIANT THEORY.

The Dixmier-Erdos-Nicholas Problem. Let C, be the cyclic
group of order n over a field with a primitive n-th root of unity w. The
generator o of the group with respect to the natural basis given by z;
corresponding to ¢ has the form

000...01
100...00
s—]010...00

B0 el O
Of course, C,, can be diagonalized, that is, there is a basis

{yi:)yyl; coa :yn—l}

with respect to which o is diagonal of the form
o =diag(l,w,w?,...,w"").
We note immediately that 3} will be an invariant polynomial for all
1 > 0 and so we will work with the reduced regular representation,
that is, we will take the vector space V with basis {y1,...,Yn-1}-
The computation of F[V]°" is connected with problems in the repre-
sentation theory of Lie groups of type A,, and with problems in graph

theory. We proceed as follows.
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We note that o(y!) = wh et +(=Din-191 g6 that the group maps
monomials to monomials. It follows that invariant polynomials consist
of sums of invariant monomials. Writing 8 = (1,2,...,n — 1) we see
that y! is invariant if and only if

6-I=14 4234+ (n—1)in—1 = m(I)n,

for some m(I) € N. We refer to m(I) as the multiplicity of I. We let
M denote the collection of generating monomials, or rather, by abuse
of notation, their exponent sequences. We denote by A; the exponent
sequence which consists of 0’s everywhere except for a 1 in the i-th
position. It is easy to see that the sequences nA; are generators, and,
in fact, the associated monomials form a homogeneous system for the
ring of invariants. It follows that, if / € M, and I is not one of the
nA\;, then each entry in I is less than n.

We are interested in the problem of characterizing elements of M,
or in counting their number, denoted here f(n). We've labeled the
problem in the way we do because of a theorem due to Dixmier -Erdos-
Nicholas, which says,

Theorem.

lim inf f(n)
oo /np(n)

log nloglog(n) > 0.

Here p(n) denotes the number of partitions of n. This theorem points
to a phenomenonal growth in the number of generators for these rings
of invariants as n grows.

One view is that the equation above takes place in N*~1 ¢ Z*! ¢
R™1. If you prefer, we are studying an action of C,, on these three sets.
Of course, we can interpret the action on Z"~! as associated to the ring
of Laurent polynomials. To continue, in Euclidean space, the equation
defines the hyperplane of multiplicity m. We can find a integral basis
for the multiplicity 0 hyperplane, the hyperplane through the origin.
And then any of the multiplicity planes can be obtained by identifying
Jjust one integer vector in them, and using the basis above. We haven’t
been able to characterize the generators of our ring in this manner,
though.

Special cases related to these sorts of invariants can be found in [3,
4, 11].

Steenrod module structures on the syzygies. First, we’ll re-
strict our attention to the case p = 2. I'll try to illustrate with examples
an interesting situation. Let V be a vector space of dimension 2 over
the field Fy. Let G = C3 be the subgroup of Gl(F5) generated by the
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matrix ¢ = (91). The group G has order 3, and we described the ring
of invariants at the end of the section on examples.
We recall
IFZ [l‘a y]G = IF2 [a‘a b: C]
where
— 2 2
a=z"+zxy+y,
b=z®+ 2y +12, and
¢ =z + zy? + 9%, with relation
a3 = b2+ be+ &,

together with its resolution by syzygies over the ring A = [, [a, b, c].
Here |a| = 2, |b| = |¢| = 3, and p(a) = 2° + zy + %, p(b) = 2°y + z°,
p(c) = 23 + 2%y + y*. We also had

0 — A( + a® + b + bc) — A — Fyz,y]° — 0.

We will refer to the relation by the name d.
Here is a table of Steenrod operations on A which we write down
after considering the corresponding operations on F5[V].

Sql qu SqS
a b a? 0
b 0 ab b?
¢ a? ab+acc?+d

We won’t go into the details here, but there is a proposition which
states that if the Adem relations are satisfied on the generators of an
algebra, and the action of the operations on products are given by the
Cartan formula, then we obtain an action of the Steenrod algebra on
the algebra. There are more sophisticated versions, but, for now, let’s
just point out that it is enough to determine S¢*(f) for 0 < 7 < |f| for
each generator f of the algebra in question, and then verify 27l Adem
relations on f, beginning with Sg?#1-1Sglfl(f) = 0 and working our
way down to Sq'Sq¢'(f) = 0.

In our example, because of the Adem relation Sq*S¢? = Sq®, we can
calculate Sqg*(c). However, we note that Sg°(c) # ¢?, so that A is not a
A-algebra, but rather a .A-module. We need to check that S¢3S¢? = 0,
Sq2Sq¢® = S¢®Sq'. It is straightforward to observe that the .A4-action
preserves the ideal generated by d.

Here is another example. Let A = Fyz,y]/(zy® + z°) with A action
given by S¢*(z) = zy, and S¢*(y) = y%. It is trivial that S¢*Sq¢*(y) =0,
and we obtain Sq'Sq*(z) = Sq*(zy) = zy?+z3 = 0. These are the only
Adem relations we need check, and therefore A carries the structure of
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a A-module. However, it is fairly easy to see that the “natural” (from a
certain point of view) algebra B = Fs[z, y] doesn’t admit a compatible
action of 4. In particular, there is no possible modification of our
definition Sq¢'(z) = zy. Therefore we obtain Sq¢'Sq*(z) = zy? + z°
which is not 0 in B. Therefore, of course, B is not an .4-module, and
can’t be made to carry such a structure, given that the ideal (through
which our choices might be modified) doesn’t begin until degree 3. Of
course, we might seek to modify B, but this is a story for another day.

There is much more to be said about even these two examples, and
in the verification of the underlying theorems producing A actions, but
these need await another time. We've computed a number of different
examples, which we hope to analyze in more detail.
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